Lactoferrin, a Natural Protein with Multiple Functions in Health and Disease
Abstract
1. Introduction
2. Lactoferrin Structure
3. Lactoferrin Digestion, Absorption, and Bioavailability
4. Lactoferrin Biological Actions
4.1. Antimicrobial Activity
4.2. Antiviral Activity
4.3. Antioxidant and Antigenotoxic Protection
4.4. Anti-Inflammatory and Immunomodulatory Functions
4.5. Microbiota Diversity Promotion and Protection of Epithelial Barrier Integrity
5. Lactoferrin Therapeutic Use
5.1. Gastroenteric Diseases
5.2. Neonatal Sepsis and Necrotizing Enterocolitis
5.3. Lung Diseases
5.4. Coronavirus Disease 19 (COVID-19)
6. Lactoferrin as a Biomarker of Inflammatory Disorders
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bukowska-Ośko, I.; Sulejczak, D.; Kaczyńska, K.; Kleczkowska, P.; Kramkowski, K.; Popiel, M.; Wietrak, E.; Kowalczyk, P. Lactoferrin as a human genome “guardian”-an overall point of view. Int. J. Mol. Sci. 2022, 23, 5248. [Google Scholar] [CrossRef]
- Cutone, A.; Ianiro, G.; Lepanto, M.S.; Rosa, L.; Valenti, P.; Bonaccorsi di Patti, M.C.; Musci, G. Lactoferrin in the prevention and treatment of intestinal inflammatory pathologies associated with colorectal cancer development. Cancers 2020, 12, 3806. [Google Scholar] [CrossRef]
- Sharma, D.; Shastri, S. Lactoferrin and neonatology—Role in neonatal sepsis and necrotizing enterocolitis: Present, past and future. J. Matern. Fetal Neonatal Med. 2016, 29, 763–770. [Google Scholar] [CrossRef]
- Levay, P.F.; Viljoen, M. Lactoferrin: A general review. Haematologica 1995, 80, 252–267. [Google Scholar]
- Gori, A.; Brindisi, G.; Daglia, M.; Giudice, M.M.D.; Dinardo, G.; Di Minno, A.; Drago, L.; Indolfi, C.; Naso, M.; Trincianti, C.; et al. Nutraceutical and Medical Device Task Force of the Italian Society of Pediatric Allergy, Immunology (SIAIP). Exploring the role of lactoferrin in managing allergic airway diseases among children: Unrevealing a potential breakthrough. Nutrients 2024, 16, 1906. [Google Scholar] [CrossRef]
- Vogel, H.J. Lactoferrin, a bird’s eye view. Biochem. Cell Biol. 2012, 90, 233–244. [Google Scholar] [CrossRef]
- Ohradanova-Repic, A.; Praženicová, R.; Gebetsberger, L.; Moskalets, T.; Skrabana, R.; Cehlar, O.; Tajti, G.; Stockinger, H.; Leksa, V. Time to kill and time to heal: The multifaceted role of lactoferrin and lactoferricin in host defense. Pharmaceutics 2023, 15, 1056. [Google Scholar] [CrossRef]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Abdelnour, S.A.; Kamal, M.; Khafaga, A.F.; Shakoori, A.M.; Bagadood, R.M.; Naffadi, H.M.; Alyahyawi, A.Y.; Khojah, H.; Alghamdi, S.; et al. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed. Pharmacother. 2023, 164, 114967. [Google Scholar] [CrossRef] [PubMed]
- Villavicencio, A.; Rueda, M.S.; Turin, C.G.; Ochoa, T.J. Factors affecting lactoferrin concentration in human milk: How much do we know? Biochem. Cell Biol. 2017, 95, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Morniroli, D.; Consales, A.; Crippa, B.L.; Vizzari, G.; Ceroni, F.; Cerasani, J.; Colombo, L.; Mosca, F.; Giannì, M.L. The antiviral properties of human milk: A multitude of defence tools from mother nature. Nutrients 2021, 13, 694. [Google Scholar] [CrossRef]
- Sánchez, C.; Franco, L.; Regal, P.; Lamas, A.; Cepeda, A.; Fente, C. Breast milk: A source of functional compounds with potential application in nutrition and therapy. Nutrients 2021, 13, 1026. [Google Scholar] [CrossRef]
- Demir, R.; Sarıtaş, S.; Bechelany, M.; Karav, S. Lactoferrin: Properties and potential uses in the food industry. Int. J. Mol. Sci. 2025, 26, 1404. [Google Scholar] [CrossRef]
- Vishwanath-Deutsch, R.; Dallas, D.C.; Besada-Lombana, P.; Katz, L.; Conze, D.; Kruger, C.; Clark, A.J.; Peterson, R.; Malinczak, C.A. A review of the safety evidence on recombinant human lactoferrin for use as a food ingredient. Food Chem. Toxicol. 2024, 189, 114727. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Mejía, F.; Godínez-Victoria, M.; Molotla-Torres, D.E.; Drago-Serrano, M.E. Lactoferrin as a component of pharmaceutical preparations: An experimental focus. Pharmaceuticals 2023, 16, 214. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Mayeur, S.; Spahis, S.; Pouliot, Y.; Levy, E. Lactoferrin, a pleiotropic protein in health and disease. Antioxid. Redox Signal. 2016, 24, 813–836. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.N.; Baker, H.M. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol. Life Sci. 2005, 62, 2531–2539. [Google Scholar] [CrossRef]
