Red Blood Cell Fatty Acid Patterns and Cognitive Functions in Adolescents: A Pooled Analyses with Two Cohort Study Data Sets
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Fatty Acid Determination
2.3. Primary Outcomes
2.4. Reduction in Dimensionality of Fatty Acids: Principal Component Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALA | Alpha-Linolenic Acid |
| BMI | Body Mass Index |
| CUPRAG | Roulette Task in Risk Adjustment for Gain |
| CUPRAL | Roulette Task Risk Adjustment for Loss |
| DHA | Docosahexaenoic acid |
| EDA | Eicosadienoic acid |
| EPA | Eicosapentaenoic acid |
| FA | Fatty Acids |
| FDR | False Discovery Rate |
| INMA | Spanish birth cohort Childhood and Environment (INfancia y Medio Ambiente, INMA) |
| PC | Principal Component |
| PCA | Principal Component Analysis |
| PMA | Primary Mental Ability |
| RBC | Red Blood Cell |
| Raven | Raven’s Standard Progressive Matrices |
| RMSE | Root Mean Squared Error |
| SCL-90 | Symptom Checklist-90-Revised |
| WSS | Walnuts Smart Snack Dietary Intervention Trial |
References
- Murty, V.P.; Calabro, F.; Luna, B. The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci. Biobehav. Rev. 2016, 70, 46–58. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Ellis, A.; Ward, K.P.; Chaku, N.; Davis-Kean, P.E. Working memory development from early childhood to adolescence using two nationally representative samples. Dev. Psychol. 2022, 58, 1962–1973. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, M.; Zhang, X.; Wang, M.; Shi, J. The Roles of Fluid Intelligence and Emotional Intelligence in Affective Decision-Making During the Transition to Early Adolescence. Front. Psychol. 2020, 11, 574903. [Google Scholar] [CrossRef] [PubMed]
- Hartley, C.A.; Somerville, L.H. The neuroscience of adolescent decision-making. Curr. Opin. Behav. Sci. 2015, 5, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Toga, A.W.; Thompson, P.M.; Sowell, E.R. Mapping brain maturation. Trends Neurosci. 2006, 29, 148–159. [Google Scholar] [CrossRef]
- Haag, M. Essential Fatty Acids and the Brain. Can. J. Psychiatry 2003, 48, 195–203. [Google Scholar] [CrossRef]
- Carver, J.D.; Benford, V.J.; Han, B.; Cantor, A.B. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res. Bull. 2001, 56, 79–85. [Google Scholar] [CrossRef]
- Chang, J.P.-C.; Su, K.-P.; Mondelli, V.; Pariante, C.M. Omega-3 Polyunsaturated Fatty Acids in Youths with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Clinical Trials and Biological Studies. Neuropsychopharmacology 2018, 43, 534–545. [Google Scholar] [CrossRef]
- Basak, S.; Mallick, R.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021, 13, 2061. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, P.; Chen, C.; He, Q.; Zhuo, S.; Chen, Y.; Su, Y. Validation of an FFQ to estimate the intake of fatty acids using erythrocyte membrane fatty acids and multiple 3d dietary records. Public Health Nutr. 2010, 13, 1546–1552. [Google Scholar] [CrossRef]
