Early Discharge of Very Preterm Infants Is Not Associated with Impaired Growth up to Three Months Postmenstrual Age: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BPD | Bronchopulmonary dysplasia |
| FCC | Family-centered care |
| FIP | Focal intestinal perforation |
| HC | Head circumference |
| IVH | Intraventricular hemorrhage |
| NEC | Necrotizing enterocolitis |
| NICU | Neonatal intensive care unit |
| PVL | Perivetnricular leukomalacia |
| PMA | Postmenstrual age |
| ROP | Retinopathy of prematurity |
| TEA | Term equivalent age |
References
- Hei, M.; Gao, X.; Li, Y.; Gao, X.; Li, Z.; Xia, S.; Zhang, Q.; Han, S.; Gao, H.; Nong, S.; et al. Family Integrated Care for Preterm Infants in China: A Cluster Randomized Controlled Trial. J. Pediatr. 2021, 228, 36–43+e2. [Google Scholar] [CrossRef]
- Schuler, R.; Eiben, C.; Waitz, M.; Neubauer, B.A.; Hahn, A.; Mihatsch, W.A. Enhancement of Family-Centred Care Is Associated with a Reduction in Postmenstrual Age at Discharge in Preterm Infants. Children 2024, 11, 1316. [Google Scholar] [CrossRef] [PubMed]
- Arwehed, S.; Axelin, A.; Bjorklund, L.J.; Thernstrom Blomqvist, Y.; Heiring, C.; Jonsson, B.; Klingenberg, C.; Metsaranta, M.; Agren, J.; Lehtonen, L. Nordic survey showed wide variation in discharge practices for very preterm infants. Acta Paediatr. 2023, 113, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Losbar, J.L.; Montjaux, N.; Ehlinger, V.; Germany, L.; Arnaud, C.; Tscherning, C. Early discharge and hospital-assisted home care is associated with better neurodevelopmental outcome in preterm infants. Early Hum. Dev. 2021, 161, 105451. [Google Scholar] [CrossRef] [PubMed]
- Arwehed, S.; Axelin, A.; Agren, J.; Blomqvist, Y.T. Discharge criteria, practices, and decision-making in the transition of preterm infants to home. Pediatr. Res. 2024, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kellner, P.; Kwon, J.; Smith, J.; Pineda, R. Neurodevelopmental Outcomes following Preterm Birth and the Association with Postmenstrual Age at Discharge. Am. J. Perinatol. 2022, 41, 561–568. [Google Scholar] [CrossRef]
- Ahnfeldt, A.M.; Stanchev, H.; Jorgensen, H.L.; Greisen, G. Age and weight at final discharge from an early discharge programme for stable but tube-fed preterm infants. Acta Paediatr. 2015, 104, 377–383. [Google Scholar] [CrossRef]
- Ortenstrand, A.; Winbladh, B.; Nordstrom, G.; Waldenstrom, U. Early discharge of preterm infants followed by domiciliary nursing care: Parents’ anxiety, assessment of infant health and breastfeeding. Acta Paediatr. 2001, 90, 1190–1195. [Google Scholar] [CrossRef]
- Schuler, R.; Kreidler, A.L.; Waitz, M.; Kampschulte, B.; Petzinger, J.; Frodermann, T.; Hahn, A.; Mihatsch, W.A. Breastfeeding in Preterm Infants Is Not Compromised by Early Discharge and Home Nasogastric Tube Feeding up to 3 Months Postmenstrual Age: A Prospective Cohort Study. Nutrients 2025, 17, 2444. [Google Scholar] [CrossRef]
- Schuler, R.; Ehrhardt, H.; Mihatsch, W.A. Safety and Parental Satisfaction with Early Discharge of Preterm Infants on Nasogastric Tube Feeding and Outpatient Clinic Follow-Up. Front. Pediatr. 2020, 8, 505. [Google Scholar] [CrossRef]
- Cooke, R.J.; Ainsworth, S.B.; Fenton, A.C. Postnatal growth retardation: A universal problem in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F428–F430. [Google Scholar] [CrossRef]
