Association Between Dietary Intake, Meal Patterns, and Malnutrition Risk Among Community-Dwelling Elderly in Northern Thailand: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Data Collection and Procedures
2.3. Sample Size Calculation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 24HR | 24-hour dietary recall |
| AP-1 | Activator Protein 1 |
| BMI | Body Mass Index |
| FFQ | Food Frequency Questionnaire |
| GPAQ | Global Physical Activity Questionnaire |
| IF | Intermittent fasting |
| LMIC | Low- and middle-income countries |
| MET | Metabolic equivalent |
| MNA-FF | Mini Nutritional Assessment–Full Form |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| PAL | Physical activity level |
| PHQ-9 | Patient Health Questionnaire-9 |
| RDA | Recommended dietary allowances |
| REE | Resting energy expenditure |
| SPPB | Short Physical Performance Battery |
| TEE | Total energy expenditure |
| TRE | Time-restricted eating |
| TEI | Total energy intake |
References
- United Nations; Department of Economic and Social Affairs; Population Division. World Population Prospects 2024: Summary of Results; United Nations: New York, NY, USA, 2024. [Google Scholar]
- Norman, K.; Hass, U.; Pirlich, M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Chuansangeam, M.; Wuthikraikun, C.; Supapueng, O.; Muangpaisan, W. Prevalence and risk for malnutrition in older Thai people: A systematic review and meta-analysis. Asia Pac. J. Clin. Nutr. 2022, 31, 128–141. [Google Scholar] [CrossRef]
- Morley, J.E. Pathophysiology of the anorexia of aging. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 27–32. [Google Scholar] [CrossRef]
- Blomhoff, R.; Andersen, R.; Arnesen, E.K.; Christensen, J.J.; Eneroth, H.; Erkkola, M.; Gudanaviciene, I.; Halldorsson, T.I.; Høyer-Lund, A.; Lemming, E.W.; et al. Nordic Nutrition Recommendations 2023; Nordic Council of Ministers: Copenhagen, Denmark, 2023. [Google Scholar] [CrossRef]
- Grimm, E.R.; Steinle, N.I. Genetics of eating behavior: Established and emerging concepts. Nutr. Rev. 2011, 69, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [CrossRef]
- Aekplakorn, W.; Satheannoppakao, W.; Putwatana, P.; Taneepanichskul, S.; Kessomboon, P.; Chongsuvivatwong, V.; Chariyalertsak, S. Dietary pattern and metabolic syndrome in thai adults. J. Nutr. Metab. 2015, 2015, 468759. [Google Scholar] [CrossRef]
- Anton, S.; Ezzati, A.; Witt, D.; McLaren, C.; Vial, P. The effects of intermittent fasting regimens in middle-age and older adults: Current state of evidence. Exp. Gerontol. 2021, 156, 111617. [Google Scholar] [CrossRef]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutr. Res. Rev. 2015, 28, 1–21. [Google Scholar] [CrossRef]
- de Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Lee, S.; Dajpratham, P. Criterion validity of the Thai version of the PHQ-9 and the PHQ-2 for screening major depression in Thai elderly. J. Thai Rehabil. Med. 2017, 27, 30–36. [Google Scholar] [CrossRef]
- Kusalaruk, P.; Nakawiro, D. A Validity Study of the Mini-Cog Test in Thai Dementia Patients. Ramathibodi Med. J. 2012, 35, 264–271. [Google Scholar]
- Jaturapatporn, D.; Hathirat, S.; Manataweewat, B.; Dellow, A.C.; Leelaharattanarak, S.; Sirimothya, S.; Dellow, J.; Udomsubpayakul, U. Reliability and validity of a Thai version of the General Practice Assessment Questionnaire (GPAQ). J. Med. Assoc. Thai. 2006, 89, 1491–1496. [Google Scholar]
- United Nations University; World Health Organization. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; Food & Agriculture: Rome, Italy, 2001; pp. 35–50. [Google Scholar]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [PubMed]
- Kaewkaen, K. Assessment of physical performance in elderly with Short Physical Performance Battery Test. J. Med. Health Sci. 2019, 26, 96–111. [Google Scholar]
- Guigoz, Y. The Mini Nutritional Assessment (MNA) review of the literature—What does it tell us? J. Nutr. Health Aging 2006, 10, 466–485, discussion 485–467. [Google Scholar] [PubMed]
- Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010, 1, 103–113. [Google Scholar] [CrossRef]