- Sherzai, D.; Moness, R.; Sherzai, S.; Sherzai, A. A Systematic Review of Omega-3 Fatty Acid Consumption and Cognitive Outcomes in Neurodevelopment. Am. J. Lifestyle Med. 2023, 17, 649–685. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Eyles, H.C.; McLachlan, K.J.; Bell, M.L.; Green, T.J.; Skeaff, C.M. Plasma and erythrocyte fatty acids reflect intakes of saturated and n-6 PUFA within a similar time frame. J. Nutr. 2014, 144, 33–41. [Google Scholar] [CrossRef] [PubMed]
- van der Wurff, I.S.M.; von Schacky, C.; Berge, K.; Zeegers, M.P.; Kirschner, P.A.; de Groot, R.H.M. Association between Blood Omega-3 Index and Cognition in Typically Developing Dutch Adolescents. Nutrients 2016, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Colter, A.L.; Cutler, C.; Meckling, K.A. Fatty acid status and behavioural symptoms of attention deficit hyperactivity disorder in adolescents: A case-control study. Nutr. J. 2008, 7, 8. [Google Scholar] [CrossRef]
- Chen, J.-R.; Hsu, S.-F.; Hsu, C.-D.; Hwang, L.-H.; Yang, S.-C. Dietary patterns and blood fatty acid composition in children with attention-deficit hyperactivity disorder in Taiwan. J. Nutr. Biochem. 2004, 15, 467–472. [Google Scholar] [CrossRef]
- Satizabal, C.L.; Himali, J.J.; Beiser, A.S.; Ramachandran, V.; Melo van Lent, D.; Himali, D.; Aparicio, H.J.; Maillard, P.; DeCarli, C.S.; Harris, W.S.; et al. Association of Red Blood Cell Omega-3 Fatty Acids With MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study. Neurology 2022, 99, e2572–e2582. [Google Scholar] [CrossRef]
- Rouch, L.; Virecoulon Giudici, K.; Cantet, C.; Guyonnet, S.; Delrieu, J.; Legrand, P.; Catheline, D.; Andrieu, S.; Weiner, M.; de Souto Barreto, P.; et al. Associations of erythrocyte omega-3 fatty acids with cognition, brain imaging and biomarkers in the Alzheimer’s disease neuroimaging initiative: Cross-sectional and longitudinal retrospective analyses. Am. J. Clin. Nutr. 2022, 116, 1492–1506. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Y.; Xu, F.; Ye, M.; Hu, P.; Jiang, W.; Li, F.; Fu, Y.; Xie, Z.; Zhu, Y.; et al. Association between dietary fatty acid patterns based on principal component analysis and fatty acid compositions of serum and breast milk in lactating mothers in Nanjing, China. Food Funct. 2021, 12, 8704–8714. [Google Scholar] [CrossRef]
- Zhang, Z.; Castelló, A. Principal components analysis in clinical studies. Ann. Transl. Med. 2017, 5, 351. [Google Scholar] [CrossRef]
- Duchaine, C.S.; Fiocco, A.J.; Carmichael, P.-H.; Cunnane, S.C.; Plourde, M.; Lampuré, A.; Allès, B.; Belleville, S.; Gaudreau, P.; Presse, N.; et al. Serum ω-3 Fatty Acids and Cognitive Domains in Community-Dwelling Older Adults from the NuAge Study: Exploring the Associations with Other Fatty Acids and Sex. J. Nutr. 2022, 152, 2117–2124. [Google Scholar] [CrossRef]
- Pinar-Martí, A.; Gignac, F.; Fernández-Barrés, S.; Romaguera, D.; Sala-Vila, A.; Lázaro, I.; Ranzani, O.T.; Persavento, C.; Delgado, A.; Carol, A.; et al. Effect of walnut consumption on neuropsychological development in healthy adolescents: A multi-school randomised controlled trial. eClinicalMedicine 2023, 59, 101954. [Google Scholar] [CrossRef]
