Nutritional Approach in Pediatric Patients with Inflammatory Bowel Disease: Treatment, Risk and Challenges
Abstract
1. Introduction
2. Methods
3. Inflammatory Bowel Disease
3.1. Epidemiology
3.2. Chron’s Disease and Ulcerative Colitis
3.3. Diagnostic Criteria
3.4. Immunopathogenesis
3.5. Risk Factors
3.6. The Role of Microbiome
3.7. Genetic Issues
4. Pharmacologic Treatment for Pediatric Inflammatory Bowel Diseases
5. Nutritional Treatment for Pediatric Inflammatory Bowel Diseases
5.1. Macronutrients and Micronutrients Requirement in Patients with pIBD
5.1.1. Macronutrient Requirements
5.1.2. Micronutrient Requirement
5.2. Exclusive Enteral Nutrition
5.3. Partial Enteral Nutrition and CD Exclusion Diet
5.4. Other Dietary Patterns in Pediatric Inflammatory Disease Treatment
6. Nutritional Risks for Subjects with pIBD
6.1. Linear Growth Impairment
- Increased energy expenditure: Inflammation-driven hypermetabolism further aggravates undernutrition [144].
- Delayed puberty: Malnutrition and inflammation postpone the pubertal growth spurt [143].
- Genetic predisposition: Parental height and IBD-associated polymorphisms influence growth potential [142].
- Corticosteroid therapy: Prolonged use directly impairs the growth plate and bone metabolism [143].
6.2. Altered Body Composition
6.3. Weight Excess
6.4. Delayed Puberty
6.5. Impaired Bone Mineralization
6.6. Anemia
6.7. Psychosocial Aspects and Eating Disorders
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
| AGA | American Gastroenterological Association |
| ASCAs | Anti-Saccharomyces cerevisiae antibodies |
| BMI | Body mass index |
| CD | Chron’s disease |
| CDED | Crohn’s disease exclusion diet |
| CS | Corticosteroids |
| CRP | C-reactive protein |
| DALYs | Disability-adjusted life years |
| EEN | Exclusive enteral nutrition |
| ESPEN | European Society for Clinical Nutrition and Metabolism |
| ESPGHAN | European Society of Pediatric Gastroenterology, Hepatology, and Nutrition |
| ESR | Erythrocyte sedimentation rate |
| FC | Fecal calprotectin |
| FMT | Fecal microbiota transplantation |
| FODMAP | Fermentable Oligo-, Di-, Monosaccharides, and Polyols |
| GI | Gastrointestinal |
| HBI | Harvey–Bradshaw index |
| IBD | Inflammatory bowel disease |
| IBD-U | Inflammatory bowel disease unclassified |
| ILC3s | Group 3 innate lymphoid cells |
| IL-22 | Interleukin-22 |
| MAMPs | Microbe-associated molecular patterns |
| MD | Mediterranean diet |
| MRE | Magnetic resonance enterography |
| NLRs | NOD-like receptors |
| pANCAs | Perinuclear anti-neutrophil cytoplasmic antibodies |
| PAMPs | Pathogen-associated molecular patterns |
| PEN | Partial enteral nutrition |
| PIBD | Pediatric-onset inflammatory bowel disease |
| PID | Primary immunodeficiencies |
| REE | Resting energy expenditure |
| SCD | Specific carbohydrate diet |
| SCFAs | Short-chain fatty acids |
| SDI | Socio-demographic index |
| Th17 | T helper 17 |
| TLRs | Toll-like receptors |
| TNFalpha | Tumor necrosis factor-alpha |
| UC | Ulcerative colitis |
| VEO-IBD | Very-early-onset IBD |
| WCE | Wireless capsule endoscopy |
References
- Carroll, M.W.; Kuenzig, M.E.; Mack, D.R.; Otley, A.R.; Griffiths, A.M.; Kaplan, G.G.; Bernstein, C.N.; Bitton, A.; Murthy, S.K.; Nguyen, G.C.; et al. The impact of inflammatory bowel disease in Canada 2018: Children and adolescents with IBD. J. Can. Assoc. Gastroenterol. 2019, 2, S49–S67. [Google Scholar] [CrossRef]
- Kuenzig, M.E.; Fung, S.G.; Marderfeld, L.; Mak, J.W.Y.; Kaplan, G.G.; Ng, S.C.; Wilson, D.C.; Cameron, F.; Henderson, P.; Kotze, P.G.; et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: Systematic review. Gastroenterology 2022, 162, 1147–1159.e4. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Wang, C.; Huang, Y.; Mao, C.; Xu, Y.; Zhu, Y. Changing epidemiology of inflammatory bowel disease in children and adolescents. Int. J. Color. Dis. 2024, 39, 73. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, C.-W.; Huang, Y.; Zheng, X.; Li, S.; He, M.; Hashash, J.G.; A Farraye, F.; Ehrlich, A.C. Global epidemiology and geographic variations of pediatric-onset inflammatory bowel disease: A comprehensive analysis of the Global Burden of Disease Study 1990 to 2019. Inflamm. Bowel Dis. 2025, 31, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.E.; Thorne, K.; Thapar, N.; Broekaert, I.; Benninga, M.A.; Dolinsek, J.; Mas, E.; Miele, E.; Orel, R.; Pienar, C.; et al. A systematic review and meta-analysis of paediatric inflammatory bowel disease incidence and prevalence across Europe. J. Crohns Colitis 2020, 14, 1119–1148. [Google Scholar] [CrossRef]
- Alvisi, P.; Labriola, F.; Scarallo, L.; Gandullia, P.; Knafelz, D.; Bramuzzo, M.; Zuin, G.; Pastore, M.R.; Illiceto, M.T.; Miele, E.; et al. Epidemiological trends of pediatric IBD in Italy: A 10-year analysis of the Italian society of pediatric gastroenterology, hepatology and nutrition registry. Dig. Liver Dis. 2022, 54, 469–476. [Google Scholar] [CrossRef]
- Khor, B.; Gardet, A.; Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, L.E.; Vos, I.K.; Utens, E.M.W.J.; Dieleman, G.C.; Walet, S.; Escher, J.C.; van den Berg, L.E.M.; Rotterdam Exercise Team. Physical Training and Healthy Diet Improved Bowel Symptoms, Quality of Life, and Fatigue in Children with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 77, 214–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.-F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Bouhuys, M.; Lexmond, W.S.; van Rheenen, P.F. Pediatric inflammatory bowel disease. Pediatrics 2023, 151, e2022058037. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, H.H.; Charbit-Henrion, F.; Kotlarz, D.; Shouval, D.S.; Schwerd, T.; Strisciuglio, C.; de Ridder, L.; van Limbergen, J.; Macchi, M.; Snapper, S.B.; et al. Clinical genomics for the diagnosis of monogenic forms of inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 456–473. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Kaplan, G.G. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol. 2010, 6, 339–346. [Google Scholar]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef]
- Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO guidelines on therapeutics in crohn’s disease: Medical treatment. J. Crohns Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, H.H.; Schwerd, T.; Koletzko, S.; Shah, N.; Kammermeier, J.; Elkadri, A.; Ouahed, J.; Wilson, D.C.; Travis, S.P.; Turner, D.; et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 2014, 147, 990–1007.e3. [Google Scholar] [CrossRef]
- Levine, A.; Griffiths, A.; Markowitz, J. Pediatric modification of the Montreal classification for IBD: The Paris classification. Inflamm. Bowel Dis. 2011, 17, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition; Colitis Foundation of America; Bousvaros, A.; Antonioli, D.A.; Colletti, R.B.; Dubinsky, M.C.; Glickman, J.N.; Gold, B.D.; Griffiths, A.M.; Jevon, G.P.; et al. Differentiating ulcerative colitis from Crohn disease in children and young adults: Report of a working group of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the Crohn’s and Colitis Foundation of America. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 653–674. [Google Scholar] [CrossRef] [PubMed]
- de Bie, C.I.; Buderus, S.; Sandhu, B.K.; de Ridder, L.; Paerregaard, A.; Veres, G.; Dias, J.A.; Escher, J.C.; EUROKIDS Porto IBD Working Group of ESPGHAN. Diagnostic workup of paediatric patients with inflammatory bowel disease in Europe: Results of a 5-year audit of the EUROKIDS registry. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bostrom, A.G.; Kirschner, B.S.; Ferry, G.D.; Gold, B.D.; Cohen, S.A.; Winter, H.S.; Baldassano, R.N.; Abramson, O.; Smith, T.; et al. Incidence of stricturing and penetrating complications of Crohn’s disease diagnosed in pediatric patients. Inflamm. Bowel Dis. 2010, 16, 638–644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Odze, R.D.; Bines, J.; Leichtner, A.M.; Goldman, H.; Antonioli, D.A. Allergic proctocolitis in infants: A prospective clinicopathologic biopsy study. Hum. Pathol. 1993, 24, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Van Limbergen, J.; Russell, R.K.; Drummond, H.E. Definition of phenotypic characteristics of childhood-onset IBD. Gastroenterology 2008, 135, 1114–1122. [Google Scholar] [CrossRef]
- IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: Recommendations for diagnosis-the Porto criteria. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Veres, G.; Kolho, K.L.; Griffiths, A.; Levine, A.; Escher, J.C.; Amil Dias, J.; Barabino, A.; Braegger, C.P.; Bronsky, J.; et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis 2014, 8, 1179–1207. [Google Scholar] [CrossRef]
- Martín-de-Carpi, J.; Rodríguez, A.; Ramos, E.; Jiménez, S.; Martínez-Gómez, M.J.; Medina, E.; SPIRIT-IBD Working Group of Sociedad Española de Gastroenterología, Hepatología y Nutricion Pediátrica. Increasing incidence of pediatric inflammatory bowel disease in Spain (1996-2009): The SPIRIT Registry. Inflamm. Bowel Dis. 2013, 19, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Henderson, P.; Anderson, N.H.; Wilson, D.C. The diagnostic accuracy of fecal calprotectin during the investigation of suspected pediatric inflammatory bowel disease: A systematic review and meta-analysis. Am. J. Gastroenterol. 2014, 109, 637–645. [Google Scholar] [CrossRef]
- Fagerberg, U.L.; Lööf, L.; Lindholm, J.; Hansson, L.O.; Finkel, Y. Fecal calprotectin: A quantitative marker of colonic inflammation in children with IBD. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 2741–2763. [Google Scholar] [CrossRef] [PubMed]
- Van Rheenen, P.F.; Van De Vijver, E.; Fidler, V. Faecal calprotectin for screening of patients with suspected IBD: Diagnostic meta-analysis. BMJ 2010, 341, c3369. [Google Scholar] [CrossRef] [PubMed]
- Hyams, J.; Markowitz, J.; Otley, A.; Rosh, J.; Mack, D.; Bousvaros, A.; Kugathasan, S.; Pfefferkorn, M.; Tolia, V.; Evans, J.; et al. Evaluation of the pediatric crohn disease activity index: A prospective multicenter experience. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 416–421. [Google Scholar] [CrossRef]
- Kellar, A.; Chavannes, M.; Huynh, H.Q.; Aronskyy, I.; Lei, B.; deBruyn, J.C.; Kim, J.; Dolinger, M.T. Defining normal bowel wall thickness in children with inflammatory bowel disease in deep remission: A multicenter study on behalf of the pediatric committee of the International Bowel Ultrasound Group (IBUS). J. Pediatr. Gastroenterol. Nutr. 2025, 81, 53–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef]
- de Souza, H.S.P.; Fiocchi, C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 13–27. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N. Environmental risk factors for inflammatory bowel diseases: A review. Dig. Dis. Sci. 2015, 60, 290–298. [Google Scholar] [CrossRef]
- Hou, J.K.; Abraham, B.; El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. Am. J. Gastroenterol. 2011, 106, 563–573. [Google Scholar] [CrossRef]
- Sevelsted, A.; Stokholm, J.; Bønnelykke, K.; Bisgaard, H. Cesarean section and chronic immune disorders. Pediatrics 2015, 135, e92–e98. [Google Scholar] [CrossRef] [PubMed]
- Hviid, A.; Svanström, H.; Frisch, M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011, 60, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.R.; Russell, R.K.; Wilson, M.L.; Gilmour, W.H.; Satsangi, J. Systematic review: The role of breastfeeding in the development of paediatric inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2009, 50, 486–492. [Google Scholar] [CrossRef]
