Who Likes Sweets? Sweet Patterns: Influence of Sex, Age, Body Mass Index, Smoking and Olfactory Efficiency on the Consumption of Sweet Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Determination of the Olfactory Sensitivity Threshold
2.3. Identification Test of Smell
2.4. Food Preference Test
2.5. Statistical Analysis
3. Results
3.1. Categorization of Dishes into Coherent Groups Based on the Principal Component Method with VARIMAX Rotation
Ranking of Dishes
3.2. Regression Model for the Factor Three ‘Sweet Products’ Group Including Variables Such as Sex, Age, BMI, Pack-Years, Olfactory Sensitivity Threshold, and Identification Test of Smell
3.3. Regression Models for Individual Sweet Products Including Variables Such as Sex, Age, BMI, Pack-Years, Olfactory Sensitivity Threshold, and Identification Test of Smell
4. Discussion
4.1. Ranking of Preferences for Sweet-Tasting Food Products
4.2. Food Groupings
4.3. Factors Influencing Preferences for the Factor Three ‘Sweet Products’ Group as a Whole, and for Individual Types of High-Carbohydrate Food
4.4. Limitations
4.5. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMI | Body Mass Index |
| ECOMA | European Committee for Olfactometry Manufacturers Association |
| FAO | Food and Agriculture Organization |
| WHO | World Health Organization |
| NCGS | Non-Celiac Gluten Sensitivity |
| POMC | Pro-opiomelanocortin |
| T1R2 + T1R3 | Sweet Taste Receptor Complex (Type 1 Receptor Family) |
| VARIMAX | Orthogonal Rotation Method in Factor Analysis |
| YFAS | Yale Food Addiction Scale |
References
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- Seal, C.J.; Courtin, C.; Venema, K.; de Vries, J. Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef]
- Lim, J.; Pullicin, A. Oral carbohydrate sensing: Beyond sweet taste. Physiol. Behav. 2019, 202, 14–25. [Google Scholar] [CrossRef]
- Martin, L.; Penner, M.; Lim, J. Taste of common prebiotic oligosaccharides: Impact of molecular structure. Chem. Sens. 2024, 19, bjae023. [Google Scholar] [CrossRef]
- Newberry, C.; Lynch, K. The role of diet in the development and management of gastroesophageal reflux disease: Why we feel the burn. J. Thorac. Dis. 2019, 11 (Suppl. S12), S1594–S1601. [Google Scholar] [CrossRef]
- Kiely, L.J.; Hickey, R.M. Characterization and analysis of food-sourced carbohydrates. Methods Mol. Biol. 2022, 2370, 67–95. [Google Scholar] [CrossRef]
- Asp, N. Dietary carbohydrates: Classification by chemistry and physiology. Food Chem. 1996, 57, 9–14. [Google Scholar] [CrossRef]
- Sievenpiper, J. Low-carbohydrate diets and cardiometabolic health: The importance of carbohydrate quality over quantity. Nutr. Rev. 2020, 78 (Suppl. S1), 69–77. [Google Scholar] [CrossRef]
- Campos, V.C.; Tappy, L. Physiological handling of dietary fructose-containing sugars: Implications for health. Int. J. Obes. 2016, 40 (Suppl. S1), S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Merino, B.; Fernández-Díaz, C.M.; Cózar-Castellano, I.; Perdomo, G. Intestinal fructose and glucose metabolism in health and disease. Nutrients 2019, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Nutritional Standards for the Polish Population; Narodowy Instytut Zdrowia Publicznego PZH—Państwowy Instytut Badawczy: Warsaw, Poland, 2024. [Google Scholar]
- Rippe, J.M.; Angelopoulos, T.J. Added sugars and risk factors for obesity, diabetes and heart disease. Int. J. Obes. 2016, 40 (Suppl. S1), S22–S27. [Google Scholar] [CrossRef] [PubMed]