- Julvez, J.; Gignac, F.; Fernández-Barrés, S.; Romaguera, D.; Sala-Vila, A.; Ranzani, O.T.; Persavento, C.; Delgado, A.; Carol, A.; Torrent, J.; et al. Walnuts, Long-Chain Polyunsaturated Fatty Acids, and Adolescent Brain Development: Protocol for the Walnuts Smart Snack Dietary Intervention Trial. Front. Pediatr. 2021, 9, 593847. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Fitó, N.; Ramón, R.; Ballester, F.; Grimalt, J.; Marco, A.; Olea, N.; Posada, M.; Rebagliato, M.; Tardón, A.; Torrent, M.; et al. Child health and the environment: The INMA Spanish Study. Paediatr. Perinat. Epidemiol. 2006, 20, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Cofán, M.; Covas, M.-I.; Estruch, R.; Harris, W.S.; Lamuela-Raventós, R.M.; Pintó, X.; Pérez-Heras, A.M.; Ros, E.; Sala-Vila, A. Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. Br. J. Nutr. 2011, 106, 425–431. [Google Scholar] [CrossRef]
- Lázaro, I.; Grau-Rivera, O.; Suárez-Calvet, M.; Fauria, K.; Minguillón, C.; Shekari, M.; Falcón, C.; García-Prat, M.; Huguet, J.; Molinuevo, J.L.; et al. Omega-3 blood biomarkers relate to brain glucose uptake in individuals at risk of Alzheimer’s disease dementia. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2024, 16, e12596. [Google Scholar] [CrossRef]
- López-Vicente, M.; Forns, J.; Suades-González, E.; Esnaola, M.; García-Esteban, R.; Álvarez-Pedrerol, M.; Júlvez, J.; Burgaleta, M.; Sebastián-Gallés, N.; Sunyer, J. Developmental Trajectories in Primary Schoolchildren Using n-Back Task. Front. Psychol. 2016, 7, 716. [Google Scholar] [CrossRef]
- Thurstone, T.G. The Tests of Primary Mental Abilities. Pers. Guid. J. 1957, 35, 569–576. [Google Scholar] [CrossRef]
- Raven, J.; Raven, J.; Court, J. Manual for Raven’s Progressive Matrices and Vocabulary Scales; Pearson: Osaka, Japan, 1998. [Google Scholar]
- Levin, I.P.; Weller, J.A.; Pederson, A.; Harshman, L.A. Age-related differences in adaptive decision making: Sensitivity to expected value in risky choice. Judgm. Decis. Mak. 2007, 2, 225–233. [Google Scholar] [CrossRef]
- Guevarra, E.; Muatt, M. Zenodo. Nutriverse/Zscorer: Zscorer v0.3.1. 2019. Available online: https://cran.r-project.org/web/packages/zscorer/index.html (accessed on 28 October 2025).
- Kassambara, A.; Mundt, F. CRAN-Package Factoextra. 2020, p. 1. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 6 July 2024).
- Revelle, W. CRAN-Package Psych. 2014. Available online: http://cran.r-project.org/web/packages/psych/index.html (accessed on 1 November 2024).
- Namiecinska, M.; Piatek, P.; Lewkowicz, P. Nervonic Acid Synthesis Substrates as Essential Components in Profiled Lipid Supplementation for More Effective Central Nervous System Regeneration. Int. J. Mol. Sci. 2024, 25, 3792. [Google Scholar] [CrossRef]
- Bockus, L.B.; Biggs, M.L.; Lai, H.T.M.; de Olivera Otto, M.C.; Fretts, A.M.; McKnight, B.; Sotoodehnia, N.; King, I.B.; Song, X.; Siscovick, D.S.; et al. Assessment of Plasma Phospholipid Very-Long-Chain Saturated Fatty Acid Levels and Healthy Aging. JAMA Netw. Open 2021, 4, e2120616. [Google Scholar] [CrossRef]