- Capra, M.E.; Aliverti, V.; Bellani, A.M.; Berzieri, M.; Montani, A.G.; Pisseri, G.; Sguerso, T.; Esposito, S.; Biasucci, G. Breastfeeding and Non-Communicable Diseases: A Narrative Review. Nutrients 2025, 17, 511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azad, M.B.; Konya, T.; Maughan, H.; Guttman, D.S.; Field, C.J.; Sears, M.R.; Becker, A.B.; Scott, J.A.; Kozyrskyj, A.L.; CHILD Study Investigators. Infant gut microbiota and the hygiene hypothesis of allergic disease: Impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin. Immunol. 2013, 9, 15. [Google Scholar] [CrossRef]
- Capra, M.E.; Monopoli, D.; Decarolis, N.M.; Giudice, A.; Stanyevic, B.; Esposito, S.; Biasucci, G. Dietary Models and Cardiovascular Risk Prevention in Pediatric Patients. Nutrients 2023, 15, 3664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Capra, M.E.; Biasucci, G.; Travaglia, E.; Sodero, R.; Banderali, G.; Pederiva, C. Fiber in the Treatment of Dyslipidemia in Pediatric Patients. Children 2025, 12, 427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fitzgerald, R.S.; Sanderson, I.R.; Claesson, M.J. Paediatric inflammatory bowel disease and its relationship with the microbiome. Microb. Ecol. 2021, 82, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Lo, B.C.; Núñez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020, 20, 411–426. [Google Scholar] [CrossRef]
- Wang, S.-L.; Wang, Z.-R.; Yang, C.-Q. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp. Ther. Med. 2012, 4, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Cococcioni, L.; Panelli, S.; Varotto-Boccazzi, I.; Carlo, D.D.; Pistone, D.; Leccese, G.; Zuccotti, G.V.; Comandatore, F. IBDs and the pediatric age: Their peculiarities and the involvement of the microbiota. Dig. Liver Dis. 2021, 53, 17–25. [Google Scholar] [CrossRef]
- Imhann, F.; Vila, V.; Bonder, A. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018, 67, 108–119. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef]
- Kostic, A.D.; Xavier, R.J.; Gevers, D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 2014, 146, 1489–1499. [Google Scholar] [CrossRef]
- Sartor, R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008, 134, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.J.; Contijoch, E.J.; Mogno, I.; Vennaro, O.H.; Llewellyn, S.R.; Ng, R.; Li, Z.; Mortha, A.; Merad, M.; Das, A.; et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt + Regulatory T Cells andExacerbate Colitis in Mice. Immunity 2019, 50, 212–224.e4. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.I.H.; Morgan, X.C. Searching for a Consensus Among Inflammatory Bowel Disease Studies: A Systematic Meta-Analysis. Inflamm. Bowel Dis. 2023, 29, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, K.; Kamada, N. Metabolic Network of the Gut Microbiota in Inflammatory Bowel Disease. Inflamm. Regen. 2024, 44, 11. [Google Scholar] [CrossRef]
- Leibovitzh, H.; Lee, S.-H.; Xue, M.; Raygoza Garay, J.A.; Hernandez-Rocha, C.; Madsen, K.L.; Meddings, J.B.; Guttman, D.S.; EspinGarcia, O.; Smith, M.I.; et al. Altered Gut Microbiome Composition and Function Are Associated with Gut Barrier Dysfunction in Healthy Relatives of Patients with Crohn’s Disease. Gastroenterology 2022, 163, 1364–1376.e10. [Google Scholar] [CrossRef] [PubMed]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Oliva, S.; Thomson, M.; de Ridder, L.; Martín-de-Carpi, J.; Van Biervliet, S.; Braegger, C.; Dias, J.A.; Kolacek, S.; Miele, E.; Buderus, S.; et al. Endoscopy in pediatric inflammatory bowel disease: A position paper on behalf of the Porto IBD group of the European society for pediatric gastroenterology, hepatology and nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, S. Probiotics in the treatment of inflammatory bowel diseases. Adv. Exp. Med. Biol. 2024, 1449, 135–142. [Google Scholar] [PubMed]
- Uhlig, H.H.; Schwerd, T. From Genes to Mechanisms: The Expanding Spectrum of Monogenic Disorders Associated with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 202–212. [Google Scholar] [CrossRef] [PubMed]
- de Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G.; et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef]
- Ouahed, J.; Spencer, E.; Kotlarz, D.; Shouval, D.S.; Kowalik, M.; Peng, K.; Field, M.; Grushkin-Lerner, L.; Pai, S.Y.; Bousvaros, A.; et al. Very Early Onset Inflammatory Bowel Disease: A Clinical Approach with a Focus on the Role of Genetics and Underlying Immune Deficiencies. Inflamm. Bowel Dis. 2020, 26, 820–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeissig, Y.; Petersen, B.-S.; Milutinovic, S.; Bosse, E.; Mayr, G.; Peuker, K.; Hartwig, J.; Keller, A.; Kohl, M.; Laass, M.W.; et al. XIAP variants in male Crohn’s disease. Gut 2015, 64, 66–76. [Google Scholar] [PubMed]
- Alarfaj, S.J.; Mostafa, S.A.; Negm, W.A.; El-Masry, T.A.; Kamal, M.; Elsaeed, M.; El Nakib, A.M. Mucosal Genes Expression in Inflammatory Bowel Disease Patients: New Insights. Pharmaceuticals 2023, 16, 324. [Google Scholar] [CrossRef] [PubMed]
- Kelsen, J.R.; Baldassano, R.N.; Artis, D.; Sonnenberg, G.F. Maintaining intestinal health: The genetics and immunology of very early onset inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Vuijk, S.A.; Camman, A.E.; de Ridder, L. Considerations in paediatric and adolescent inflammatory bowel disease. J. Crohns Colitis 2024, 18, ii31–ii45. [Google Scholar]
- Hyams, J.S.; Griffiths, A.; Markowitz, J.; Baldassano, R.N.; Faubion, W.A., Jr.; Colletti, R.B.; Dubinsky, M.; Kierkus, J.; Rosh, J.; Wang, Y.; et al. Safety and efficacy of adalimumab for moderate to severe Crohn’s disease in children. Gastroenterology 2012, 143, 365–374.e2. [Google Scholar]
- Ashton, J.J.; Beattie, R.M. Inflammatory bowel disease: Recent developments. Arch. Dis. Child. 2024, 109, 370–376. [Google Scholar]