- Lairon, D.; Play, B.; Jourdheuil-Rahmani, D. Digestible and indigestible carbohydrates: Interactions with postprandial lipid metabolism. J. Nutr. Biochem. 2007, 18, 217–227. [Google Scholar] [CrossRef]
- Orliacq, J.; Pérez-Cornago, A.; Parry, S.; Kelly, R.K.; Koutoukidis, D.A.; Carter, J.L. Associations between types and sources of dietary carbohydrates and liver fat: A UK Biobank study. BMC Med. 2023, 21, 444. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Mielgo-Ayuso, J.; Martín-Rodríguez, A.; Ramos-Campo, D.J.; Redondo-Flórez, L.; Tornero-Aguilera, J.F. The burden of carbohydrates in health and disease. Nutrients 2022, 14, 3809. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, B.; Sartorius, K.; Aldous, C.; Madiba, T.E.; Stefan, C.; Noakes, T. Carbohydrate intake, obesity, metabolic syndrome and cancer risk? A two-part systematic review and meta-analysis protocol to estimate attributability. BMJ Open 2016, 6, e009301. [Google Scholar] [CrossRef]
- Iatridi, V.; Hayes, J.; Yeomans, M. Reconsidering the classification of sweet taste liker phenotypes: A methodological review. Food Qual. Prefer. 2019, 72, 56–76. [Google Scholar] [CrossRef]
- Murovets, V.; Lukina, E.; Zolotarev, V. Sweet taste: From reception to perception. Neurosci. Behav. Physiol. 2024, 54, 793–808. [Google Scholar] [CrossRef]
- Evans, C.; Tartar, J.; Banks, J.; Austin, J.; Antonio, J. Beyond Sex Differences: Body Composition and Dietary Behaviors. Muscles 2025, 4, 38. [Google Scholar] [CrossRef]
- Costanzo, A. Temporal patterns in taste sensitivity. Nutr. Rev. 2024, 82, 831–847. [Google Scholar] [CrossRef]
- Hoffman, A.C.; Salgado, R.V.; Dresler, C.; Faller, R.W.; Bartlett, C. Flavour preferences in youth versus adults: A review. Tob. Control 2016, 25, ii32–ii39. [Google Scholar] [CrossRef] [PubMed]
- Da Ré, A.F.; Gurgel, L.G.; Buffon, G.; Moura, W.E.R.; Marques Vidor, D.C.G.; Maahs, M.A.P. Tobacco influence on taste and smell: Systematic review of the literature. Int. Arch. Otorhinolaryngol. 2018, 22, 81–87. [Google Scholar] [CrossRef]
- Talavera, K.; Yasumatsu, K.; Voets, T.; Droogmans, G.; Shigemura, N.; Ninomiya, Y.; Margolskee, R.F.; Nilius, B. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 2005, 438, 1022–1025. [Google Scholar] [CrossRef]
- Parvin, P.; Boesveldt, S.; Postma, E.M. Assessing the impact of olfactory dysfunction on eating behavior: A system-atic scoping review and call for standardized assessments. Clin. Nutr. Open Sci. 2024, 56, 92–127. [Google Scholar] [CrossRef]
- Hartman-Petrycka, M.; Witkoś, J.; Lebiedowska, A.; Błońska-Fajfrowska, B. Who likes unhealthy food with a strong flavour? Influence of sex, age, body mass index, smoking and olfactory efficiency on junk food preferences. Nutrients 2022, 14, 4098. [Google Scholar] [CrossRef] [PubMed]
- Hartman-Petrycka, M.; Lebiedowska, A.; Kamińska, M.; Krusiec-Świdergoł, B.; Błońska-Fajfrowska, B.; Witkoś, J.; Wilczyński, S. Who likes meat, fish, and seafood? Influence of sex, age, body mass index, smoking, and olfactory efficiency on meat product preferences. Food Sci. Nutr. 2024, 12, 6799–6809. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Noncommunicable Diseases: Risk Factors and Conditions. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-risk-factors (accessed on 15 September 2025).
- Norma PN–EN 13725:2007; Jakość Powietrza. Oznaczanie Stężenia Zapachowego Metodą Olfaktometrii Dynamicznej. PKN: Warszawa, Polska, 2007.