- Sittiprapaporn, P.; Bumrungpert, A.; Suyajai, P.; Stough, C. Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial. Foods 2022, 11, 2595. [Google Scholar] [CrossRef]
- van der Wurff, I.S.M.; Meyer, B.J.; de Groot, R.H.M. Effect of Omega-3 Long Chain Polyunsaturated Fatty Acids (n-3 LCPUFA) Supplementation on Cognition in Children and Adolescents: A Systematic Literature Review with a Focus on n-3 LCPUFA Blood Values and Dose of DHA and EPA. Nutrients 2020, 12, 3115. [Google Scholar] [CrossRef]
- Stonehouse, W.; Conlon, C.A.; Podd, J.; Hill, S.R.; Minihane, A.M.; Haskell, C.; Kennedy, D. DHA supplementation improved both memory and reaction time in healthy young adults: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 1134–1143. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Huang, W.-C.; Li, C.-W.; Chuang, L.-T. Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Mol. Cell. Biochem. 2011, 358, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Rao, J.S.; Chang, L.; Rapoport, S.I.; Bazinet, R.P. Chronic N-methyl-D-aspartate administration increases the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat. J. Lipid Res. 2008, 49, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, K.W.; Cheatham, C.L. Omega-6 to omega-3 fatty acid ratio and higher-order cognitive functions in 7- to 9-y-olds: A cross-sectional study. Am. J. Clin. Nutr. 2013, 98, 659–667. [Google Scholar] [CrossRef]
- Jackson, K.H.; Harris, W.S.; Belury, M.A.; Kris-Etherton, P.M.; Calder, P.C. Beneficial effects of linoleic acid on cardiometabolic health: An update. Lipids Health Dis. 2024, 23, 296. [Google Scholar] [CrossRef] [PubMed]
- Moltu, S.J.; Nordvik, T.; Rossholt, M.E.; Wendel, K.; Chawla, M.; Server, A.; Gunnarsdottir, G.; Pripp, A.H.; Domellöf, M.; Bratlie, M.; et al. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT. Clin. Nutr. 2024, 43, 176–186. [Google Scholar] [CrossRef]
- Taha, A.Y. Linoleic acid-good or bad for the brain? NPJ Sci. Food 2020, 4, 1. [Google Scholar] [CrossRef]
- Song, C.; Phillips, A.G.; Leonard, B.E.; Horrobin, D.F. Ethyl-eicosapentaenoic acid ingestion prevents corticosterone-mediated memory impairment induced by central administration of interleukin-1β in rats. Mol. Psychiatry 2004, 9, 630–638. [Google Scholar] [CrossRef]
- Bazan, N.G.; Molina, M.F.; Gordon, W.C. Docosahexaenoic acid signalolipidomics in nutrition: Significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu. Rev. Nutr. 2011, 31, 321–351. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef] [PubMed]
- Widenhorn-Müller, K.; Schwanda, S.; Scholz, E.; Spitzer, M.; Bode, H. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): A randomized placebo-controlled intervention trial. Prostaglandins Leukot. Essent. Fat. Acids 2014, 91, 49–60. [Google Scholar] [CrossRef]