- Baveye, S.; Elass, E.; Mazurier, J.; Spik, G.; Legrand, D. Lactoferrin: A multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin. Chem. Lab. Med. 1999, 37, 281–286. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Iyer, S. Lactoferrin: Molecular structure and biological function. Annu. Rev. Nutr. 1995, 15, 93–110. [Google Scholar] [CrossRef]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2023, 9, 1018336. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Prebiotic and modulatory evidence of lactoferrin on gut health and function. J. Functional. Foods 2023, 108, 105741. [Google Scholar] [CrossRef]
- Vega-Bautista, A.; de la Garza, M.; Carrero, J.C.; Campos-Rodríguez, R.; Godínez-Victoria, M.; Drago-Serrano, M.E. The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int. J. Mol. Sci. 2019, 20, 4707. [Google Scholar] [CrossRef]
- García-Montoya, I.A.; Cendón, T.S.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. Lactoferrin a multiple bioactive protein: An overview. Biochim. Biophys. Acta. 2012, 1820, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Cutone, A.; Conte, M.P.; Campione, E.; Bianchi, L.; Valenti, P. An overview on in vitro and in vivo antiviral activity of lactoferrin: Its efficacy against SARS-CoV-2 infection. Biometals 2023, 36, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Shini, V.S.; Udayarajan, C.T.; Nisha, P. A comprehensive review on lactoferrin: A natural multifunctional glycoprotein. Food Funct. 2022, 13, 11954–11972. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Scotti, M.J.; Conte, M.P.; Paesano, R.; Valenti, P. Physico-chemical properties influence the functions and efficacy of commercial bovine lactoferrins. Biometals 2018, 31, 301–312. [Google Scholar] [CrossRef]
- Ng, Z.J.; Addeen bib Md Daud, M.F.; Bee Lian, K.O.; Migeemanathan, S.; Shin, G.K.; Shunmugham, T.R.; Thian Hee, J.C.; Wei, T.H.; Ling, K.Y.; Sa’aid, N.; et al. Lactoferrin in health and disease: A review of its bioavailability and evidence-based benefits across study models. Trends Food Sci. Technol. 2025, 160, 105024. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Jaśkiewicz, A.; Tarasiuk, A.; Fichna, J. Lactoferrin: An overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit. Rev. Food Sci. Nutr. 2022, 62, 6016–6033. [Google Scholar] [CrossRef]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
- Brock, J.H. Lactoferrin-50 years on. Biochem. Cell Biol. 2012, 90, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Superti, F. Lactoferrin from bovine milk: A protective companion for life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.S.; Feng, K.; Li, S.F.; Hu, T.G.; Linhardt, R.J.; Zong, M.H.; Wu, H. Oral fate and stabilization technologies of lactoferrin: A systematic review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6341–6358. [Google Scholar] [CrossRef]
- Troost, F.J.; Steijns, J.; Saris, W.H.; Brummer, R.J. Gastric digestion of bovine lactoferrin in vivo in adults. J. Nutr. 2001, 131, 2101–2104. [Google Scholar] [CrossRef]
- Troost, F.J.; Saris, W.H.; Brummer, R.J. Orally ingested human lactoferrin is digested and secreted in the upper gastrointestinal tract in vivo in women with ileostomies. J. Nutr. 2002, 132, 2597–2600. [Google Scholar] [CrossRef]
- Dix, C.; Wright, O. Bioavailability of a novel form of microencapsulated bovine lactoferrin and its effect on inflammatory markers and the gut microbiome: A pilot study. Nutrients 2018, 10, 1115. [Google Scholar] [CrossRef]
- Takeuchi, T.; Kitagawa, H.; Harada, E. Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats. Exp. Physiol. 2004, 89, 263–270. [Google Scholar] [CrossRef]
- Suzuki, Y.A.; Wong, H.; Ashida, K.Y.; Schryvers, A.B.; Lönnerdal, B. The N1 domain of human lactoferrin is required for internalization by caco-2 cells and targeting to the nucleus. Biochemistry 2008, 47, 10915–10920. [Google Scholar] [CrossRef]
- Suzuki, Y.A.; Lopez, V.; Lönnerdal, B. Mammalian lactoferrin receptors: Structure and function. Cell Mol. Life Sci. 2005, 62, 2560–2575. [Google Scholar] [CrossRef] [PubMed]
- Ashida, K.; Sasaki, H.; Suzuki, Y.A.; Lönnerdal, B. Cellular internalization of lactoferrin in intestinal epithelial cells. Biometals 2004, 17, 311–315. [Google Scholar] [CrossRef]
- Suzuki, Y.A.; Shin, K.; Lönnerdal, B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry 2001, 40, 15771–15779. [Google Scholar] [CrossRef]
- Yao, X.; Bunt, C.; Cornish, J.; Quek, S.W.; Wen, J. Oral delivery of lactoferrin: A review. Int. J. Pept. Res. Ther. 2013, 19, 125–134. [Google Scholar] [CrossRef]
- Liu, N.; Feng, G.; Zhang, X.; Hu, Q.; Sun, S.; Sun, J.; Sun, Y.; Wang, R.; Zhang, Y.; Wang, P.; et al. The functional role of lactoferrin in intestine mucosal immune system and inflammatory bowel disease. Front. Nutr. 2021, 8, 759507. [Google Scholar] [CrossRef]
- Liu, Z.S.; Chen, P.W. Featured prebiotic agent: The roles and mechanisms of direct and indirect prebiotic activities of lactoferrin and its application in disease control. Nutrients 2023, 15, 2759. [Google Scholar] [CrossRef]