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: London, UK, 2019. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Zakrzewska, M. Analiza Czynnikowa w Budowaniu i Sprawdzaniu Modeli Psychologicznych; Wydawnictwo Naukowe UAM: Poznań, Poland, 1994. [Google Scholar]
- Gutierrez, R.; Fonseca, E.; Simon, S.A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell. Mol. Life Sci. 2020, 77, 3469–3502. [Google Scholar] [CrossRef]
- Beauchamp, G.K. Why do we like sweet taste: A bitter tale? Physiol. Behav. 2016, 164, 432–437. [Google Scholar] [CrossRef]
- Drewnowski, A.; Mennella, J.A.; Johnson, S.L.; Bellisle, F. Sweetness and food preference. J. Nutr. 2012, 142, 1142S–1148S. [Google Scholar] [CrossRef]
- Freeman, C.R.; Zehra, A.; Ramirez, V.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Impact of sugar on the body, brain, and behavior. Front. Biosci. 2018, 23, 2255–2266. [Google Scholar] [CrossRef]
- Codella, R.; Terruzzi, I.; Luzi, L. Sugars, exercise and health. J. Affect. Disord. 2017, 224, 76–86. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W.L. Sugar addiction: Is it real? A narrative review. Br. J. Sports Med. 2018, 52, 910–913. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Baler, R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011, 15, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Markus, C.R.; Rogers, P.J.; Brouns, F.; Schepers, R. Eating dependence and weight gain; no human evidence for a ’sugar-addiction’ model of overweight. Appetite 2017, 114, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Kurzer, A.; Wiriyaphanich, T.; Cienfuegos, C.; Spang, E.; Guinard, J.-X. Exploring fruit’s role in dessert: The Dessert Flip and its impact on university student acceptance and food waste. Food Qual. Prefer. 2020, 83, 103917. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Wyglądacz, D.; Przywara, W. Sixth taste-starch taste? Pediatr. Med. Rodz. 2017, 13, 180–185. [Google Scholar] [CrossRef]
- Lapis, T.J.; Penner, M.H.; Lim, J. Humans can taste glucose oligomers independent of the hT1R2/hT1R3 sweet taste receptor. Chem. Senses 2016, 41, 755–762. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Li, L.; Sun, N.; Zhang, L.; Xu, G.; Liu, J.; Hu, J.; Zhang, Z.; Lou, J.; Deng, H.; Shen, Z.; et al. Fast food consumption among young adolescents aged 12–15 years in 54 low- and middle-income countries. Glob. Health Act. 2020, 13, 1795438. [Google Scholar] [CrossRef]
- Ashdown-Franks, G.; Vancampfort, D.; Firth, J.; Smith, L.; Sabiston, C.M.; Stubbs, B.; Koyanagi, A. Association of leisure-time sedentary behavior with fast food and carbonated soft drink consumption among 133,555 adolescents aged 12–15 years in 44 low-and middle-income countries. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Beal, T.; Morris, S.S.; Tumilowicz, A. Global patterns of adolescent fruit, vegetable, carbonated soft drink, and fast-food consumption: A meta-analysis of global school-based student health surveys. Food Nutr. Bull. 2019, 40, 444–459. [Google Scholar] [CrossRef]
- Wang, K.S.; Zegel, M.; Molokotos, E.; Moran, L.V.; Olson, D.P.; Pizzagalli, D.A.; Janes, A.C. The acute effects of nicotine on corticostriatal responses to distinct phases of reward processing. Neuropsychopharmacology 2020, 45, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Addicott, M.A.; Sweitzer, M.M.; McClernon, F.J. The effects of nicotine and tobacco use on brain reward function: Interaction with nicotine dependence severity. Nicotine Tob. Res. 2019, 21, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Bromberg, U.; Schneider, S.; Brassen, S.; Menz, M.; Banaschewski, T.; Conrod, P.J.; Flor, H.; Gallinat, J.; Garavan, H.; et al. Lower ventral striatal activation during reward anticipation in adolescent smokers. Am. J. Psychiatry 2011, 168, 540–549. [Google Scholar] [CrossRef]
- Isomura, T.; Suzuki, J.; Murai, T. Paradise Lost: The relationships between neurological and psychological changes in nicotine-dependent patients. Addict. Res. Theory 2014, 22, 158–165. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Abizaid, A.; Rao, Y.; Salas, R.; DiLeone, R.J.; Gündisch, D.; Diano, S.; De Biasi, M.; Horvath, T.L.; Gao, X.-B.; et al. Nicotine decreases food intake through activation of POMC neurons. Science 2011, 332, 1330–1332. [Google Scholar] [CrossRef]