- El Rafei, R.; Maier, R.F.; Jarreau, P.H.; Norman, M.; Barros, H.; Van Reempts, P.; Van Heijst, A.; Pedersen, P.; Cuttini, M.; Johnson, S.; et al. Postnatal growth restriction and neurodevelopment at 5 years of age: A European extremely preterm birth cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Kennedy, K.; Castaneda-Gutierrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef]
- Franz, A.R.; Pohlandt, F.; Bode, H.; Mihatsch, W.A.; Sander, S.; Kron, M.; Steinmacher, J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009, 123, e101–e109. [Google Scholar] [CrossRef]
- Belfort, M.B.; Rifas-Shiman, S.L.; Sullivan, T.; Collins, C.T.; McPhee, A.J.; Ryan, P.; Kleinman, K.P.; Gillman, M.W.; Gibson, R.A.; Makrides, M. Infant growth before and after term: Effects on neurodevelopment in preterm infants. Pediatrics 2011, 128, e899–e906. [Google Scholar] [CrossRef]
- Lidzba, K.; Rodemann, S.; Goelz, R.; Krageloh-Mann, I.; Bevot, A. Growth in very preterm children: Head growth after discharge is the best independent predictor for cognitive outcome. Early Hum. Dev. 2016, 103, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Wood, C.L.; Pearce, M.S.; Brunskill, G.; Grahame, V. Early diet in preterm infants and later cognition: 10-year follow-up of a randomized controlled trial. Pediatr. Res. 2021, 89, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, Y.; Inoue, H.; Miyauchi, Y.; Watabe, T.; Yasuoka, K.; Sawano, T.; Ochiai, M.; Sakai, Y.; Ohga, S. Neurodevelopmental Changes and Postnatal Growth in the First 3 Years of Extremely Preterm Infants. Neonatology 2024, 122, 181–190. [Google Scholar] [CrossRef]
- O’Shea, T.M.; Register, H.M.; Yi, J.X.; Jensen, E.T.; Joseph, R.M.; Kuban, K.C.K.; Frazier, J.A.; Washburn, L.; Belfort, M.; South, A.M.; et al. Growth During Infancy After Extremely Preterm Birth: Associations with Later Neurodevelopmental and Health Outcomes. J. Pediatr. 2023, 252, 40–47+e5. [Google Scholar] [CrossRef]
- Ortenstrand, A.; Waldenstrom, U.; Winbladh, B. Early discharge of preterm infants needing limited special care, followed by domiciliary nursing care. Acta Paediatr. 1999, 88, 1024–1030. [Google Scholar] [CrossRef]
- Schuler, R.; Woitschitzky, L.; Eiben, C.; Beck, J.; Jagers, A.; Windhorst, A.; Kampschulte, B.; Petzinger, J.; Waitz, M.; Kilsdonk, M.O.R.; et al. Multidimensional assessment of infant, parent and staff outcomes during a family centered care enhancement project in a tertiary neonatal intensive care unit: Study protocol of a longitudinal cohort study. BMC Pediatr. 2023, 23, 344. [Google Scholar] [CrossRef]
- Walsh, M.C.; Wilson-Costello, D.; Zadell, A.; Newman, N.; Fanaroff, A. Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J. Perinatol. 2003, 23, 451–456. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Voigt, M.; Fusch, C.; Olbertz, D.; Hartmann, K.; Rochow, N.; Renken, C.; Schneider, K.T.M. Analysis of the Neonatal Collective in the Federal Republic of Germany 12th Report: Resentation of Detailed Percentiles for the Body Measurement of Newborns. Geburtshilfe Und Frauenheilkd. 2006, 66, 956–970. [Google Scholar] [CrossRef]
- WHO. WHO Child Growth Standards. Available online: https://www.who.int/tools/child-growth-standards/standards (accessed on 29 May 2025).