- Gruden, Š.; Poklar Ulrih, N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef]
- Jenssen, H.; Hancock, R.E. Antimicrobial properties of lactoferrin. Biochimie 2009, 91, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Zarzosa-Moreno, D.; Avalos-Gómez, C.; Ramírez-Texcalco, L.S.; Torres-López, E.; Ramírez-Mondragón, R.; Hernández-Ramírez, J.O.; Serrano-Luna, J.; de la Garza, M. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules 2020, 25, 5763. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Francis, J.; Doster, R.S.; Haley, K.P.; Craft, K.M.; Moore, R.E.; Chambers, S.A.; Aronoff, D.M.; Osteen, K.; Damo, S.M.; et al. Lactoferrin: A critical mediator of both host immune response and antimicrobial activity in response to streptococcal infections. ACS Infect. Dis. 2020, 6, 1615–1623. [Google Scholar] [CrossRef]
- Ongena, R.; Dierick, M.; Vanrompay, D.; Cox, E.; Devriendt, B. Lactoferrin impairs pathogen virulence through its proteolytic activity. Front. Vet. Sci. 2024, 11, 1428156. [Google Scholar] [CrossRef]
- Valenti, P.; Antonini, G. Lactoferrin: An important host defence against microbial and viral attack. Cell Mol. Life Sci. 2005, 62, 2576–2587. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents bacterial biofilm development. Nature 2002, 417, 552–555. [Google Scholar] [CrossRef]
- Dashper, S.G.; Pan, Y.; Veith, P.D.; Chen, Y.Y.; Toh, E.C.; Liu, S.W.; Cross, K.J.; Reynolds, E.C. Lactoferrin inhibits Porphyromonas gingivalis proteinases and has sustained biofilm inhibitory activity. Antimicrob. Agents Chemother. 2012, 56, 1548–1556. [Google Scholar] [CrossRef]
- Shi, Y.; Kong, W.; Nakayama, K. Human lactoferrin binds and removes the hemoglobin receptor protein of the periodontopathogen Porphyromonas gingivalis. J. Biol. Chem. 2000, 275, 30002–30008. [Google Scholar] [CrossRef] [PubMed]
- Bertuccini, L.; Costanzo, M.; Iosi, F.; Tinari, A.; Terruzzi, F.; Stronati, L.; Aloi, M.; Cucchiara, S.; Superti, F. Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn’s disease. Dig. Liver Dis. 2014, 46, 496–504. [Google Scholar] [CrossRef]
- Wada, T.; Aiba, Y.; Shimizu, K.; Takagi, A.; Miwa, T.; Koga, Y. The therapeutic effect of bovine lactoferrin in the host infected with Helicobacter pylori. Scand. J. Gastroenterol. 1999, 34, 238–243. [Google Scholar] [CrossRef] [PubMed]
- López-Soto, F.; León-Sicairos, N.; Nazmi, K.; Bolscher, J.G.; de la Garza, M. Microbicidal effect of the lactoferrin peptides lactoferricin17-30, lactoferrampin265-284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals 2010, 23, 563–568. [Google Scholar] [CrossRef]
- Reyes-López, M.; Ramírez-Rico, G.; Serrano-Luna, J.; de la Garza, M. Activity of apo-lactoferrin on pathogenic protozoa. Pharmaceutics 2022, 14, 1702. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, M.; Kimura, M.; Haraguchi, A.; Gotanda, M.; Kitagawa, T.; Matsuno, M.; Sakao, K.; Hamanaka, D.; Kusakisako, K.; Kameda, T.; et al. Bovine lactoferrin inhibits Plasmodium berghei growth by binding to heme. Sci. Rep. 2024, 14, 20344. [Google Scholar] [CrossRef]
- Krupińska, A.M.; Bogucki, Z. Lactoferrin as a potential therapeutic for the treatment of Candida-associated denture stomatitis. J. Oral. Biosci. 2024, 66, 308–313. [Google Scholar] [CrossRef]
- Jiang, R.; Du, X.; Lönnerdal, B. Effects of different sources of lactoferrin on cytokine response to SARS-CoV-2, respiratory syncytial virus, and rotavirus infection in vitro. Biochem. Cell Biol. 2025, 103, 1–12. [Google Scholar] [CrossRef]
- Oda, H.; Kolawole, A.O.; Mirabelli, C.; Wakabayashi, H.; Tanaka, M.; Yamauchi, K.; Abe, F.; Wobus, C.E. Antiviral effects of bovine lactoferrin on human norovirus. Biochem. Cell Biol. 2021, 99, 166–172. [Google Scholar] [CrossRef]
- Redwan, E.M.; Uversky, V.N.; El-Fakharany, E.M.; Al-Mehdar, H. Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biol. 2014, 337, 581–595. [Google Scholar] [CrossRef] [PubMed]
- van der Strate, B.W.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K. Antiviral activities of lactoferrin. Antiviral. Res. 2001, 52, 225–239. [Google Scholar] [CrossRef]
- Einerhand, A.W.C.; van Loo-Bouwman, C.A.; Weiss, G.A.; Wang, C.; Ba, G.; Fan, Q.; He, B.; Smit, G. Can lactoferrin, a natural mammalian milk protein, assist in the battle against COVID-19? Nutrients 2022, 14, 5274. [Google Scholar] [CrossRef]
- Ammendolia, M.G.; Pietrantoni, A.; Tinari, A.; Valenti, P.; Superti, F. Bovine lactoferrin inhibits echovirus endocytic pathway by interacting with viral structural polypeptides. Antiviral. Res. 2007, 73, 151–160. [Google Scholar] [CrossRef]
- Miyakawa, M.; Oda, H.; Tanaka, M. Clinical research review: Usefulness of bovine lactoferrin in child health. Biometals 2023, 36, 473–489. [Google Scholar] [CrossRef]