- Levine, A.; Wine, E.; Assa, A.; Sigall Boneh, R.; Shaoul, R.; Kori, M.; Cohen, S.; Peleg, S.; Shamaly, H.; On, A.; et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 2019, 157, 440–450.e8. [Google Scholar] [CrossRef]
- Roncoroni, L.; Gori, R.; Elli, L.; Tontini, G.E.; Doneda, L.; Norsa, L.; Cuomo, M.; Lombardo, V.; Scricciolo, A.; Caprioli, F.; et al. Nutrition in patients with inflammatory bowel diseases: A narrative review. Nutrients 2022, 14, 751. [Google Scholar] [CrossRef]
- Crooks, B.; McLaughlin, J.; Matsuoka, K.; Kobayashi, T.; Yamazaki, H.; Limdi, J.K. The dietary practices and beliefs of people living with inactive ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 372–379. [Google Scholar] [CrossRef]
- Sousa Guerreiro, C.; Cravo, M.; Costa, A.R.; Miranda, A.; Tavares, L.; Moura-Santos, P.; MarquesVidal, P.; Leitão, C.N. A comprehensive approach to evaluate nutritional status in Crohn’s patients in the era of biologic therapy: A case-control study. Am. J. Gastroenterol. 2007, 102, 2551–2556. [Google Scholar] [CrossRef]
- Hartman, C.; Marderfeld, L.; Davidson, K.; Mozer-Glassberg, Y.; Poraz, I.; Silbermintz, A.; Zevit, N.; Shamir, R. Food intake adequacy in children and adolescents with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 437–444. [Google Scholar] [CrossRef]
- Pons, R.; Whitten, K.E.; Woodhead, H.; Leach, S.T.; Lemberg, D.A.; Day, A.S. Dietary intakes of children with Crohn’s disease. Br. J. Nutr. 2009, 102, 1052–1057. [Google Scholar] [CrossRef]
- Miele, E.; Shamir, R.; Aloi, M.; Assa, A.; Braegger, C.; Bronsky, J.; de Ridder, L.; Escher, J.C.; Hojsak, I.; Kolaček, S.; et al. Nutrition in paediatric inflammatory bowel disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Kuźnicki, P.; Neubauer, K. Emerging comorbidities in inflammatory bowel disease: Eating disorders, alcohol and narcotics misuse. J. Clin. Med. 2021, 10, 4623. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.G.; Miller, V.; Taylor, F.; Maycock, P.; Scrimgeour, C.M.; Rennie, M.J. Whole body protein turnover in childhood Crohn’s disease. Gut 1992, 33, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Steiner, S.J.; Noe, J.D.; Denne, S.C. Corticosteroids increase protein breakdown and loss in newly diagnosed pediatric Crohn disease. Pediatr. Res. 2011, 70, 484–488. [Google Scholar] [CrossRef]
- Gerasimidis, K.; Edwards, C.; Stefanowicz, F.; Galloway, P.; McGrogan, P.; Duncan, A.; Talwar, D. Micronutrient status in children with IBD. J. Pediatr. Gastroenterol. Nutr. 2013, 56, e50–e51. [Google Scholar] [CrossRef]
- Filippi, J.; Al-Jaouni, R.; Wiroth, J.-B.; Hébuterne, X.; Schneider, S.M. Nutritional deficiencies in patients with Crohn’s disease in remission. Inflamm. Bowel Dis. 2006, 12, 185–191. [Google Scholar] [CrossRef]
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enter. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef]
- Santucci, N.R.; Alkhouri, R.H.; Baker, R.D.; Baker, S.S. Vitamin and zinc status pretreatment and posttreatment in patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Sasson, A.N.; Ananthakrishnan, A.N.; Raman, M. Diet in treatment of inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 425–435.e3. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, S.; Fragkos, K.C.; Keetarut, K.; Koo, H.F.; Sebepos-Rogers, G.; Saravanapavan, H.; Barragry, J.; Rogers, J.; Mehta, S.J.; Rahman, F. Enteral Nutrition in Adult Crohn’s Disease: Toward a Paradigm Shift. Nutrients 2019, 11, 2222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamamoto, T.; Shimoyama, T.; Kuriyama, M. Dietary and enteral interventions for Crohn’s disease. Curr. Opin. Biotechnol. 2017, 44, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Nakahigashi, M.; Yamamoto, T.; Sacco, R.; Hanai, H.; Kobayashi, F. Enteral nutrition for maintaining remission in patients with quiescent Crohn’s disease: Current status and future perspectives. Int. J. Color. Dis. 2016, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Whitten, K.E.; Rogers, P.; Ooi, C.Y.; Day, A.S. International survey of enteral nutrition protocols used in children with Crohn’s disease. J. Dig. Dis. 2012, 13, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ashton, J.J.; Gavin, J.; Beattie, R.M. Exclusive enteral nutrition in Crohn’s disease: Evidence and practicalities. Clin. Nutr. 2019, 38, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Gerasimidis, K.; Bertz, M.; Hanske, L.; Junick, J.; Biskou, O.; Aguilera, M.; Garrick, V.; Russell, R.K.; Blaut, M.; McGrogan, P.; et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm. Bowel Dis. 2014, 20, 861–871. [Google Scholar] [CrossRef] [PubMed]
- D’Argenio, V.; Precone, V.; Casaburi, G.; Miele, E.; Martinelli, M.; Staiano, A.; Salvatore, F.; Sacchetti, L. An altered gut microbiome profile in a child affected by Crohn’s disease normalized after nutritional therapy. Am. J. Gastroenterol. 2013, 108, 851–852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, J.D.; Chen, E.Z.; Baldassano, R.N.; Otley, A.R.; Griffiths, A.M.; Lee, D.; Bittinger, K.; Bailey, A.; Friedman, E.S.; Hoffmann, C.; et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe 2015, 18, 489–500, Erratum in Cell Host Microbe 2017, 22, 247.. [Google Scholar] [CrossRef]
- Guinet-Charpentier, C.; Lepage, P.; Morali, A.; Chamaillard, M.; Peyrin-Biroulet, L. Effects of enteral polymeric diet on gut microbiota in children with Crohn’s disease. Gut 2017, 66, 194–195. [Google Scholar] [CrossRef]
- MacLellan, A.; Moore-Connors, J.; Grant, S.; Cahill, L.; Langille, M.G.I.; Van Limbergen, J. The Impact of Exclusive Enteral Nutrition (EEN) on the Gut Microbiome in Crohn’s Disease: A Review. Nutrients 2017, 9, 447. [Google Scholar] [CrossRef]
- Pigneur, B.; Ruemmele, F.M. Nutritional interventions for the treatment of IBD: Current evidence and controversies. Ther. Adv. Gastroenterol. 2019, 12, 1756284819890534. [Google Scholar] [CrossRef] [PubMed]