- Pepino, M.Y.; Mennella, J.A. Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcohol. Clin. Exp. Res. 2007, 31, 1891–1899. [Google Scholar] [CrossRef]
- Chéruel, F.; Jarlier, M.; Sancho-Garnier, H. Effect of cigarette smoke on gustatory sensitivity, evaluation of the deficit and of the recovery time-course after smoking cessation. Tob. Induc. Dis. 2017, 15, 15. [Google Scholar] [CrossRef]
- Tomassini, S.; Cuoghi, V.; Catalani, E.; Casini, G.; Bigiani, A. Long-term effects of nicotine on rat fungiform taste buds. Neuroscience 2007, 147, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Perkins, K.A.; Epstein, L.H.; Stiller, R.L.; Fernstrom, M.H.; Sexton, J.E.; Jacob, R.G. Perception and hedonics of sweet and fat taste in smokers and nonsmokers following nicotine intake. Pharmacol. Biochem. Behav. 1990, 35, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Ajmani, G.S.; Suh, H.H.; Wroblewski, K.E.; Pinto, J.M. Smoking and olfactory dysfunction: A systematic literature review and meta-analysis. Laryngoscope 2017, 127, 1753–1761. [Google Scholar] [CrossRef]
- Brämerson, A.; Johansson, L.; Ek, L.; Nordin, S.; Bende, M. Prevalence of olfactory dysfunction: The Skövde population-based study. Laryngoscope 2004, 114, 733–737. [Google Scholar] [CrossRef]
- Mullol, J.; Alobid, I.; Mariño-Sánchez, F.; Quintó, L.; de Haro, J.; Bernal-Sprekelsen, M.; Valero, A.; Picado, C.; Marin, C. Furthering the understanding of olfaction, prevalence of loss of smell and risk factors: A population-based survey (OLFACAT study). BMJ Open 2012, 2, e001256. [Google Scholar] [CrossRef]
- Pinto, J.M.; Schumm, L.P.; Wroblewski, K.E.; Kern, D.W.; McClintock, M.K. Racial disparities in olfactory loss among older adults in the United States. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 323–329. [Google Scholar] [CrossRef]
- den Uijl, L.C.; Jager, G.; de Graaf, C.; Meiselman, H.L.; Kremer, S. Emotion, olfaction, and age: A comparison of self-reported food-evoked emotion profiles of younger adults, older normosmic adults, and older hyposmic adults. Food Qual. Prefer. 2016, 48, 199–209. [Google Scholar] [CrossRef]
- Kamińska, M.; Hartman-Petrycka, M. Diagnoza wiedzy, opinii i zachowań prozdrowotnych mieszkańców województwa śląskiego. Przegląd Epidemiol. Epidemiol. Rev. 2021, 75, 263–276. [Google Scholar] [CrossRef]
- Jansson-Knodell, C.L.; Hujoel, I.A.; West, C.P.; Taneja, V.; Prokop, L.J.; Rubio-Tapia, A.; Murray, J.A. Sex difference in celiac disease in undiagnosed populations: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 1954–1968.e13. [Google Scholar] [CrossRef] [PubMed]
- Llorente-Alonso, M.J.; Fernández-Acenero, M.J.; Sebastián, M. Gluten intolerance: Sex and age-related features. Can. J. Gastroenterol. 2006, 20, 719–722. [Google Scholar] [CrossRef]
- Miyoshi, K.; Kimura, Y.; Nakahata, M.; Miyawaki, T. Foods and beverages associated with smoking craving in heated tobacco product and cigarette smokers: A cross-sectional study. Tob. Induc. Dis. 2024, 22, 10–18332. [Google Scholar] [CrossRef]
- McClure, J.B.; Divine, G.; Alexander, G.; Tolsma, D.; Rolnick, S.J.; Stopponi, M.; Richards, J.; Johnson, C.C. A comparison of smokers’ and nonsmokers’ fruit and vegetable intake and relevant psychosocial factors. Behav. Med. 2009, 35, 14–22. [Google Scholar] [CrossRef]
- Norouzzadeh, M.; Teymoori, F.; Farhadnejad, H.; Moslehi, N.; Mirmiran, P.; Rahideh, S.T.; Azizi, F. Cigarette smoking and cardiovascular disease incidence and all-cause mortality: The modifying role of diet quality. BMC Public Health 2024, 24, 1021. [Google Scholar] [CrossRef]
- Barros, R.; Moreira, P.; Oliveira, B. Influência da desejabilidade social na estimativa da ingestão alimentar obtida através de um questionário de frequência de consumo alimentar. Acta Méd. Port. 2005, 18, 241–248. [Google Scholar]
- Knox, M.A.; Oddo, V.M.; Walkinshaw, L.P.; Jones-Smith, J. Is the public sweet on sugary beverages? Social desirability bias and sweetened beverage taxes. Econ. Hum. Biol. 2020, 38, 100886. [Google Scholar] [CrossRef]
- Clemente, N. The relationship Between Social Desirability and Reported Dietary Intake in Healthy and Overweight Children. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2005. Available online: https://trace.tennessee.edu/utk_gradthes/1845 (accessed on 10 August 2025).