- Ishikawa, H.; Awano, N.; Fukui, T.; Sasaki, H.; Kyuwa, S. The protective effects of lactoferrin against murine norovirus infection through inhibition of both viral attachment and replication. Biochem. Biophys. Res. Commun. 2013, 434, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Krzyzowska, M.; Janicka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Celichowski, G.; Grobelny, J.; Szymanski, P. Lactoferrin-conjugated nanoparticles as new antivirals. Pharmaceutics 2022, 14, 1862. [Google Scholar] [CrossRef]
- Pietrantoni, A.; Dofrelli, E.; Tinari, A.; Ammendolia, M.G.; Puzelli, S.; Fabiani, C.; Donatelli, I.; Superti, F. Bovine lactoferrin inhibits influenza A virus induced programmed cell death in vitro. Biometals 2010, 23, 465–475. [Google Scholar] [CrossRef]
- Rascón-Cruz, Q.; Siqueiros-Cendón, T.S.; Siañez-Estrada, L.I.; Villaseñor-Rivera, C.M.; Ángel-Lerma, L.E.; Olivas-Espino, J.A.; León-Flores, D.B.; Espinoza-Sánchez, E.A.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F. Antioxidant potential of lactoferrin and its protective effect on health: An overview. Int. J. Mol. Sci. 2024, 26, 125. [Google Scholar] [CrossRef] [PubMed]
- Abad, I.; Vignard, J.; Bouchenot, C.; Graikini, D.; Grasa, L.; Pérez, M.D.; Mirey, G.; Sánchez, L. Dairy by-products and lactoferrin exert antioxidant and antigenotoxic activity on intestinal and hepatic cells. Foods 2023, 12, 2073. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeong, A.J.; Kim, G.Y.; Jo, A.; Lee, J.E.; Leem, S.H.; Yoon, J.H.; Ye, S.K.; Chung, J.W. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. J. Microbiol. Biotechnol. 2017, 27, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Bodur, M.; Aydoğdu, G.; Özçelik, A.Ö.; Yilmaz, E. An in vitro approach to protective effect of lactoferrin on acrylamide-induced oxidative damage. An. Acad. Bras. Cienc. 2022, 94, e20201882. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Actor, J.K.; Zimecki, M.; Wise, J.; Płoszaj, P.; Mirza, S.; Kruzel, M.; Hwang, S.A.; Ba, X.; Boldogh, I. Novel recombinant human lactoferrin: Differential activation of oxidative stress related gene expression. J. Biotechnol. 2013, 168, 666–675. [Google Scholar] [CrossRef]
- Okazaki, Y.; Kono, I.; Kuriki, T.; Funahashi, S.; Fushimi, S.; Iqbal, M.; Okada, S.; Toyokuni, S. Bovine lactoferrin ameliorates ferric nitrilotriacetate-induced renal oxidative damage in rats. J. Clin. Biochem. Nutr. 2012, 51, 84–90. [Google Scholar] [CrossRef]
- Al Zharani, M.M.; Almuqri, E.A.; Ahmed, M.M.; Aljarba, N.H.; Rudayni, H.A.; Yaseen, K.N.; Alkahtani, S.H.; Nasr, F.A.; Al Doaiss, A.A.; Al Eissa, M.S. Use of lactoferrin supplement as an efficient antioxidant to ameliorate the effects of mercury-induced oxidative stress in male Wistar rats. Biomed. Biotechnol. Res. J. 2024, 8, 45–52. [Google Scholar] [CrossRef]
- Carvalho, A.V.S.; Sanches, E.F.; Ribeiro, R.T.; Durán-Carabali, L.E.; Júnior, O.R.; Muniz, B.D.; Wajner, M.; Wyse, A.T.; Netto, C.A.; Sizonenko, S.V. Maternal lactoferrin supplementation prevents mitochondrial and redox homeostasis dysfunction, and improves antioxidant defenses through Nrf2 and UCP2 signaling after neonatal hypoxia-ischemia. Free Radic. Biol. Med. 2025, 231, 68–79. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H.; Schneider-Stock, R.; Hassan, H.M. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem. 2013, 141, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, Y.; Imase, M.; Oda, H.; Wakabayashi, H.; Ishii, K. Lactoferrin directly scavenges hydroxyl radicals and undergoes oxidative self-degradation: A possible role in protection against oxidative DNA damage. Int. J. Mol. Sci. 2014, 15, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Zhang, H.; Li, S.; Wang, J.; Liu, J.; Ren, H.; Gao, Y. Lactoferrin inhibits aflatoxin B1- and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 2018, 150, 77–85. [Google Scholar] [CrossRef]
- Manzoni, P.; Messina, A.; Germano, C.; Picone, S.; Masturzo, B.; Sainaghi, P.P.; Sola, D.; Rizzi, M. Lactoferrin supplementation in preventing and protecting from SARS-CoV-2 infection: Is there any role in general and special populations? An updated review of literature. Int. J. Mol. Sci. 2024, 25, 10248. [Google Scholar] [CrossRef]
- Legrand, D. Overview of lactoferrin as a natural immune modulator. J. Pediatr. 2016, 173, S10–S15. [Google Scholar] [CrossRef]
- Telang, S. Lactoferrin: A critical player in neonatal host defense. Nutrients 2018, 10, 1228. [Google Scholar] [CrossRef]
- Legrand, D.; Elass, E.; Carpentier, M.; Mazurier, J. Lactoferrin: A modulator of immune and inflammatory responses. Cell Mol. Life Sci. 2005, 62, 2549–2559. [Google Scholar] [CrossRef] [PubMed]