- Soo, J.; Malik, B.A.; Turner, J.M.; Persad, R.; Wine, E.; Siminoski, K.; Huynh, H.Q. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn’s disease. Dig. Dis. Sci. 2013, 58, 3584–3591. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yu, J.; Zhao, H.; Lou, J.; Chen, F.; Peng, K.; Chen, J. Short-Term Efficacy of Exclusive Enteral Nutrition in Pediatric Crohn’s Disease: Practice in China. Gastroenterol. Res. Pract. 2015, 2015, 428354. [Google Scholar] [CrossRef] [PubMed]
- Verburgt, C.M.; Dunn, K.A.; Ghiboub, M.; Lewis, J.D.; Wine, E.; Sigall Boneh, R.; Gerasimidis, K.; Shamir, R.; Penny, S.; Pinto, D.M.; et al. Successful Dietary Therapy in Paediatric Crohn’s Disease is Associated with Shifts in Bacterial Dysbiosis and Inflammatory Metabotype Towards Healthy Controls. J. Crohns Colitis 2023, 17, 61–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Richman, E.; Rhodes, J.M. Review article: Evidence-based dietary advice for patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 1156–1171. [Google Scholar] [CrossRef] [PubMed]
- Faiman, A.; Mutalib, M.; Moylan, A.; Morgan, N.; Crespi, D.; Furman, M.; Kader, A. Standard versus rapid food reintroduction after exclusive enteral nutritional therapy in paediatric Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 2014, 26, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Shiraki, M. Efficacy of enteral nutrition during infliximab maintenance therapy in patients with Crohn’s disease. Dig. Dis. Sci. 2013, 58, 1802–1803. [Google Scholar] [CrossRef] [PubMed]
- Gavin, J.; Ashton, J.J.; Heather, N.; Marino, L.V.; Beattie, R.M. Nutritional support in paediatric Crohn’s disease: Outcome at 12 months. Acta Paediatr. 2018, 107, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Werkstetter, K.J.; Schatz, S.B.; Alberer, M.; Filipiak-Pittroff, B.; Koletzko, S. Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn’s disease patients. Ann. Nutr. Metab. 2013, 63, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.C.; Wall, C.L.; Gearry, R.B.; Day, A.S. Exclusive Enteral Nutrition for the Treatment of Pediatric Crohn’s Disease: The Patient Perspective. Pediatr. Gastroenterol. Hepatol. Nutr. 2023, 26, 165–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuomo, M.; Carobbio, A.; Aloi, M.; Alvisi, P.; Banzato, C.; Bosa, L.; Bramuzzo, M.; Campanozzi, A.; Catassi, G.; D’Antiga, L.; et al. Induction of Remission with Exclusive Enteral Nutrition in Children with Crohn’s Disease: Determinants of Higher Adherence and Response. Inflamm. Bowel Dis. 2023, 29, 1380–1389, Erratum in Inflamm. Bowel Dis. 2023, 29, 2010. https://doi.org/10.1093/ibd/izad239. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, U.; Romano, C.; Dipasquale, V. Diet and Nutrition in Pediatric Inflammatory Bowel Diseases. Nutrients 2021, 13, 655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, G.; Ren, J.; Li, G.; Hu, Q.; Gu, G.; Ren, H.; Hong, Z.; Li, J. The utility of food antigen test in the diagnosis of Crohn’s disease and remission maintenance after exclusive enteral nutrition. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Baldassano, R.N.; Otley, A.R.; Albenberg, L.; Griffiths, A.M.; Compher, C.; Chen, E.Z.; Li, H.; Gilroy, E.; Nessel, L.; et al. Comparative Effectiveness of Nutritional and Biological Therapy in North American Children with Active Crohn’s Disease. Inflamm. Bowel Dis. 2015, 21, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Sigall Boneh, R.; Park, S.; Soledad Arcucci, M.; Herrador-López, M.; Sarbagili-Shabat, C.; Kolonimos, N.; Wierdsma, N.; Chen, M.; Hershkovitz, E.; Wine, E.; et al. Cultural Perspectives on the Efficacy and Adoption of the Crohn’s Disease Exclusion Diet across Diverse Ethnicities: A Case-Based Overview. Nutrients 2024, 16, 3184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damas, O.M.; Maldonado-Contreras, A. Breaking Barriers in Dietary Research: Strategies to Diversify Recruitment in Clinical Studies and Develop Culturally Tailored Diets for Hispanic Communities Living with Inflammatory Bowel Disease. Gastroenterology 2023, 165, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Arcucci, M.S.; Menendez, L.; Orsi, M.; Gallo, J.; Guzman, L.; Busoni, V.; Lifschitz, C. Role of adjuvant Crohn’s disease exclusion diet plus enteral nutrition in asymptomatic pediatric Crohn’s disease having biochemical activity: A randomized, pilot study. Indian J. Gastroenterol. 2024, 43, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Landorf, E.; Hammond, P.; Abu-Assi, R.; Ellison, S.; Boyle, T.; Comerford, A.; Couper, R. Formula modifications to the Crohn’s disease exclusion diet do not impact therapy success in paediatric Crohn’s disease. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Hracs, L.; Windsor, J.W.; Gorospe, J.; Cummings, M.; Coward, S.; Buie, M.J.; Quan, J.; Goddard, Q.; Caplan, L.; Markovinović, A.; et al. Global evolution of inflammatory bowel disease across epidemiologic stages. Nature 2025, 642, 458–466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Epstein, D.; Kassianides, C.; Gaibee, Z.; Watermeyer, G.; Griffiths, A. Inflammatory bowel disease in children in sub-Saharan Africa. Paediatr. Int. Child Health 2020, 40, 141–142. [Google Scholar] [CrossRef] [PubMed]
- Scarallo, L.; Lionetti, P. Dietary Management in Pediatric Patients with Crohn’s Disease. Nutrients 2021, 13, 1611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hauer, A.C.; Sultan, M.; Darma, A.; Altamimi, E.; Serban, D.E.; Assa, A.; Franco, C.P.S.; de Ridder, L.; Wilson, D.C.; Afzal, N.A.; et al. Management of pediatric inflammatory bowel diseases in limited-resource settings: A position paper from the Paediatric IBD Porto Group of ESPGHAN. J. Pediatr. Gastroenterol. Nutr. 2025, 81, 866–898. [Google Scholar] [CrossRef] [PubMed]