- Nawai, A.; Phongphanngam, S.; Khumrungsee, M.; Leveille, S.G. Factors associated with nutrition risk among community-dwelling older adults in Thailand. Geriatr. Nurs. 2021, 42, 1048–1055. [Google Scholar] [CrossRef]
- Damayanthi, H.; Moy, F.M.; Abdullah, K.L.; Dharmaratne, S.D. Prevalence of malnutrition and associated factors among community-dwelling older persons in Sri Lanka: A cross-sectional study. BMC Geriatr. 2018, 18, 199. [Google Scholar] [CrossRef]
- Fávaro-Moreira, N.C.; Krausch-Hofmann, S.; Matthys, C.; Vereecken, C.; Vanhauwaert, E.; Declercq, A.; Bekkering, G.E.; Duyck, J. Risk Factors for Malnutrition in Older Adults: A Systematic Review of the Literature Based on Longitudinal Data. Adv. Nutr. 2016, 7, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.X.; Sun, L.; Lim, S.L.; Li, J.; Kennedy, B.K.; Maier, A.B.; Feng, L. Adequacy of Nutrient Intake and Malnutrition Risk in Older Adults: Findings from the Diet and Healthy Aging Cohort Study. Nutrients 2023, 15, 3446. [Google Scholar] [CrossRef] [PubMed]
- Madeira, T.; Severo, M.; Correia, D.; Lopes, C.; Gorjão Clara, J. Nutritional intake and malnutrition in institutionalised and non-institutionalised older adults. Br. J. Nutr. 2022, 128, 921–931. [Google Scholar] [CrossRef]
- Ministry of Public Health; Department of Health. The Fifth National Survey on Food and Nutrition Status of Thailand; Thai National Health Examination Survey Office: Bangkok, Thailand, 2003.
- Moradell, A.; Fernández-García, Á.I.; Navarrete-Villanueva, D.; Sagarra-Romero, L.; Gesteiro, E.; Pérez-Gómez, J.; Rodríguez-Gómez, I.; Ara, I.; Casajús, J.A.; Vicente-Rodríguez, G.; et al. Functional Frailty, Dietary Intake, and Risk of Malnutrition. Are Nutrients Involved in Muscle Synthesis the Key for Frailty Prevention? Nutrients 2021, 13, 1231. [Google Scholar] [CrossRef]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Churuangsuk, C.; Griffiths, D.; Lean, M.E.J.; Combet, E. Impacts of carbohydrate-restricted diets on micronutrient intakes and status: A systematic review. Obes. Rev. 2019, 20, 1132–1147. [Google Scholar] [CrossRef]
- Field, C.J.; Robinson, L. Dietary Fats. Adv. Nutr. 2019, 10, 722–724. [Google Scholar] [CrossRef] [PubMed]
- ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.; Luiking, Y.C.; de Groot, L.C. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Pongpaew, P.; Tungtrongchitr, R.; Phonrat, B.; Vudhivai, N.; Jintaridhi, P.; Vorasanta, S.; Chantaranipapong, Y.; Supawan, V.V.; Viroonudomphol, D.; Trivunyatkul, S.; et al. Activity, dietary intake, and anthropometry of an informal social group of Thai elderly in Bangkok. Arch. Gerontol. Geriatr. 2000, 30, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Mustofa, V.F.; Prasetyo, B.; Indriani, D.; Rahmawati, N.A. Management of Micro Nutrition and Health Impacts on the Elderly: Literature Review. Amerta Nutr. 2023, 7, 37–46. [Google Scholar] [CrossRef]
- Chanwikrai, Y.; Phanthurat, N.; Singhan, C.; Thatsanasuwan, N.; Sajjapong, W.; Sinchaiyakit, P.; Wungrath, J. Original Undernutrition in Older Adults Northern Thailand May Be Improved by Increasing Lipid Consumption. Asian J. Diet. 2020, 2, 135–138. [Google Scholar]
- Assantachai, P.; Lekhakula, S. Epidemiological survey of vitamin deficiencies in older Thai adults: Implications for national policy planning. Public Health Nutr. 2007, 10, 65–70. [Google Scholar] [CrossRef]
- Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E inadequacy in humans: Causes and consequences. Adv. Nutr. 2014, 5, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef]
- Howard, A.C.; McNeil, A.K.; McNeil, P.L. Promotion of plasma membrane repair by vitamin E. Nat. Commun. 2011, 2, 597. [Google Scholar] [CrossRef]
- Jangbumrung, S.; Moasuwan, L.; Phonrat, B.; Suthatsanawiwat, U.; Udomkasemalee, A.; Jongviriyapan, N.; Khwanboonchan, K.; Kriangsinyot, W.; Nitithamyong, A. Dietary Reference Intake for Thais 2020; Bureau of Nutrition, Department of Health, Ministry of Public Health: Bangkok, Thailand, 2020.