- Berthon, B.S.; Williams, L.M.; Williams, E.J.; Wood, L.G. Effect of lactoferrin supplementation on inflammation, immune function, and prevention of respiratory tract infections in humans: A systematic review and meta-analysis. Adv. Nutr. 2022, 13, 1799–1819. [Google Scholar] [CrossRef]
- Legrand, D.; Mazurier, J. A critical review of the roles of host lactoferrin in immunity. Biometals 2010, 23, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F.; García-Montoya, I.A.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Puddu, P.; Valenti, P.; Gessani, S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie 2009, 91, 11–18. [Google Scholar] [CrossRef]
- Presti, S.; Manti, S.; Parisi, G.F.; Papale, M.; Barbagallo, I.A.; Li Volti, G.; Leonardi, S. Lactoferrin: Cytokine modulation and application in clinical practice. J. Clin. Med. 2021, 10, 5482. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a context of inflammation-induced pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Håversen, L.; Ohlsson, B.G.; Hahn-Zoric, M.; Hanson, L.A.; Mattsby-Baltzer, I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol. 2002, 220, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef]
- Samuelsen, Ø.; Haukland, H.H.; Ulvatne, H.; Vorland, L.H. Anti-complement effects of lactoferrin-derived peptides. FEMS Immunol. Med. Microbiol. 2004, 41, 141–148. [Google Scholar] [CrossRef]
- Kievits, F.; Kijlstra, A. Inhibition of C3 deposition on solid-phase bound immune complexes by lactoferrin. Immunology 1985, 54, 449–456. [Google Scholar]
- Peña-Juárez, M.C.; Guadarrama-Escobar, O.R.; Serrano-Castañeda, P.; Méndez-Albores, A.; Vázquez-Durán, A.; Vera-Graziano, R.; Rodríguez-Pérez, B.; Salgado-Machuca, M.; Anguiano-Almazán, E.; Morales-Florido, M.I.; et al. Synergistic effect of retinoic acid and lactoferrin in the maintenance of gut homeostasis. Biomolecules 2024, 14, 78. [Google Scholar] [CrossRef]
- Buccigrossi, V.; de Marco, G.; Bruzzese, E.; Ombrato, L.; Bracale, I.; Polito, G.; Guarino, A. Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr. Res. 2007, 61, 410–414. [Google Scholar] [CrossRef]
- Jiang, R.; Lönnerdal, B. Transcriptomic profiling of intestinal epithelial cells in response to human, bovine and commercial bovine lactoferrins. Biometals 2014, 27, 831–841. [Google Scholar] [CrossRef]
- Chen, P.W.; Liu, Z.S.; Kuo, T.C.; Hsieh, M.C.; Li, Z.W. Prebiotic effects of bovine lactoferrin on specific probiotic bacteria. Biometals 2017, 30, 237–248. [Google Scholar] [CrossRef]
- Tian, H.; Maddox, I.S.; Ferguson, L.R.; Shu, Q. Influence of bovine lactoferrin on selected probiotic bacteria and intestinal pathogens. Biometals 2010, 23, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Majka, G.; Więcek, G.; Śróttek, M.; Śpiewak, K.; Brindell, M.; Koziel, J.; Marcinkiewicz, J.; Strus, M. The impact of lactoferrin with different levels of metal saturation on the intestinal epithelial barrier function and mucosal inflammation. Biometals 2016, 29, 1019–1033. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, P.; Han, S.; He, H. Lactoferrin alleviates inflammation and regulates gut microbiota composition in H5N1-infected mice. Nutrients 2023, 15, 3362. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Edu, A.; De Seta, F. Study on the effects of an oral lactobacilli and lactoferrin complex in women with intermediate vaginal microbiota. Arch Gynecol. Obstet. 2018, 298, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense. Front. Immunol. 2018, 9, 376. [Google Scholar] [CrossRef]
- Pino, A.; Giunta, G.; Randazzo, C.L.; Caruso, S.; Caggia, C.; Cianci, A. Bacterial biota of women with bacterial vaginosis treated with lactoferrin: An open prospective randomized trial. Microb. Ecol. Health Dis. 2017, 28, 1357417. [Google Scholar] [CrossRef]
- Santacroce, L.; Palmirotta, R.; Bottalico, L.; Charitos, I.A.; Colella, M.; Topi, S.; Jirillo, E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life 2023, 13, 1531. [Google Scholar] [CrossRef]
- Pino, A.; Mazza, T.; Matthews, M.H.; Castellana, S.; Caggia, C.; Randazzo, C.L.; Gelbfish, G.A. Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates. Front. Microbiol. 2022, 13, 1000822. [Google Scholar] [CrossRef]
- Superti, F.; De Seta, F. Warding off recurrent yeast and bacterial vaginal infections: Lactoferrin and lactobacilli. Microorganisms 2020, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Giunta, G.; Giuffrida, L.; Mangano, K.; Fagone, P.; Cianci, A. Influence of lactoferrin in preventing preterm delivery: A pilot study. Mol. Med. Rep. 2012, 5, 162–166. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Lee, C.; Zhu, H.; Zheng, S.; Pierro, A. Protective effects of lactoferrin on injured intestinal epithelial cells. J. Pediatr. Surg. 2019, 54, 2509–2513. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Zubair, D.; Bashir, M.N.; Alagawany, M.; Ahmed, S.; Shah, Q.A.; Buzdar, J.A.; Arain, M.A. Nutraceutical and health-promoting potential of lactoferrin, an iron-binding protein in human and animal: Current knowledge. Biol. Trace Elem. Res. 2024, 202, 56–72. [Google Scholar] [CrossRef]