- Cerri, J.; Testa, F.; Rizzi, F.; Frey, M. Factorial surveys reveal social desirability bias over self-reported organic fruit consumption. Br. Food J. 2019, 121, 897–909. [Google Scholar] [CrossRef]






| N | Mean | Median | SD | Minimum | Maximum | |
|---|---|---|---|---|---|---|
| Age (Years) | 283 | 29.22 | 23.00 | 13.44 | 18.00 | 82.00 |
| BMI | 282 | 23.33 | 22.21 | 4.17 | 16.65 | 36.73 |
| No. of years as a smoker | 283 | 2.80 | 0.00 | 7.27 | 0.00 | 44.00 |
| No. of cigarettes a day | 283 | 2.27 | 0.00 | 5.91 | 0.00 | 50.00 |
| Severity of addiction (pack-years) | 283 | 1.83 | 0.00 | 6.86 | 0.00 | 60.00 |
| Olfactory sensitivity threshold (serial dilution) | 283 | 7021 | 1024 | 15,208 | 0.00 | 65,636 |
| Identification of smell | 283 | 3.94 | 4.00 | 1.08 | 0.00 | 5.00 |
| Factors | Types of Dishes | Factor Loadings | Eigenvalue | % of Variance Explained |
|---|---|---|---|---|
| Factor One—‘junk food’ | Crisps | 0.76 | 2.92 | 11.66 |
| Salty snacks | 0.76 | |||
| Fast food | 0.75 | |||
| Carbonated drinks | 0.61 | |||
| Sour products | 0.40 | |||
| Factor Two—‘meat, fish and seafood’ | Beef, pork and veal | 0.76 | 2.60 | 10.38 |
| Cured meats | 0.73 | |||
| Poultry | 0.70 | |||
| Fish dishes | 0.53 | |||
| Seafood | 0.52 | |||
| Factor Three—‘sweet products’ | Desserts | 0.85 | 2.69 | 10.78 |
| Chocolate products | 0.84 | |||
| Candies and jellies | 0.77 | |||
| Bread | 0.35 | |||
| Factor Four—‘vegetable and fruits, cheeses and spicy dishes’ | Vegetables and salads | 0.76 | 2.02 | 8.09 |
| Fruit | 0.67 | |||
| Cheeses | 0.49 | |||
| Spicy dishes | 0.44 | |||
| Factor Five—‘flour-based and egg-based dishes’ | Egg dishes | 0.79 | 2.00 | 8.01 |
| Pasta | 0.62 | |||
| Flour-based dishes | 0.61 | |||
| Factor Six—‘soups’ | Broth | 0.79 | 1.86 | 7.43 |
| Soups | 0.77 | |||
| Factor Seven—‘milk products’ | Milk soup | 0.79 | 1.68 | 6.74 |
| Milk products | 0.71 |
| N | Mean | Median | SD | Minimum | Maximum | |
|---|---|---|---|---|---|---|
| Fruit | 282 | 8.63 | 9.30 | 1.82 | 1.00 | 10.00 |
| Desserts | 283 | 8.24 | 9.50 | 2.47 | 0.00 | 10.00 |
| Vegetables and salads | 282 | 7.84 | 8.50 | 2.26 | 0.50 | 10.00 |
| Poultry | 282 | 7.69 | 8.25 | 2.29 | 0.00 | 10.00 |
| Chocolate products | 283 | 7.61 | 8.80 | 2.84 | 0.00 | 10.00 |
| Bread | 282 | 7.38 | 7.80 | 2.18 | 0.20 | 10.00 |
| Pasta | 282 | 7.05 | 7.60 | 2.45 | 0.00 | 10.00 |
| Egg dishes | 283 | 6.90 | 7.30 | 2.61 | 0.00 | 10.00 |
| Flour-based dishes | 283 | 6.89 | 7.10 | 2.55 | 0.00 | 10.00 |
| Soups | 283 | 6.79 | 7.10 | 2.58 | 0.00 | 10.00 |
| Broth | 283 | 6.72 | 7.70 | 3.11 | 0.00 | 10.00 |
| Cheeses | 281 | 6.67 | 7.00 | 2.72 | 0.00 | 10.00 |
| Cured meats | 282 | 6.66 | 7.20 | 2.82 | 0.00 | 10.00 |
| Fish dishes | 283 | 6.66 | 7.00 | 2.67 | 0.00 | 10.00 |