- Antypa, N.; Van der Does, A.J.W.; Smelt, A.H.M.; Rogers, R.D. Omega-3 fatty acids (fish-oil) and depression-related cognition in healthy volunteers. J. Psychopharmacol. 2008, 23, 831–840. [Google Scholar] [CrossRef]
- Zamroziewicz, M.K.; Paul, E.J.; Zwilling, C.E.; Barbey, A.K. Determinants of fluid intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure. Nutr. Neurosci. 2018, 21, 570–579. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]

| Variable | N | Total a N = 660 | WSS a N = 332 | INMA-Sabadell a N = 328 | p-Value b |
|---|---|---|---|---|---|
| N-back 4 (d prime) | 605 | 2.09 (1.22) | 1.74 (1.11) | 2.48 (1.22) | <0.001 |
| PMA-R test (total of correct responses) c | 758 | 16.21 (5.79) | |||
| Raven test (total correct responses) c | 777 | 35.53 (4.49) | |||
| Roulettes Task (CUPRAG) | 608 | 4.87 (2.45) | 4.53 (2.42) | 5.25 (2.42) | <0.001 |
| Roulettes Task (CUPRAL) | 608 | 4.54 (2.51) | 3.98 (2.63) | 5.16 (2.21) | <0.001 |
| Sex | 660 | 0.874 | |||
| Female | 336 (51%) | 168 (51%) | 168 (51%) | ||
| Male | 324 (49%) | 164 (49%) | 160 (49%) | ||
| Age (years) | 621 | 14.53 (1.15) | 13.81 (0.92) | 15.36 (0.76) | <0.001 |
| Height (cm) | 656 | 164.58 (8.77) | 162.21 (8.69) | 166.95 (8.21) | <0.001 |
| Weight (kg) | 654 | 57.84 (13.41) | 53.85 (11.66) | 61.87 (13.87) | <0.001 |
| BMI z-score | 615 | 0.34 (1.11) | 0.27 (1.05) | 0.42 (1.17) | 0.164 |
| Physical activity | 636 | 0.001 | |||
| Sedentary to low | 150 (24%) | 56 (18%) | 94 (29%) | ||
| Moderate | 155 (24%) | 70 (23%) | 85 (26%) | ||
| Active to quite active | 331 (52%) | 184 (59%) | 147 (45%) | ||
| Adherence to the MedDiet | 630 | 6.24 (2.34) | 6.85 (2.02) | 5.67 (2.47) | <0.001 |
| Mother studies | 620 | <0.001 | |||
| Secondary school or less | 305 (49%) | 121 (37%) | 184 (64%) | ||
| University | 315 (51%) | 210 (63%) | 105 (36%) | ||
| Maternal mental disorder | 612 | 0.840 | |||
| No | 529 (86%) | 274 (87%) | 255 (86%) | ||
| Yes | 83 (14%) | 42 (13%) | 41 (14%) | ||
| Social class | 574 | <0.001 | |||
| Working | 95 (17%) | 36 (13%) | 57 (20%) | ||
| Middle | 279 (49%) | 105 (37%) | 174 (60%) | ||
| Middle high to high | 200 (35%) | 143 (50%) | 59 (20%) |
| Working Memory 4—Back (d Prime) | Fluid Intelligence PMA-R and Raven | |||||||
|---|---|---|---|---|---|---|---|---|
| Variable | n | a | 95% CI | p-Value | n | a | 95% CI | p-Value |
| PC1: Very-long chain FAs | ||||||||
| Tertile 1 | 163 | Ref. | 156 | Ref. | ||||
| Tertile 2 | 200 | 0.06 | −0.23, 0.35 | 0.691 | 199 | −0.12 | −0.35, 0.12 | 0.327 |
| Tertile 3 | 205 | 0.24 | −0.15, 0.63 | 0.223 | 207 | −0.12 | −0.42, 0.19 | 0.457 |
| Tertiles in continuous b | 568 | 0.13 | −0.07, 0.32 | 0.203 | 562 | −0.05 | −0.20, 0.10 | 0.500 |
| PC2: Long-chain omega-6 FAs | ||||||||
| Tertile 1 | 193 | Ref. | 191 | Ref. | ||||
| Tertile 2 | 189 | 0.01 | −0.23, 0.24 | 0.957 | 187 | −0.10 | −0.29, 0.09 | 0.311 |
| Tertile 3 | 186 | 0.18 | −0.08, 0.44 | 0.177 | 184 | −0.13 | −0.34, 0.08 | 0.233 |
| Tertiles in continuous b | 568 | 0.09 | −0.04, 0.22 | 0.180 | 562 | −0.06 | −0.17, 0.04 | 0.230 |
| PC3: Omega-3 FAs | ||||||||
| Tertile 1 | 187 | Ref. | 184 | Ref. | ||||