- Holm, K.G.; Clemensen, J.; Brodsgaard, A.; Smith, A.C.; Maastrup, R.; Zachariassen, G. Growth and breastfeeding of preterm infants receiving neonatal tele-homecare compared to hospital-based care. J. Neonatal Perinatal Med. 2019, 12, 277–284. [Google Scholar] [CrossRef]
- van Kampen, F.; de Mol, A.; Korstanje, J.; Groof, F.M.; van Meurs-Asseler, L.; Stas, H.; Willemsen, R.; Zwinderman, A.; Stoelhorst, G. Early discharge of premature infants < 37 weeks gestational age with nasogastric tube feeding: The new standard of care? Eur. J. Pediatr. 2019, 178, 497–503. [Google Scholar] [CrossRef]
- Embleton, N.D.; Korada, M.; Wood, C.L.; Pearce, M.S.; Swamy, R.; Cheetham, T.D. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch. Dis. Child. 2016, 101, 1026–1031. [Google Scholar] [CrossRef]
- Lapillonne, A.; Griffin, I.J. Feeding preterm infants today for later metabolic and cardiovascular outcomes. J. Pediatr. 2013, 162, S7–S16. [Google Scholar] [CrossRef]
- Alshaikh, B.; Yusuf, K.; Dressler-Mund, D.; Mehrem, A.A.; Augustine, S.; Bodani, J.; Yoon, E.; Shah, P.; Canadian Neonatal, N.; Canadian Preterm Birth Network, I. Rates and Determinants of Home Nasogastric Tube Feeding in Infants Born Very Preterm. J. Pediatr. 2022, 246, 26–33+e22. [Google Scholar] [CrossRef] [PubMed]
- Brodsgaard, A.; Zimmermann, R.; Petersen, M. A preterm lifeline: Early discharge programme based on family-centred care. J. Spec. Pediatr. Nurs. 2015, 20, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Sitter, C.; Dunitz-Scheer, M.; Posch, K.; Avian, A.; Bresesti, I.; Urlesberger, B. Full oral feeding is possible before discharge even in extremely preterm infants. Acta Paediatr. 2019, 108, 239–244. [Google Scholar] [CrossRef] [PubMed]
| Baseline Cohort | Cohort 1 | Cohort 2 | Cohort 3 | Cohort 4 | Cohort 5 | ANOVA or Chi Square Test as Appropriate p Value | |
|---|---|---|---|---|---|---|---|
| Discharged alive, n | 48 | 35 | 26 | 27 | 30 | 18 | |
| In hospital death, n | 3 | 0 | 0 | 0 | 0 | 3 | <0.01 |
| PMA at birth, weeks (SD) | 28.5 (±2.9) | 29.2 (±2.7) | 27.9 (±2.8) | 29.3 (±2.8) | 28.1 (±2.9) | 29.1 (±2.2) | 0.41 |
| Cesarean section n (%) | 43 (89.6%) | 35 (100.0%) | 26 (100.0%) | 26 (96.3%) | 29 (96.7%) | 18 (100%) | 0.11 |
| Male sex, n (%) | 18 (37.5%) | 18 (51.4%) | 15 (57.7%) | 12 (44.4%) | 16 (53.3%) | 11 (61.1%) | 0.43 |
| Multiples, n (%) | 17 (35.4%) | 6 (17.1%) | 8 (30.8%) | 10 (37.0%) | 9 (30%) | 2 (11.1%) | 0.21 |
| BPD, n (%) | 6 (12.5%) | 5 (14.3%) | 4 (15.4%) | 2 (7.4%) | 0 (0%) | 0 (0%) | 0.17 |
| IVH ≥ III, n (%) | 1 (2.1%) | 0 (0.0%) | 1 (3.8%) | 1 (3.7%) | 2 (6.7%) | 1 (5.6%) | 0.72 |
| PVL, n (%) | 1 (2.1%) | 0 (0.0%) | 0 (0.0%) | 1 (3.7%) | 0 (0.0%) | 0 (0%) | 0.65 |
| ROP ≥ 3, n (%) | 3 (6.3%) | 2 (5.7%) | 1 (3.8%) | 0 (0.0%) | 0 (0.0%) | 1 (6.3%) | 0.6 |