- Malik, A.; Eggersdorfer, M.; Trilok-Kumar, G. Vitamin E status in healthy population in Asia: A review of current literature. Int. J. Vitam. Nutr. Res. 2021, 91, 356–369. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Y.; Liu, Y.; Ma, A.; Zhong, F.; Gao, T.; Cai, J.; Chen, Y.; Wang, Y.; Zhou, W.; et al. Relationships between oral function, dietary intake and nutritional status in older adults aged 75 years and above: A cross-sectional study. BMC Public Health 2024, 24, 1465. [Google Scholar] [CrossRef] [PubMed]
- Söderström, L.; Thors Adolfsson, E.; Rosenblad, A.; Frid, H.; Saletti, A.; Bergkvist, L. Mealtime habits and meal provision are associated with malnutrition among elderly patients admitted to hospital. Clin. Nutr. 2013, 32, 281–288. [Google Scholar] [CrossRef]
- Wichai, E.; Hathaichanok, P.; Waraporn, S. The Sixth Thai National Health Examination Survey 2019–2020; Mahidol University: Bangkok, Thailand, 2021. [Google Scholar]

| Characteristics | Total (N = 200) | Malnutrition Risk (N = 46) | Well-Nourished (N = 154) | p-Value |
|---|---|---|---|---|
| Age (years), mean ± SD | 68.5 ± 6.5 | 73.2 ± 8.5 | 67.1 ± 5.0 | <0.001 a |
| Sex: Female | 122 (61.0) | 26 (56.5) | 96 (62.3) | 0.478 b |
| Single/Separated/Divorced/Widowed | 72 (36.0) | 22 (37.8) | 50 (32.5) | 0.057 b |
| Education level ≤ Elementary school | 159 (79.5) | 41 (89.1) | 118 (76.6) | 0.065 b |
| Unemployment | 109 (54.5) | 33 (71.7) | 76 (49.4) | 0.007 b |
| Income ≤ 5000 bath/month (153 USD/month) | 116 (58.0) | 40 (87.0) | 76 (49.4) | <0.001 b |
| Multimorbidity | 77 (38.5) | 18 (39.1) | 59 (38.3) | 0.920 b |
| Polypharmacy (≥5 types of medication used) | 13 (6.5) | 5 (10.9) | 8 (5.2) | 0.181 c |
| Active smokers | 7 (3.5) | 3 (6.5) | 4 (2.6) | 0.200 c |
| Alcohol drinkers | 27 (13.5) | 5 (13.0) | 18 (13.6) | 0.918 b |
| Cognitive impairment | 24 (12.0) | 17 (37.0) | 7 (4.6) | <0.001 b |
| Physical activity, MET-minutes, median (IQR) | 790 (350, 1400) | 360 (0, 960) | 800 (440, 1600) | <0.001 d |
| Inadequate physical activity (<600 MET-minute) | 80 (40.0) | 30 (65.2) | 50 (32.5) | <0.001 b |
| TEE (kcal), median (IQR) | 1744.7 (1429.3, 2068.5) | 1379.8 (1171.1, 1750.6) | 1840.5 (1515.9, 2135.6) | <0.001 d |
| SPPB score, median (IQR) | 11 (8, 12) | 7 (3, 10) | 11 (10, 12) | <0.001 d |
| 10–12 (well physical performance) | 140 (70.0) | 16 (34.8) | 124 (80.5) | <0.001 b |
| 0–9 (poor physical performance) | 60 (30.0) | 30 (65.2) | 30 (19.5) |
| Characteristics | Total (N = 200) | Malnutrition Risk (N = 46) | Well-Nourished (N = 154) | p-Value |
|---|---|---|---|---|
| Dietary pattern | ||||