| Tertile 2 | 199 | −0.12 | −0.35, 0.11 | 0.319 | 195 | 0.25 | 0.07, 0.44 | 0.007 |
| Tertile 3 | 182 | 0.07 | −0.17, 0.31 | 0.575 | 183 | 0.29 | 0.10, 0.47 | 0.003 |
| Tertiles in continuous b | 568 | 0.03 | −0.09, 0.15 | 0.575 | 562 | 0.14 | 0.05, 0.24 | 0.003 |
| Risky Decision-Making Roulettes Task | ||||||||
|---|---|---|---|---|---|---|---|---|
| CUPRAG | CUPRAL | |||||||
| Variable | n | a | 95% CI | p-Value | n | a | 95% CI | p-Value |
| PC1: Very-long chain FAs | ||||||||
| Tertile 1 | 164 | Ref. | 164 | Ref. | ||||
| Tertile 2 | 203 | −0.27 | −0.85, 0.30 | 0.347 | 200 | −0.10 | −0.70, 0.50 | 0.746 |
| Tertile 3 | 211 | −0.47 | −1.23, 0.29 | 0.225 | 208 | −0.47 | −1.26, 0.33 | 0.251 |
| Tertiles in continuous b | 578 | −0.23 | −0.61, 0.15 | 0.229 | 572 | −0.24 | −0.64, 0.15 | 0.228 |
| PC2: Long-chain omega-6 FAs | ||||||||
| Tertile 1 | 196 | Ref. | 194 | Ref. | ||||
| Tertile 2 | 194 | −0.01 | −0.48, 0.46 | 0.958 | 192 | −0.19 | −0.68, 0.30 | 0.448 |
| Tertile 3 | 188 | −0.25 | −0.76, 0.27 | 0.350 | 186 | −0.43 | −0.97, 0.11 | 0.116 |
| Tertiles in continuous b | 578 | −0.12 | −0.38, 0.14 | 0.354 | 572 | −0.22 | −0.49, 0.05 | 0.116 |
| PC3: Omega-3 FAs | ||||||||
| Tertile 1 | 188 | Ref. | 188 | Ref. | ||||
| Tertile 2 | 201 | 0.08 | −0.39, 0.54 | 0.747 | 199 | 0.21 | −0.27, 0.69 | 0.383 |
| Tertile 3 | 189 | 0.29 | −0.18, 0.76 | 0.221 | 185 | 0.54 | 0.05, 1.04 | 0.030 |
| Tertiles in continuous b | 578 | 0.15 | −0.09, 0.38 | 0.219 | 572 | 0.27 | 0.03, 0.52 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala-Aldana, N.; Pinar-Martí, A.; Ruiz-Rivera, M.; Lázaro, I.; Sala-Vila, A.; Healy, D.R.; Contreras-Rodriguez, O.; Casanova, J.; Sola-Valls, N.; Vrijheid, M.; et al. Red Blood Cell Fatty Acid Patterns and Cognitive Functions in Adolescents: A Pooled Analyses with Two Cohort Study Data Sets. Nutrients 2025, 17, 3483. https://doi.org/10.3390/nu17213483
Ayala-Aldana N, Pinar-Martí A, Ruiz-Rivera M, Lázaro I, Sala-Vila A, Healy DR, Contreras-Rodriguez O, Casanova J, Sola-Valls N, Vrijheid M, et al. Red Blood Cell Fatty Acid Patterns and Cognitive Functions in Adolescents: A Pooled Analyses with Two Cohort Study Data Sets. Nutrients. 2025; 17(21):3483. https://doi.org/10.3390/nu17213483
Chicago/Turabian StyleAyala-Aldana, Nicolas, Ariadna Pinar-Martí, Marina Ruiz-Rivera, Iolanda Lázaro, Aleix Sala-Vila, Darren R. Healy, Oren Contreras-Rodriguez, Jordi Casanova, Nuria Sola-Valls, Martine Vrijheid, and et al. 2025. "Red Blood Cell Fatty Acid Patterns and Cognitive Functions in Adolescents: A Pooled Analyses with Two Cohort Study Data Sets" Nutrients 17, no. 21: 3483. https://doi.org/10.3390/nu17213483
APA StyleAyala-Aldana, N., Pinar-Martí, A., Ruiz-Rivera, M., Lázaro, I., Sala-Vila, A., Healy, D. R., Contreras-Rodriguez, O., Casanova, J., Sola-Valls, N., Vrijheid, M., & Julvez, J. (2025). Red Blood Cell Fatty Acid Patterns and Cognitive Functions in Adolescents: A Pooled Analyses with Two Cohort Study Data Sets. Nutrients, 17(21), 3483. https://doi.org/10.3390/nu17213483