- Sigall Boneh, R.; Sarbagili Shabat, C.; Yanai, H.; Chermesh, I.; Ben Avraham, S.; Boaz, M.; Levine, A. Dietary Therapy with the Crohn’s Disease Exclusion Diet is a Successful Strategy for Induction of Remission in Children and Adults Failing Biological Therapy. J. Crohns Colitis 2017, 11, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Niseteo, T.; Sila, S.; Trivić, I.; Mišak, Z.; Kolaček, S.; Hojsak, I. Modified Crohn’s disease exclusion diet is equally effective as exclusive enteral nutrition: Real-world data. Nutr. Clin. Pract. 2022, 37, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Matuszczyk, M.; Meglicka, M.; Wiernicka, A.; Jarzębicka, D.; Osiecki, M.; Kotkowicz-Szczur, M.; Kierkuś, J. Effect of the Crohn’s Disease Exclusion Diet (CDED) on the Fecal Calprotectin Level in Children with Active Crohn’s Disease. J. Clin. Med. 2022, 11, 4146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jijón Andrade, M.C.; Pujol Muncunill, G.; Lozano Ruf, A.; Álvarez Carnero, L.; Vila Miravet, V.; García Arenas, D.; Egea Castillo, N.; Martín de Carpi, J. Efficacy of Crohn’s disease exclusion diet in treatment -naïve children and children progressed on biological therapy: A retrospective chart review. BMC Gastroenterol. 2023, 23, 225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cohen, S.A.; Gold, B.D.; Oliva, S.; Lewis, J.; Stallworth, A.; Koch, B.; Eshee, L.; Mason, D. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Suskind, D.L.; Lee, D.; Kim, Y.M.; Wahbeh, G.; Singh, N.; Braly, K.; Nuding, M.; Nicora, C.D.; Purvine, S.O.; Lipton, M.S.; et al. The Specific Carbohydrate Diet and Diet Modification as Induction Therapy for Pediatric Crohn’s Disease: A Randomized Diet Controlled Trial. Nutrients 2020, 12, 3749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wahbeh, G.T.; Ward, B.T.; Lee, D.Y.; Giefer, M.J.; Suskind, D.L. Lack of Mucosal Healing from Modified Specific Carbohydrate Diet in Pediatric Patients with Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R.; Yao, C.K.; Halmos, E.P. Review article: Evidence-based dietary management of inflammatory bowel disease. Aliment. Pharmacol. Ther. 2024, 60, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- Braly, K.; Williamson, N.; Shaffer, M.L.; Lee, D.; Wahbeh, G.; Klein, J.; Giefer, M.; Suskind, D.L. Nutritional Adequacy of the Specific Carbohydrate Diet in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 533–538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biesiekierski, J.R.; Peters, S.L.; Newnham, E.D.; Rosella, O.; Muir, J.G.; Gibson, P.R. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 2013, 145, 320–328.e3. [Google Scholar] [CrossRef] [PubMed]
- Leach, S.T.; Mitchell, H.M.; Eng, W.R.; Zhang, L.; Day, A.S. Sustained modulation of intestinal bacteria by exclusive enteral nutrition used to treat children with Crohn’s disease. Aliment. Pharmacol. Ther. 2008, 28, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Yi, J.; Liu, X. A Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strisciuglio, C.; Cenni, S.; Serra, M.R.; Dolce, P.; Martinelli, M.; Staiano, A.; Miele, E. Effectiveness of Mediterranean Diet’s Adherence in children with Inflammatory Bowel Diseases. Nutrients 2020, 12, 3206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Sandler, R.S.; Brotherton, C.; Brensinger, C.; Li, H.; Kappelman, M.D.; Daniel, S.G.; Bittinger, K.; Albenberg, L.; Valentine, J.F.; et al. A Randomized Trial Comparing the Specific Carbohydrate Diet to a Mediterranean Diet in Adults with Crohn’s Disease. Gastroenterology 2021, 161, 837–852.e9, Erratum in Gastroenterology 2022, 163, 1473. https://doi.org/10.1053/j.gastro.2022.07.058. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peters, V.; Spooren, C.E.G.M.; Pierik, M.J.; Weersma, R.K.; van Dullemen, H.M.; Festen, E.A.M.; Visschedijk, M.C.; Masclee, A.A.M.; Hendrix, E.M.B.; Almeida, R.J.; et al. Dietary Intake Pattern is Associated with Occurrence of Flares in IBD Patients. J. Crohns Colitis 2021, 15, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Sarbagili-Shabat, C.; Albenberg, L.; Van Limbergen, J.; Pressman, N.; Otley, A.; Yaakov, M.; Wine, E.; Weiner, D.; Levine, A. A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients 2021, 13, 3736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Forbes, A.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Clin. Nutr. 2017, 36, 321–347. [Google Scholar] [CrossRef]
- Massironi, S.; Viganò, C.; Palermo, A.; Pirola, L.; Mulinacci, G.; Allocca, M.; Peyrin-Biroulet, L.; Danese, S. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2023, 8, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Mentella, M.; Miggiano, G.; Mele, M.C.; Gaetani, E.; et al. Nutrition and IBD: Malnutrition and/or sarcopenia? A practical guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef]
- Herzog, D.; Fournier, N.; Buehr, P.; Koller, R.; Rueger, V.; Heyland, K.; Nydegger, A.; Spalinger, J.; Schibli, S.; Braegger, C. Early-onset Crohn’s disease is a risk factor for smaller final height. Eur. J. Gastroenterol. Hepatol. 2014, 26, 1234–1239. [Google Scholar] [CrossRef][Green Version]
- Lee, J.J.; Escher, J.C.; Shuman, M.J.; Forbes, P.W.; Delemarre, L.C.; Harr, B.W.; Kruijer, M.; Moret, M.; Allende-Richter, S.; Grand, R.J. Final adult height of children with inflammatory bowel disease is predicted by parental height and patient minimum height Z-score. Inflamm. Bowel Dis. 2010, 16, 1669–1677. [Google Scholar] [CrossRef]
- Walters, T.D.; Griffiths, A.M. Mechanisms of growth impairment in pediatric Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 513–523. [Google Scholar] [CrossRef]