- Conesa, C.; Bellés, A.; Grasa, L.; Sánchez, L. The role of lactoferrin in intestinal health. Pharmaceutics 2023, 15, 1569. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zong, Q.; Zhao, Y.; Gu, H.; Liu, Y.; Gu, F.; Liu, H.Y.; Ahmed, A.A.; Bao, W.; Cai, D. Lactoferrin attenuates intestinal barrier dysfunction and inflammation by modulating the MAPK pathway and gut microbes in mice. J. Nutr. 2022, 152, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.N.; Li, S.L.; Yang, X.; Wang, J.Q.; Zheng, N. The protective effects of lactoferrin on aflatoxin M1-induced compromised intestinal integrity. Int. J. Mol. Sci. 2021, 23, 289. [Google Scholar] [CrossRef]
- Hering, N.A.; Luettig, J.; Krug, S.M.; Wiegand, S.; Gross, G.; van Tol, E.A.; Schulzke, J.D.; Rosenthal, R. Lactoferrin protects against intestinal inflammation and bacteria-induced barrier dysfunction in vitro. Ann. N. Y. Acad. Sci. 2017, 1405, 177–188. [Google Scholar] [CrossRef]
- Ciccaglione, A.F.; Di Giulio, M.; Di Lodovico, S.; Di Campli, E.; Cellini, L.; Marzio, L. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: An in vitro and in vivo study. J. Antimicrob. Chemother. 2019, 74, 1069–1077. [Google Scholar] [CrossRef]
- Tolone, S.; Pellino, V.; Vitaliti, G.; Lanzafame, A.; Tolone, C. Evaluation of Helicobacter Pylori eradication in pediatric patients by triple therapy plus lactoferrin and probiotics compared to triple therapy alone. Ital. J. Pediatr. 2012, 38, 63. [Google Scholar] [CrossRef]
- Okuda, M.; Nakazawa, T.; Yamauchi, K.; Miyashiro, E.; Koizumi, R.; Booka, M.; Teraguchi, S.; Tamura, Y.; Yoshikawa, N.; Adachi, Y.; et al. Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: A randomized, double-blind, placebo-controlled study. J. Infect. Chemother. 2005, 11, 265–269. [Google Scholar] [CrossRef]
- Miehlke, S.; Reddy, R.; Osato, M.S.; Ward, P.P.; Conneely, O.M.; Graham, D.Y. Direct activity of recombinant human lactoferrin against Helicobacter pylori. J. Clin. Microbiol. 1996, 34, 2593–2594. [Google Scholar] [CrossRef]
- Dial, E.J.; Hall, L.R.; Serna, H.; Romero, J.J.; Fox, J.G.; Lichtenberger, L.M. Antibiotic properties of bovine lactoferrin on Helicobacter pylori. Dig. Dis. Sci. 1998, 43, 2750–2756. [Google Scholar] [CrossRef]
- Yamazaki, N.; Yamauchi, K.; Kaease, K.; Hayasawa, H.; Nakao, K.; Imoto, I. Antibacterial effects of lactoferrin and a pepsin-generated lactoferrin peptide against Helicobacter pylori in vitro. J. Infect. Chemother. 1997, 3, 85–89. [Google Scholar] [CrossRef]
- Imoto, I.; Yasuma, T.; D’Alessandro-Gabazza, C.N.; Oka, S.; Misaki, M.; Horiki, N.; Gabazza, E.C. Antimicrobial effects of lactoferrin against Helicobacter pylori infection. Pathogens 2023, 12, 599. [Google Scholar] [CrossRef]
- Wang, N.; Cai, T.; Liu, X.; Zhu, W. Bovine lactoferrin inhibits resistant Helicobacter pylori in vitro and protects gastric mucosal injury in vivo. Int. Diary J. 2023, 147, 105770. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Q.; Cheng, G.; Liu, X.; Liu, S.; Luo, J.; Zhang, A.; Bian, L.; Chen, J.; Lv, J.; et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int. J. Mol. Med. 2015, 36, 363–368. [Google Scholar] [CrossRef]
- Hablass, F.H.; Lashen, S.A.; Alsayed, E.A. Efficacy of lactoferrin with standard triple therapy or sequential therapy for Helicobacter pylori eradication: A randomized controlled trial. Turk. J. Gastroenterol. 2021, 32, 742–749. [Google Scholar] [CrossRef]
- De Bortoli, N.; Leonardi, G.; Ciancia, E.; Merlo, A.; Bellini, M.; Costa, F.; Mumolo, M.G.; Ricchiuti, A.; Cristiani, F.; Santi, S.; et al. Helicobacter pylori eradication: A randomized prospective study of triple therapy versus triple therapy plus lactoferrin and probiotics. Am. J. Gastroenterol. 2007, 102, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Di Mario, F.; Aragona, G.; Bò, N.D.; Ingegnoli, A.; Cavestro, G.M.; Moussa, A.M.; Iori, V.; Leandro, G.; Pilotto, A.; Franzè, A. Use of lactoferrin for Helicobacter pylori eradication. Preliminary results. J. Clin. Gastroenterol. 2003, 36, 396–398. [Google Scholar] [CrossRef]
- Zullo, A.; De Francesco, V.; Scaccianoce, G.; Hassan, C.; Panarese, A.; Piglionica, D.; Panella, C.; Morini, S.; Ierardi, E. Quadruple therapy with lactoferrin for Helicobacter pylori eradication: A randomised, multicentre study. Dig. Liver Dis. 2005, 37, 496–500. [Google Scholar] [CrossRef]