| Daily calorie intake (kcal), mean ± SD | 1609.77 ± 505.43 | 1453.27 ± 546.98 | 1656.51 ± 484.47 | 0.016 a |
| Breakfast calorie intake | 487.67 ± 309.63 | 486.14 ± 363.43 | 488.13 ± 292.99 | 0.970 a |
| Lunch calorie intake | 513.62 ± 234.04 | 465.68 ± 231.61 | 527.93 ± 233.60 | 0.114 a |
| Dinner calorie intake | 579.20 ± 316.461 | 491.15 ± 292.43 | 605.50 ± 319.50 | 0.031 a |
| Protein daily intake (gm), median (IQR) | 91.03 (63.61, 124.31) | 100.84 (51.37, 127.35) | 87.81 (64.12, 123.80) | 0.972 d |
| Breakfast | 22.69 (10.12, 46.16) | 21.46 (7.55, 53.16) | 23.03 (10.48, 42.66) | 0.712 d |
| Lunch | 25.26 (13.66, 42.84) | 22.58 (11.09, 43.03) | 25.91 (14.30, 42.66) | 0.544 d |
| Dinner | 31.63 (17.31, 53.15) | 31.89 (12.80, 46.76) | 31.63 (18.48, 53.64) | 0.387 d |
| Carbohydrate daily intake (gm), median (IQR) | 148.13 (109.56, 198.36) | 116.79 (85.41, 165.98) | 154.30 (122.43, 202.73) | 0.002 d |
| Breakfast | 46.94 (23.89, 65.01) | 35.93 (15.03, 63.77) | 49.28 (27.21, 65.40) | 0.030 d |
| Lunch | 50.97 (30.02, 76.32) | 45.08 (23.41, 68.45) | 52.36 (35.76, 76.65) | 0.075 d |
| Dinner | 47.08 (32.06, 66.87) | 39.01 (24.06, 55.04) | 50.97 (35.16, 69.65) | 0.006 d |
| Fat daily intake (gm), median (IQR) | 54.44 (36.59, 83.52) | 51.21 (31.26, 80.99) | 54.58 (38.78, 84.36) | 0.344 d |
| Breakfast | 10.75 (3.00, 30.46) | 10.58 (3.05, 30.27) | 10.85 (2.95, 30.55) | 0.977 d |
| Lunch | 13.17 (5.88, 28.37) | 11.86 (3.81, 27) | 13.17 (6.74, 29.77) | 0.209 d |
| Dinner | 19.17 (7.44, 34.50) | 17.15 (2.77, 31.13) | 19.31 (8.42, 34.63) | 0.164 d |
| Meal pattern | ||||
| Overnight fasting (h), median (range) | 13.5 (10.5–23) | 14 (11.5–23) | 13.5 (10.5–17.5) | <0.001 d |
| Eating episodes * (times), median (range) | 3 (1–6) | 3 (1–4) | 3 (2–6) | <0.001 d |
| Meal skipper **, N (%) | 34 (17.00) | 14 (30.43) | 20 (12.99) | 0.006 b |
| Breakfast skipper | 25 (12.50) | 9 (19.57) | 16 (10.39) | 0.099 b |
| Lunch skipper | 4 (2.00) | 2 (4.35) | 2 (1.30) | 0.2270 c |
| Dinner skipper | 6 (3.00) | 4 (8.70) | 2 (1.30) | 0.026 c |
| Nutrients | Total (N = 200) | Malnutrition Risk (N = 46) | Well-Nourished (N = 154) | p-Value |
|---|---|---|---|---|
| TEI (kcal/d), mean ± SD | 1609.8 ± 505.4 | 1453.3 ± 547.0 | 1656.5 ± 484.5 | 0.016 a |
| TEI < TEE | 123 (61.5) | 23 (50) | 100 (64.9) | 0.068 b |
| Macronutrients | ||||
| Protein (g/d), mean ± SD | 99.3 ± 46.9 | 98.2 ± 50.2 | 99.6 ± 46.0 | 0.855 a |
| %TEI, median (range) | 23.34 (19.76, 28.70) | 24.79 (20.35, 29.15) | 22.97 (19.75, 28.44) | 0.158 d |
| <10% of TEI | 1 (0.5) | 0 (0) | 1 (0.7) | 1.000 c |