- Sentongo, T.A.; Semeao, E.J.; Piccoli, D.A.; Stallings, V.A.; Zemel, B.S. Growth, body composition, and nutritional status in children and adolescents with Crohn’s disease. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 33–40. [Google Scholar]
- Thangarajah, D.; Hyde, M.J.; Konteti, V.K.S.; Santhakumaran, S.; Frost, G.; Fell, J.M.E. Systematic review: Body composition in children with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2015, 42, 142–157. [Google Scholar] [CrossRef]
- Thayu, M.; Denson, L.A.; Shults, J.; Zemel, B.S.; Burnham, J.M.; Baldassano, R.N.; Howard, K.M.; Ryan, A.; Leonard, M.B. Determinants of changes in linear growth and body composition in incident pediatric Crohn’s disease. Gastroenterology 2010, 139, 430–438. [Google Scholar] [CrossRef]
- Long, M.D.; Crandall, W.V.; Leibowitz, I.H.; Duffy, L.; del Rosario, F.; Kim, S.C.; Integlia, M.J.; Berman, J.; Grunow, J.; Colletti, R.B.; et al. Prevalence and epidemiology of overweight and obesity in children with inflammatory bowel disease 12. Inflamm. Bowel Dis. 2011, 17, 2162–2168. [Google Scholar] [CrossRef]
- Kugathasan, S.; Nebel, J.; Skelton, J.A.; Markowitz, J.; Keljo, D.; Rosh, J.; LeLeiko, N.; Mack, D.; Griffiths, A.; Bousvaros, A.; et al. Body mass index in children with newly diagnosed inflammatory bowel disease: Observations from two multicenter North American inception cohorts. J. Pediatr. 2007, 151, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dulai, P.S.; Zarrinpar, A.; Ramamoorthy, S.; Sandborn, W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 110–121. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D.; Denson, L.A. Delays in puberty, growth, and accrual of bone mineral density in pediatric Crohn’s disease: Despite temporal changes in disease severity, the need for monitoring remains. J. Pediatr. 2013, 163, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, A.B.; Savage, M.O.; Sanderson, I.R. Delayed puberty associated with inflammatory bowel disease. Pediatr. Res. 2003, 53, 205–210. [Google Scholar] [CrossRef]
- Abraham, B.P.; Prasad, P.; Malaty, H.M. Vitamin D deficiency and corticosteroid use are risk factors for low bone mineral density in inflammatory bowel disease patients. Dig. Dis. Sci. 2014, 59, 1878–1884. [Google Scholar] [CrossRef]
- Bakker, S.F.; Dik, V.K.; Witte, B.I.; Lips, P.; Roos, J.C.; Van Bodegraven, A.A. Increase in bone mineral density in strictly treated Crohn’s disease patients with concomitant calcium and vitamin D supplementation. J. Crohns Colitis 2013, 7, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.H.C.; Sdepanian, V.L.; Szejnfeld, V.L.; de Morais, M.B.; Fagundes-Neto, U. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease. Dig. Dis. Sci. 2008, 53, 2746–2753. [Google Scholar] [CrossRef] [PubMed]
- van Bodegraven, A.A.; Bravenboer, N.; Witte, B.I.; Dijkstra, G.; van der Woude, C.J.; Stokkers, P.C.M.; Russel, M.G.; Oldenburg, B.; Pierik, M.; Roos, J.C.; et al. Treatment of bone loss in osteopenic patients with Crohn’s disease: A double-blind, randomised trial of oral risedronate 35 mg once weekly or placebo, concomitant with calcium and vitamin D supplementation. Gut 2014, 63, 1424–1430. [Google Scholar] [CrossRef]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohns Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef]
- Cao, Q.; Huang, Y.-H.; Jiang, M.; Dai, C. The prevalence and risk factors of psychological disorders, malnutrition and quality of life in IBD patients. Scand. J. Gastroenterol. 2019, 54, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Czuber-Dochan, W.; Morgan, M.; Hughes, L.D.; Lomer, M.C.E.; Lindsay, J.O.; Whelan, K. Perceptions and psychosocial impact of food, nutrition, eating and drinking in people with inflammatory bowel disease: A qualitative investigation of food-related quality of life. J. Hum. Nutr. Diet. 2020, 33, 115–127. [Google Scholar] [CrossRef]
- Gamwell, K.L.; Roberts, C.M.; Espeleta, H.C.; Baudino, M.N.; Hommel, K.A.; Grunow, J.E.; Jacobs, N.J.; Gillaspy, S.R.; Mullins, L.L.; Chaney, J.M. Perceived stigma, illness uncertainty, and depressive symptoms in youth with inflammatory bowel disease: The moderating effect of mindfulness. Psychol. Health Med. 2020, 25, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Kaul, K.; Schumann, S.; Felder, J.; Däbritz, J.; de Laffolie, J. Patient Empowerment Among Children and Adolescents with Inflammatory Bowel Disease (IBD) and Parents of IBD Patients-Use of Counseling Services and Lack of Knowledge About Transition. Children 2025, 12, 620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eindor-Abarbanel, A.; Pinchevski, N.; Shalem, T.; Agajany, N.; Ophir, N.; Weiss, B.; Broide, E.; Richter, V. Parental perspectives on pediatric inflammatory bowel disease: Unraveling concerns, and study participation willingness. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 862–870. [Google Scholar] [CrossRef] [PubMed]
| Drug | Indication | Pediatric Dosage | Administration Interval | Main Side Effects |
|---|---|---|---|---|
| Prednisone | Induction (CD & UC) | 1–2 mg/kg/day (max 40–60 mg/day), taper over 6–8 weeks | Daily oral | Growth suppression, weight gain, mood changes, osteoporosis |
| Budesonide | Induction (mild CD) | 9 mg/day orally (or 6 mg/m2/day) | Daily oral | Less systemic effect, adrenal suppression, GI symptoms |
| Azathioprine (AZA) | Maintenance | 1.5–2.5 mg/kg/day | Daily oral | Leukopenia, hepatotoxicity, pancreatitis, lymphoma risk |
| 6-Mercaptopurine | Maintenance | 1–1.5 mg/kg/day | Daily oral | Like AZA |
| Methotrexate (MTX) | Maintenance (esp. CD) | 15 mg/m2/week (max 25 mg), subcutaneous or oral | Weekly | Nausea, liver toxicity, bone marrow suppression |
| Infliximab (IFX) | Induction and maintenance (CD and UC) | 5 mg/kg induction at 0, 2, 6 weeks 5 m/kg 8 weekly for maintenance | Weeks 0, 2, 6, then every 8 weeks | Infusion reactions, infections, antibodies, psoriasis |