| Beef, pork and veal | 282 | 6.54 | 7.20 | 3.01 | 0.00 | 10.00 |
| Candies and jellies | 282 | 6.24 | 6.90 | 3.20 | 0.00 | 10.00 |
| Milk products | 281 | 6.03 | 6.10 | 2.80 | 0.00 | 10.00 |
| Sour products | 282 | 6.00 | 6.00 | 2.88 | 0.00 | 10.00 |
| Fast food | 283 | 5.71 | 6.30 | 3.38 | 0.00 | 10.00 |
| Crisps | 283 | 5.58 | 6.00 | 3.16 | 0.00 | 10.00 |
| Spicy dishes | 283 | 5.47 | 5.50 | 3.30 | 0.00 | 10.00 |
| Carbonated drinks | 282 | 5.03 | 5.00 | 3.11 | 0.00 | 10.00 |
| Salty snacks | 283 | 4.84 | 5.00 | 2.93 | 0.00 | 10.00 |
| Milk soup * | 282 | 3.52 | 2.90 | 3.14 | 0.00 | 10.00 |
| Seafood | 283 | 3.38 | 2.10 | 3.42 | 0.00 | 10.00 |
| Dependent Variables | R2c | Predictors | B | PU | t | eta2 | p | |
|---|---|---|---|---|---|---|---|---|
| Factor Three ‘sweet products’ | 0.07 | Constant | 0.69 | −0.22 | 1.60 | 1.50 | 0.01 | 0.135 |
| Sex | −0.06 | −0.32 | 0.21 | −0.44 | <0.01 | 0.662 | ||
| Age | <0.01 | −0.02 | 0.01 | −0.75 | <0.01 | 0.453 | ||
| BMI | −0.03 | −0.06 | 0.01 | −1.57 | 0.01 | 0.118 | ||
| Pack-years | −0.02 | −0.04 | <0.01 | −2.11 | 0.02 | 0.035 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.999 | ||
| Identification test of smell | 0.04 | −0.07 | 0.16 | 0.75 | <0.01 | 0.454 | ||
| Dependent Variables | R2c | Predictors | B | PU | t | eta2 | p | |
|---|---|---|---|---|---|---|---|---|
| chocolate products | 0.07 | Constant | 8.22 | 5.69 | 10.75 | 6.39 | 0.13 | <0.001 |
| Sex | −0.39 | −1.12 | 0.35 | −1.04 | <0.01 | 0.300 | ||
| Age | −0.03 | −0.06 | <0.01 | −1.97 | 0.01 | 0.049 | ||
| BMI | 0.01 | −0.09 | 0.10 | 0.14 | <0.01 | 0.887 | ||
| Pack-years | −0.04 | −0.10 | 0.01 | −1.58 | 0.01 | 0.116 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | 0.27 | <0.01 | 0.788 | ||
| Identification test of smell | 0.19 | −0.13 | 0.51 | 1.15 | <0.01 | 0.252 | ||
| candies and jellies | 0.06 | Constant | 7.31 | 4.43 | 10.19 | 5 < 0.01 | 0.08 | <0.001 |
| Sex | 0.18 | −0.66 | 1.01 | 0.42 | <0.01 | 0.677 | ||
| Age | −0.02 | −0.06 | 0.01 | −1.20 | 0.01 | 0.231 | ||
| BMI | −0.07 | −0.17 | 0.04 | −1.25 | 0.01 | 0.214 | ||
| Pack-years | −0.04 | −0.11 | 0.02 | −1.44 | 0.01 | 0.150 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | −0.03 | <0.01 | 0.977 | ||
| Identification test of smell | 0.25 | −0.12 | 0.62 | 1.34 | 0.01 | 0.180 | ||
| desserts | 0.07 | Constant | 9.05 | 6.81 | 11.29 | 7.95 | 0.19 | <0.001 |
| Sex | −0.34 | −0.99 | 0.32 | −1.01 | <0.01 | 0.312 | ||
| Age | −0.01 | −0.04 | 0.02 | −0.59 | <0.01 | 0.553 | ||
| BMI | −0.03 | −0.12 | 0.05 | −0.77 | <0.01 | 0.440 | ||
| Pack-years | −0.03 | −0.08 | 0.02 | −1.21 | 0.01 | 0.227 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | 0.92 | <0.01 | 0.358 | ||
| Identification test of smell | 0.16 | −0.13 | 0.45 | 1.10 | <0.01 | 0.272 | ||