| Carbohydrates (g/d), mean ± SD | 159.5 ± 72.8 | 132.4 ± 67.2 | 167.6 ± 72.6 | 0.004 a |
| %TEI, median (range) | 40.22 (29.22, 52.99) | 35.72 (26.63, 52.84) | 40.62 (29.80, 53.13) | 0.170 d |
| <45% of TEI | 122 (61.0) | 32 (69.6) | 90 (58.4) | 0.175 b |
| Fat (g/d), mean ± SD | 62.8 ± 36.7 | 59.0 ± 39.0 | 63.9 ± 36.1 | 0.427 a |
| %TEI, median (range) | 33.15 (23.41, 44.47) | 33.53 (24.09, 46.82) | 33.06 (23.06, 42.93) | 0.778 d |
| <20% of TEI | 32 (16.0) | 7 (15.2) | 25 (16.2) | 0.869 b |
| Micronutrients | ||||
| Vitamin A (mcg/d), median (range) | 218.19 (78.21, 459.75) | 218.83 (75.63, 423.71) | 218.19 (83.05, 475.24) | 0.678 d |
| <RDA | 170 (85.0) | 42 (91.3) | 128 (83.1) | 0.172 b |
| Vitamin C (mg/d), median (range) | 42.14 (16.26, 92.24) | 36.20 (18.91, 88.74) | 46.83 (15.68, 102.36) | 0.477 d |
| <RDA | 147 (73.5) | 35 (76.1) | 112 (72.7) | 0.651 b |
| Vitamin E (mg/d), median (range) | 0.91 (0.09, 2.44) | 0.12 (0, 1.20) | 1.05 (0.16, 2.62) | <0.001 d |
| <RDA | 197 (98.5) | 46 (100) | 151 (98.1) | 1.000 c |
| Calcium (mg/d), median (range) | 313.34 (179.48, 582.14) | 292.33 (136.50, 603.50) | 318.53 (213.79, 570.76) | 0.357 d |
| <RDA | 185 (92.5) | 44 (95.7) | 141 (91.6) | 0.528 c |
| Magnesium (mg/d), median (range) | 19.99 (5.76, 58.57) | 10.68 (0.53, 39.51) | 24.55 (7.56, 63.79) | 0.008 d |
| <RDA | 199 (99.5) | 46 (100) | 153 (99.4) | 1.000 c |
| Iron (mg/d), median (range) | 11.29 (8.00, 14.33) | 9.67 (6.98, 15.14) | 11.69 (8.24, 15.52) | 0.061 d |
| <RDA | 90 (45.0) | 27 (58.7) | 63 (40.9) | 0.033 b |
| Zinc (mg/d), median (range) | 5.99 (4.08, 8.18) | 4.57 (3.28, 6.95) | 6.39 (4.31, 8.40) | 0.010 d |
| <RDA | 168 (84.0) | 41 (89.1) | 127 (82.5) | 0.279 b |
| Sodium (mg/d), median (range) | 3744.61 (2524.8, 5898.36) | 3193.48 (2004.67, 5102.23) | 3979.27 (2738.48, 5933.14) | 0.039 d |
| >UL | 185 (92.5) | 43 (93.5) | 142 (92.2) | 0.774 b |
| Dietary fiber (g/d), median (range) | 9.05 (4.63, 13.29) | 8.81(3.09, 11.45) | 9.39 (5.50, 13.69) | 0.034 d |
| <RDA | 188 (94.0) | 45 (97.8) | 143 (92.9) | 0.303 c |
| Variables | Model 0 | Model 1 | Model 2 | Model 3 | ||||
|---|---|---|---|---|---|---|---|---|
| OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
| TEI (SD = 505.43 kcal/d) | 0.66 (0.47–0.93) | 0.018 | 0.71 (0.48–1.06) | 0.096 | 0.85 (0.56–1.29) | 0.443 | - | - |
| Macronutrients | ||||||||
| Protein (SD = 46.88 g/d) | 0.96 (0.70–1.35) | 0.854 | 1.00 (0.68–1.46) | 0.989 | 1.14 (0.75–1.71) | 0.540 | 1.35 (0.86–2.10) | 0.189 |
| Carbohydrate (SD = 72.78 g/d) | 0.56 (0.37–0.84) | 0.005 | 0.63 (0.40–0.98) | 0.038 | 0.77 (0.48–1.24) | 0.292 | 0.76 (0.47–1.23) | 0.268 |