| Adalimumab (ADA) | Induction and maintenance (CD) | >40 kg = 80 mg + 40 mg for induction at 0, 2 weeks and 40 mg 2 weekly for maintenance < 40 kg, induction dosing is 40 mg + 20 mg at 0, 2 weeks and 20 mg 2 weekly for maintenance | Subcutaneous injection | Injection site reactions, infections, antibody formation |
| Vedolizumab | Refractory CD & UC | 6 mg/kg, max dose of 300 mg Induction given at 0, 2 and 6 weeks Maintenance every 8 weeks Subcutaneous dosing may be considered (2 mg/kg subcutaneous 2 weekly after intravenous) | Weeks 0, 2, 6, then every 8 weeks | Mild: headache, fatigue, URTI; rare PML |
| Ustekinumab | Moderate-severe CD | <40 kg = 6 mg/kg intravenous infusion for induction followed by 45 mg subcutaneous every 8 weeks for maintenance in children > 40 kg = 390 mg intravenous infusion for induction followed by 90 mg subcutaneous every 8 weeks | IV once, then SC maintenance | URTI, injection site reaction, headache |
| Author | Year of Publication | Patients Included | Duration of Treatment | Type of Feed | Remission Rate | Comments |
|---|---|---|---|---|---|---|
| Levine et al. [70] | 2014 | 201 | 6–8 weeks | Polymeric | 86.6% | No difference between EEN and CS |
| Luo et al. [97] | 2015 | 28 | 8 weeks | Polymeric | 90% | The remission rate in EEN group was significantly higher than that in CS group (90.0% vs. 50.0%, respectively, p < 0.05). |
| Soo et al. [96] | 2013 | 105 | 6–8 weeks | Polymeric | 88.9% | Remission rate was similar for EEN group and CS group (91.3%) |
| MacLellan et al. [94] | 2017 | 111 | 6–16 weeks | Unknown | 86.6% | Induction with EEN was significantly associated with reduced risk of exposure to CS over 2 years |
| Pigneur et al. [95] | 2019 | 19 | 8 weeks | Polymeric | 89% | Clinical remission and biological markers are similar in both groups (EEN and CS). EEN induces better mucosal healing. There is also a difference in the microbiome compositing after the two types of treatments |
| Author | Year of Publication | Patients Included | Type of Feed | Comments |
|---|---|---|---|---|
| Levine et al. [70] | 2019 | 4–18 years; mild to moderate luminal CD (PCDAI > 10 and <40) and evidence for active inflammation | Group 1: CDED plus 50% of calories from formula for 6 weeks followed by CDED with 25% PEN from weeks 7 to 12; Group 2: EEN for 6 weeks followed by a free diet with 25% PEN from weeks 7 to 12 | Clinical remission with CDED + PEN was 75%; with EEN was 59% at week 6; CDED + PEN was superior to EEN group at 12 weeks in all clinical parameters |
| Niseteo et al. [118] | 2021 | Children who were newly diagnosed with CD | Group 1: EEN for 6–8 weeks. Group 2: CDED + PEN for 6–8 weeks (80% of patients initially received EEN for 1–2 weeks). | CDED + PEN (with prior 1–2 weeks of EEN) has comparable efficacy to EEN therapy in inducing remission (75% remission rate). CDED + PEN leads to better weight gain. |
| Matuszczyk et al. [119] | 2022 | 4–17 years; mild-moderate CD children with elevated FC | CDED plus 50% PEN for 6 weeks followed by CDED with 25% PEN for another 6 weeks | 12 weeks of CDED + PEN has a beneficial effect on the fecal calprotectin |
| María Clara Jijón Andrade et al. [120] | 2023 | Children aged 10.7–15 years with new onset mild-moderate and loss of response to biologics | CDED + PEN for 24 weeks | CDED + PEN among 15 patients with CD resulted in remission in all patients at weeks 6 and 12. In naive patients, 87% maintained remission at week 24 vs. 67% of patients who lost response to biologics. In naïve patients the FCP decreased at week 6, week 12, and week 24, whereas in patients who lost response to biologics, the reduction in FCP was not significant. |
| Sigall-Boneh et al. [117] | 2017 | CD patients (<20 years) with loss of response to biologics | CDED + 50% PEN for 6 weeks followed by CDED with 25% PEN for another 6 weeks, or CDED alone. Severe patients started with EEN for 2 weeks and continued with CDED plus PEN | Clinical response and remission were achieved in 90% and 62%, respectively, and led to improvement in inflammatory markers at week 6 |
| Oral Nutrition | |
|---|---|
| Issue | Clinical Practice |
| Macronutrients and energy needs |
|
| Protein requirement |
|
| Minerals and vitamins |
|
| Nutritional Therapy | |
| Parenteral Nutrition (PN) |
|
| Exclusive Enteral Nutrition (EEN) |
|
| Partial Enteral Nutrition (PEN) |
|
| Probiotics and Prebiotics |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capra, M.E.; Bellani, A.M.; Berzieri, M.; Montani, A.G.; Sguerso, T.; Aliverti, V.; Pisseri, G.; Esposito, S.; Biasucci, G. Nutritional Approach in Pediatric Patients with Inflammatory Bowel Disease: Treatment, Risk and Challenges. Nutrients 2025, 17, 3545. https://doi.org/10.3390/nu17223545
Capra ME, Bellani AM, Berzieri M, Montani AG, Sguerso T, Aliverti V, Pisseri G, Esposito S, Biasucci G. Nutritional Approach in Pediatric Patients with Inflammatory Bowel Disease: Treatment, Risk and Challenges. Nutrients. 2025; 17(22):3545. https://doi.org/10.3390/nu17223545
Chicago/Turabian StyleCapra, Maria Elena, Arianna Maria Bellani, Martina Berzieri, Anna Giuseppina Montani, Tullia Sguerso, Valentina Aliverti, Gianlorenzo Pisseri, Susanna Esposito, and Giacomo Biasucci. 2025. "Nutritional Approach in Pediatric Patients with Inflammatory Bowel Disease: Treatment, Risk and Challenges" Nutrients 17, no. 22: 3545. https://doi.org/10.3390/nu17223545
APA StyleCapra, M. E., Bellani, A. M., Berzieri, M., Montani, A. G., Sguerso, T., Aliverti, V., Pisseri, G., Esposito, S., & Biasucci, G. (2025). Nutritional Approach in Pediatric Patients with Inflammatory Bowel Disease: Treatment, Risk and Challenges. Nutrients, 17(22), 3545. https://doi.org/10.3390/nu17223545