- Yang, J.; Shang, N.; Li, Z.; Xu, J.; Zhou, X.; Zhou, H.; Luo, W.; Xu, P.; Zhou, Y.; Sheng, X.; et al. Oral lactoferrin-responsive formulation anchoring around inflammatory bowel region for IBD therapy. Adv. Healthc. Mater. 2025, 14, e2402731. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.B.; Iigo, M.; Abdelgied, M.; Ozeki, K.; Tanida, S.; Joh, T.; Takahashi, S.; Tsuda, H. Bovine lactoferrin and Crohn’s disease: A case study. Biochem. Cell Biol. 2017, 95, 133–141. [Google Scholar] [CrossRef]
- Pammi, M.; Suresh, G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2020, 3, CD007137. [Google Scholar] [CrossRef] [PubMed]
- Woodman, T.; Strunk, T.; Patole, S.; Hartmann, B.; Simmer, K.; Currie, A. Effects of lactoferrin on neonatal pathogens and Bifidobacterium breve in human breast milk. PLoS ONE 2018, 13, e0201819. [Google Scholar] [CrossRef]
- Turin, C.G.; Zea-Vera, A.; Pezo, A.; Cruz, K.; Zegarra, J.; Bellomo, S.; Cam, L.; Llanos, R.; Castañeda, A.; Tucto, L.; et al. Lactoferrin for prevention of neonatal sepsis. Biometals 2014, 27, 1007–1016. [Google Scholar] [CrossRef]
- Manzoni, P.; Rinaldi, M.; Cattani, S.; Pugni, L.; Romeo, M.G.; Messner, H.; Stolfi, I.; Decembrino, L.; Laforgia, N.; Vagnarelli, F.; et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: A randomized trial. JAMA 2009, 302, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Akin, I.M.; Atasay, B.; Dogu, F.; Okulu, E.; Arsan, S.; Karatas, H.D.; Ikinciogullari, A.; Turmen, T. Oral lactoferrin to prevent nosocomial sepsis and necrotizing enterocolitis of premature neonates and effect on T-regulatory cells. Am. J. Perinatol. 2014, 31, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, P.; Meyer, M.; Stolfi, I.; Rinaldi, M.; Cattani, S.; Pugni, L.; Romeo, M.G.; Messner, H.; Decembrino, L.; Laforgia, N.; et al. Bovine lactoferrin supplementation for prevention of necrotizing enterocolitis in very-low-birth-weight neonates: A randomized clinical trial. Early Hum. Dev. 2014, 90 (Suppl. 1), S60–S65. [Google Scholar] [CrossRef]
- Kaur, G.; Gathwala, G. Efficacy of bovine lactoferrin supplementation in preventing late-onset sepsis in low birth weight neonates: A randomized placebo-controlled clinical trial. J. Trop. Pediatr. 2015, 61, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, T.J.; Zegarra, J.; Cam, L.; Llanos, R.; Pezo, A.; Cruz, K.; Zea-Vera, A.; Cárcamo, C.; Campos, M.; Bellomo, S.; et al. Randomized controlled trial of lactoferrin for prevention of sepsis in peruvian neonates less than 2500 g. Pediatr. Infect. Dis. J. 2015, 34, 571–576. [Google Scholar] [CrossRef]
- Sherman, M.P.; Sherman, J.; Arcinue, R.; Niklas, V. Randomized control trial of human recombinant lactoferrin: A substudy reveals effects on the fecal microbiome of very low birth weight infants. J. Pediatr. 2016, 173, S37–S42. [Google Scholar] [CrossRef]
- Sherman, M.P.; Adamkin, D.H.; Niklas, V.; Radmacher, P.; Sherman, J.; Wertheimer, F.; Petrak, K. Randomized controlled trial of talactoferrin oral solution in preterm infants. J. Pediatr. 2016, 175, 68–73. [Google Scholar] [CrossRef]
- ELFIN Trial Investigators Group. Enteral lactoferrin supplementation for very preterm infants: A randomised placebo-controlled trial. Lancet 2019, 393, 423–433. [Google Scholar] [CrossRef]
- Ochoa, T.J.; Zegarra, J.; Bellomo, S.; Carcamo, C.P.; Cam, L.; Castañeda, A.; Villavicencio, A.; Gonzales, J.; Rueda, M.S.; Turin, C.G.; et al. Randomized controlled trial of bovine lactoferrin for prevention of sepsis and neurodevelopment impairment in infants weighing less than 2000 grams. J. Pediatr. 2020, 219, 118–125.e5. [Google Scholar] [CrossRef]
- Tarnow-Mordi, W.O.; Abdel-Latif, M.E.; Martin, A.; Pammi, M.; Robledo, K.; Manzoni, P.; Osborn, D.; Lui, K.; Keech, A.; Hague, W.; et al. The effect of lactoferrin supplementation on death or major morbidity in very low birthweight infants (LIFT): A multicentre, double-blind, randomised controlled trial. Lancet Child Adolesc. Health 2020, 4, 444–454. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cao, L.; Yu, J. Prophylactic lactoferrin for preventing late-onset sepsis and necrotizing enterocolitis in preterm infants: A PRISMA-compliant systematic review and meta-analysis. Medicine 2018, 97, e11976. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, T.; Loli, S.; Mendoza, K.; Carcamo, C.; Bellomo, S.; Cam, L.; Castaneda, A.; Campos, M.; Jacobs, J.; Cossey, V.; et al. Effect of bovine lactoferrin on prevention of late-onset sepsis in infants <1500 g: A pooled analysis of individual patient data from two randomized controlled trials. Biochem. Cell Biol. 2021, 99, 14–19. [Google Scholar] [CrossRef]