| Fat (SD = 36.72 g/d) | 0.87 (0.62–1.22) | 0.425 | 0.91 (0.62–1.35) | 0.641 | 0.93 (0.62–1.39) | 0.719 | 0.95 (0.63–1.44) | 0.818 |
| Micronutrients | ||||||||
| Vitamin E (SD = 5.82 mg/d) | 0.24 (0.06–0.96) | 0.044 | 0.08 (0.02–0.45) | 0.004 | 0.07 (0.01–0.44) | 0.004 | 0.07 (0.01–0.45) | 0.005 |
| Vitamin B6 (SD = 0.42 mg/d) | 0.64 (0.39–1.07) | 0.086 | 0.57 (0.32–1.00) | 0.049 | 0.58 (0.33–1.03) | 0.065 | 0.59 (0.33–1.06) | 0.075 |
| Magnesium (SD = 53.02 mg/d) | 0.74 (0.48–1.13) | 0.163 | 0.61 (0.38–0.97) | 0.039 | 0.73 (0.46–1.18) | 0.200 | 0.75 (0.46–1.21) | 0.235 |
| Iron (SD = 8.84 mg/d) | 0.58 (0.35–0.97) | 0.038 | 0.63 (0.37–1.08) | 0.091 | 0.69 (0.39–1.21) | 0.195 | 0.71 (0.39–1.29) | 0.258 |
| Sodium (SD = 3599.05 mg/d) | 0.61 (0.38–0.98) | 0.042 | 0.70 (0.42–1.17) | 0.172 | 0.71 (0.42–1.21) | 0.207 | 0.74 (0.43–1.26) | 0.265 |
| Meal pattern | ||||||||
| Overnight fasting duration | 1.86 (1.35–2.54) | <0.001 | 1.97 (1.36–2.86) | <0.001 | 1.95 (1.30–2.91) | 0.001 | 1.94 (1.30–2.89) | 0.001 |
| Meal skipper | 2.99 (1.41–6.35) | 0.004 | 2.52 (1.01–6.27) | 0.047 | 2.03 (0.78–5.29) | 0.149 | 1.92 (0.69–5.33) | 0.208 |
| Eating episodes | 0.20 (0.08–4.80) | <0.001 | 0.15 (0.05–0.45) | 0.001 | 0.19 (0.06–0.56) | 0.003 | 0.19 (0.06–0.57) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathittrakun, T.; Bankhum, N.; Phinyo, P.; Wijitraphan, T.; Choksomngam, Y.; Yingchankul, N. Association Between Dietary Intake, Meal Patterns, and Malnutrition Risk Among Community-Dwelling Elderly in Northern Thailand: A Cross-Sectional Study. Nutrients 2025, 17, 3537. https://doi.org/10.3390/nu17223537
Sathittrakun T, Bankhum N, Phinyo P, Wijitraphan T, Choksomngam Y, Yingchankul N. Association Between Dietary Intake, Meal Patterns, and Malnutrition Risk Among Community-Dwelling Elderly in Northern Thailand: A Cross-Sectional Study. Nutrients. 2025; 17(22):3537. https://doi.org/10.3390/nu17223537
Chicago/Turabian StyleSathittrakun, Thanawit, Narumit Bankhum, Phichayut Phinyo, Tanasit Wijitraphan, Yanee Choksomngam, and Nalinee Yingchankul. 2025. "Association Between Dietary Intake, Meal Patterns, and Malnutrition Risk Among Community-Dwelling Elderly in Northern Thailand: A Cross-Sectional Study" Nutrients 17, no. 22: 3537. https://doi.org/10.3390/nu17223537
APA StyleSathittrakun, T., Bankhum, N., Phinyo, P., Wijitraphan, T., Choksomngam, Y., & Yingchankul, N. (2025). Association Between Dietary Intake, Meal Patterns, and Malnutrition Risk Among Community-Dwelling Elderly in Northern Thailand: A Cross-Sectional Study. Nutrients, 17(22), 3537. https://doi.org/10.3390/nu17223537