| NEC ≥ 2, n (%) | 0 (0.0%) | 1 (2.9%) | 0 (0.0%) | 0 (0.0%) | 1 (3.3%) | 1 (5.6%) | 0.51 |
| FIP, n (%) | 3 (6.3%) | 1 (2.9%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0%) | 0.3 |
| Baseline Cohort | Cohort 1 | Cohort 2 | Cohort 3 | Cohort 4 | Cohort 5 | ANOVA p Value | |
|---|---|---|---|---|---|---|---|
| discharged alive, n | 48 | 35 | 26 | 27 | 30 | 18 | |
| PMA at discharge, weeks (SD) | 37.8 (±2.1) | 37.5 (±2.9) | 37.8 (±4.0) | 36.9 (±2.8) | 36.4 (±1.9) | 35.7 # (±0.91) | 0.03 |
| Neonatal homecare | 38 (79.2%) | 22 (62.9%) | 21 (80.8%) | 19 (70.4%) | 25 (83.3%) | 15 (83.3%) | 0.33 |
| Tube feeding at discharge, n (%) | 3 (6.3%) | 4 (11.4%) | 12 (46.2%) | 13 (48.1%) | 22 (73.3%) | 12 # (66.7%) | <0.01 |
| PMA at removal of tube, weeks (SD) | 35.9 (±1.9) | 35.9 (±2.3) | 37.0 (±2.1) | 36.8 (±1.9) | 37.6 (±2.6) | 36.2 (±2.5) | 0.01 |
| Removal of tube after discharge, days (SD) | 10.0 (±7.5) | 13.5 (±7.9) | 13.6 (±8.0) | 11.8 (±15.9) | 0.77 | ||
| Follow-up at TEA | 39 (81%) | 25 (71%) | 23 (88%) | 21 (78%) | 26 87%) | 13 (72%) | 0.72 |
| Follow-up at 3 months | 44 (92%) | 32 (91%) | 23 (88%) | 23 (85%) | 29 (97%) | 17 (94%) | 0.49 |
| Weight, grams (SD) | |||||||
| Birth | 1088 (±394) | 1174 (±414) | 1006 (±377) | 1261 (±386) | 1069 (±341) | 1193 (±315) | 0.15 |
| Z-Score birth | −0.35 (±0.9) | −0.35 (±0.98) | −0.48 (±0.97) | −0.09 (±0.89) | −0.29 (±0.93) | −0.12 (±0.65) | 0.64 |
| Discharge | 2754 (±477) | 2669 (±498) | 2624 (±595) | 2651 (±601) | 2368 (±458) | 2275 (±247) | <0.001 |
| Z-Score discharge | −0.63 (±0.65) | −0.65 (±0.85) | −0.72 (±0.59) | −0.46 (±0.79) | −0.9 (±0.94) | −0.8 (±0.69) | 0.35 |
| TEA | 3156 (±414) | 3151 (±654) | 3080 (±441) | 3315 (±496) | 3165 (±613) | 3337 (±472) | 0.60 |
| Z-Score TEA | −0.78 (±0.86) | −0.57 (±0.98) | −0.79 (±0.89) | −0.08 (±0.63) | −0.55 (±0.80) | −0.53 (±0.69) | 0.11 |
| 3 months PMA | 5697 (±890) | 5787 (±902) | 5650 (±998) | 5847 (±732) | 5756 (±725) | 5865 (±813) | 0.95 |
| Z-Score 3 months PMA | −0.59 (±1.07) | −0.66 (±1.47) | −0.97 (±1.39) | −0.56 (±1.04) | −0.47 (±1.03) | −0.38 (±1.18) | 0.68 |
| Length, cm (SD) | |||||||
| Birth | 36.9 (±4.7) | 36.7 (±4.8) | 35.5 (±5.3) | 38.0 (±4.6) | 36.1 (±4.0) | 37.8 (±4.4) | 0.38 |
| Z-Score birth | −0.06 (±1.2) | −0.61 (±1.5) | −0.28 (±1.47) | −0.04 (±1.1) | −0.29 (±1.2) | 0.08 (±1.1) | 0.33 |
| Discharge | 47.7 (±2.3) | 46.9 (±2.0) | 46.8 (±2.6) | 46.9 (±3.1) | 45.3 (±3.6) | 44.7 (±2.0) | 0.02 |
| Z-Score discharge | −0.29 (±0.95) | −0.52 (±1.15) | −0.52 (±1.13) | −0.20 (±1.11) | −0.78 (±1.20) | −0.65 (±0.90) | 0.31 |
| TEA | 48.7 (±2.0) | 46.3 (±3.2) | 48.3 (±3.2) | 48.7 (±2.4) | 48.8 (±3.9) | 48.8 (±2.7) | 0.99 |
| Z-Score TEA | −0.78 (±0.92) | −0.89 (±1.33) | −0.89 (±1.33) | −0.31 (±1.03) | −0.75 (±1.30) | −1.06 (±1.26) | 0.65 |
| 3 months PMA | 60.1 (±3.0) | 59.9 (±3.3) | 60.3 (±3.5) | 60.4 (±3.0) | 60.0 (±2.8) | 60.1 (±2.5) | 0.88 |