| bread | 0.08 | Constant | 6.75 | 4.77 | 8.74 | 6.70 | 0.14 | <0.001 |
| Sex | 0.81 | 0.23 | 1.39 | 2.74 | 0.03 | 0.007 | ||
| Age | 0.02 | <0.01 | 0.05 | 1.59 | 0.01 | 0.114 | ||
| BMI | −0.05 | −0.13 | 0.02 | −1.47 | 0.01 | 0.143 | ||
| Pack-years | −0.02 | −0.06 | 0.02 | −0.94 | 0.00 | 0.346 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | 0.92 | 0.00 | 0.361 | ||
| Identification test of smell | 0.06 | −0.20 | 0.31 | 0.43 | 0.00 | 0.667 | ||
| carbonated drinks | 0.06 | Constant | 4.26 | 1.50 | 7.01 | 3.04 | 0.03 | 0.003 |
| Sex | 1.25 | 0.45 | 2.05 | 3.07 | 0.03 | 0.002 | ||
| Age | −0.06 | −0.09 | −0.02 | −3.38 | 0.04 | 0.001 | ||
| BMI | 0.01 | −0.10 | 0.11 | 0.10 | <0.01 | 0.918 | ||
| Pack-years | 0.05 | −0.01 | 0.11 | 1.59 | 0.01 | 0.113 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | 0.33 | <0.01 | 0.745 | ||
| Identification test of smell | 0.15 | −0.20 | 0.50 | 0.85 | <0.01 | 0.398 | ||
| fruits | 0.06 | Constant | 9.16 | 7.52 | 10.80 | 10.98 | 0.31 | <0.001 |
| Sex | −0.30 | −0.78 | 0.18 | −1.24 | 0.01 | 0.216 | ||
| Age | 0.01 | −0.01 | 0.03 | 0.74 | <0.01 | 0.458 | ||
| BMI | −0.03 | −0.09 | 0.03 | −0.94 | <0.01 | 0.346 | ||
| Pack-years | −0.05 | −0.08 | −0.01 | −2.78 | 0.03 | 0.006 | ||
| Olfactory sensitivity threshold | <0.01 | <0.01 | <0.01 | −0.86 | <0.01 | 0.391 | ||
| Identification test of smell | 0.11 | −0.09 | 0.32 | 1.08 | <0.01 | 0.281 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebiedowska, A.; Kamińska, M.; Krusiec-Świdergoł, B.; Błońska-Fajfrowska, B.; Hartman-Petrycka, M. Who Likes Sweets? Sweet Patterns: Influence of Sex, Age, Body Mass Index, Smoking and Olfactory Efficiency on the Consumption of Sweet Products. Nutrients 2025, 17, 3487. https://doi.org/10.3390/nu17213487
Lebiedowska A, Kamińska M, Krusiec-Świdergoł B, Błońska-Fajfrowska B, Hartman-Petrycka M. Who Likes Sweets? Sweet Patterns: Influence of Sex, Age, Body Mass Index, Smoking and Olfactory Efficiency on the Consumption of Sweet Products. Nutrients. 2025; 17(21):3487. https://doi.org/10.3390/nu17213487
Chicago/Turabian StyleLebiedowska, Agata, Magdalena Kamińska, Beata Krusiec-Świdergoł, Barbara Błońska-Fajfrowska, and Magdalena Hartman-Petrycka. 2025. "Who Likes Sweets? Sweet Patterns: Influence of Sex, Age, Body Mass Index, Smoking and Olfactory Efficiency on the Consumption of Sweet Products" Nutrients 17, no. 21: 3487. https://doi.org/10.3390/nu17213487
APA StyleLebiedowska, A., Kamińska, M., Krusiec-Świdergoł, B., Błońska-Fajfrowska, B., & Hartman-Petrycka, M. (2025). Who Likes Sweets? Sweet Patterns: Influence of Sex, Age, Body Mass Index, Smoking and Olfactory Efficiency on the Consumption of Sweet Products. Nutrients, 17(21), 3487. https://doi.org/10.3390/nu17213487