| Z-Score 3 months PMA | 0.5 (±1.22) | −0.46 (±1.68) | −0.43 (±1.77) | −0.31 (±1.43) | −0.32 (±1.27) | −0.34 (±1.15) | 0.72 |
| Head circumference, cm (SD) | |||||||
| Birth | 25.2 (±3.2) | 26.1 (±3.1) | 24.3 (±3.4) | 26.0 (±3.0) | 25.6 (±2.8) | 26.5 (±2.3) | 0.13 |
| Z-Score birth | −0.49 (±1.0) | −0.38 (±1.1) | −0.80 (±1.3) | −0.58 (±1.1) | −0.21 (±1.3) | −0.09 (±0.9) | 0.29 |
| Discharge | 33.0 (±1.57) | 33.0 (±1.41) | 32.5 (±1.30) | 32.5 (±1.78) | 31.8 (±1.89) | 31.3 (±0.90) | <0.001 |
| Z-Score discharge | −0.46 (±0.89) | −0.19 (±0.91) | −0.49 (±1.11) | −0.18 (±0.88) | −0.55 (±1.09) | −0.57 (±0.91) | 0.43 |
| TEA | 33.6 (±1.15) | 34.1 (±1.40) | 33.7 (±1.62) | 33.9 (±2.29) | 34.9 (±2.45) | 34.2 (±1.54) | 0.26 |
| Z-Score TEA | −0.77 (±0.82) | −0.24 (±1.04) | −0.62 (±1.29) | −0.24 (±1.41) | 0.19 (±1.44) | −0.65 (±1.06) | 0.12 |
| 3 months PMA | 40.3 (±1.58) | 40.1 (±1.48) | 40.0 (±1.73) | 40.2 (±1.66) | 40.0 (±1.51) | 40.0 (±0.98) | 0.93 |
| Z-Score 3 months PMA | 0.30 (±1.07) | −0.03 (±1.26) | −0.33 (±1.49) | −0.01 (±1.29) | −0.06 (±1.24) | −0.05 (±0.89) | 0.52 |
| Change in Z-Score from birth to 3 months PMA | |||||||
| Weight | −0.72 (±1.08) | −0.17 (±1.11) | −0.45 (±1.02) | −0.51 (±1.10) | −0.16 (±1.09) | −0.24 (±1.28) | 0.82 |
| Length | 0.01 (±1.46) | 0.33 (±1.59) | −0.31 (±1.36) | −0.42 (±1.51) | −0.08 (±1.41) | −0.42 (±1.61) | 0.41 |
| Head Circumference | 0.67 (±1.07) | 0.42 (±1.28) | 0.42 (±1.28) | 0.60 (±1.33) | 0.08 (±1.20) | 0.04 (±0.99) | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuler, R.; Bethke, V.; Schmidt, V.; Frodermann, T.; Schmidt, A.; Wald, M.; Hahn, A.; Mihatsch, W.A. Early Discharge of Very Preterm Infants Is Not Associated with Impaired Growth up to Three Months Postmenstrual Age: A Prospective Cohort Study. Nutrients 2025, 17, 3431. https://doi.org/10.3390/nu17213431
Schuler R, Bethke V, Schmidt V, Frodermann T, Schmidt A, Wald M, Hahn A, Mihatsch WA. Early Discharge of Very Preterm Infants Is Not Associated with Impaired Growth up to Three Months Postmenstrual Age: A Prospective Cohort Study. Nutrients. 2025; 17(21):3431. https://doi.org/10.3390/nu17213431
Chicago/Turabian StyleSchuler, Rahel, Vanessa Bethke, Viola Schmidt, Tina Frodermann, Annesuse Schmidt, Martin Wald, Andreas Hahn, and Walter A. Mihatsch. 2025. "Early Discharge of Very Preterm Infants Is Not Associated with Impaired Growth up to Three Months Postmenstrual Age: A Prospective Cohort Study" Nutrients 17, no. 21: 3431. https://doi.org/10.3390/nu17213431
APA StyleSchuler, R., Bethke, V., Schmidt, V., Frodermann, T., Schmidt, A., Wald, M., Hahn, A., & Mihatsch, W. A. (2025). Early Discharge of Very Preterm Infants Is Not Associated with Impaired Growth up to Three Months Postmenstrual Age: A Prospective Cohort Study. Nutrients, 17(21), 3431. https://doi.org/10.3390/nu17213431