- Manzoni, P.; Stolfi, I.; Messner, H.; Cattani, S.; Laforgia, N.; Romeo, M.G.; Bollani, L.; Rinaldi, M.; Gallo, E.; Quercia, M.; et al. Bovine lactoferrin prevents invasive fungal infections in very low birth weight infants: A randomized controlled trial. Pediatrics 2012, 129, 116–123. [Google Scholar] [CrossRef]
- Kaczyńska, K.; Jampolska, M.; Wojciechowski, P.; Sulejczak, D.; Andrzejewski, K.; Zając, D. Potential of lactoferrin in the treatment of lung diseases. Pharmaceuticals 2023, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Pasinato, A.; Fama, M.; Tripepi, G.; Egan, C.G.; Baraldi, E.; LIRAR Study Group. Lactoferrin in the prevention of recurrent respiratory infections in preschool children: A prospective randomized study. Children 2024, 11, 249. [Google Scholar] [CrossRef]
- Ali, A.S.; Hasan, S.S.; Kow, C.S.; Merchant, H.A. Lactoferrin reduces the risk of respiratory tract infections: A meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2021, 45, 26–32. [Google Scholar] [CrossRef]
- Chen, K.; Chai, L.; Li, H.; Zhang, Y.; Xie, H.M.; Shang, J.; Tian, W.; Yang, P.; Jiang, A.C. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition 2016, 32, 222–227. [Google Scholar] [CrossRef]
- King JCJr Cummings, G.E.; Guo, N.; Trivedi, L.; Readmond, B.X.; Keane, V.; Feigelman, S.; de Waard, R. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 245–251. [Google Scholar] [CrossRef]
- Oda, H.; Kubo, S.; Tada, A.; Yago, T.; Sugita, C.; Yoshida, H.; Toida, T.; Tanaka, M.; Kurokawa, M. Effects of bovine lactoferrin on the maintenance of respiratory and systemic physical conditions in healthy adults-a randomized, double-blind, placebo-controlled trial. Nutrients 2023, 15, 3959. [Google Scholar] [CrossRef]
- Oda, H.; Wakabayashi, H.; Tanaka, M.; Yamauchi, K.; Sugita, C.; Yoshida, H.; Abe, F.; Sonoda, T.; Kurokawa, M. Effects of lactoferrin on infectious diseases in Japanese summer: A randomized, double-blinded, placebo-controlled trial. J. Microbiol. Immunol. Infect. 2021, 54, 566–574. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Dong, Y.; Wang, C.; Cai, Z. Bovine lactoferrin inhibits inflammatory response and apoptosis in lipopolysaccharide-induced acute lung injury by targeting the PPAR-γ pathway. Mol. Biol. Rep. 2024, 51, 492. [Google Scholar] [CrossRef]
- Li, H.Y.; Yang, H.G.; Wu, H.M.; Yao, Q.Q.; Zhang, Z.Y.; Meng, Q.S.; Fan, L.L.; Wang, J.Q.; Zheng, N. Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. J. Dairy Sci. 2021, 104, 7383–7392. [Google Scholar] [CrossRef]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Triggle, C.R.; Bansal, D.; Ding, H.; Islam, M.M.; Farag, E.A.B.A.; Hadi, H.A.; Sultan, A.A. A comprehensive review of viral characteristics, transmission, pathophysiology, immune response, and management of SARS-CoV-2 and COVID-19 as a basis for controlling the pandemic. Front. Immunol. 2021, 12, 631139. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, C.; Wotring, J.W.; Zhang, C.J.; McCarty, S.M.; Fursmidt, R.; Pretto, C.D.; Qiao, Y.; Zhang, Y.; Frum, T.; Kadambi, N.S.; et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2105815118. [Google Scholar] [CrossRef]
- Ricordi, C.; Pacifici, F.; Lanzoni, G.; Palamara, A.T.; Garaci, E.; Della-Morte, D. Dietary and protective factors to halt or mitigate progression of autoimmunity, COVID-19 and its associated metabolic diseases. Int. J. Mol. Sci. 2021, 22, 3134. [Google Scholar] [CrossRef] [PubMed]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar] [CrossRef]
- Piacentini, R.; Centi, L.; Miotto, M.; Milanetti, E.; Di Rienzo, L.; Pitea, M.; Piazza, P.; Ruocco, G.; Boffi, A.; Parisi, G. Lactoferrin inhibition of the complex formation between ACE2 receptor and SARS CoV-2 recognition binding domain. Int. J. Mol. Sci. 2022, 23, 5436. [Google Scholar] [CrossRef]
- Salaris, C.; Scarpa, M.; Elli, M.; Bertolini, A.; Guglielmetti, S.; Pregliasco, F.; Blandizzi, C.; Brun, P.; Castagliuolo, I. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro. Nutrients 2021, 13, 328. [Google Scholar] [CrossRef]
- Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; et al. Lactoferrin against SARS-CoV-2, in vitro and In silico evidence. Front. Pharmacol. 2021, 12, 666600. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Ng, T.B.; Sun, W.Z. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int. J. Antimicrob. Agents 2020, 56, 106118. [Google Scholar] [CrossRef]
- Serrano, G.; Kochergina, I.; Albors, A.; Diaz, E.; Oroval, M.; Hueso, G.; Serrano, J.M. Liposomal lactoferiin as potential preventative and cure for COVID-19. Int. J. Res. Health Sci. 2020, 8, 8–15. [Google Scholar] [CrossRef]
- Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; et al. Lactoferrin as antiviral treatment in COVID-19 management: Preliminary evidence. Int. J. Environ. Res. Public Health 2021, 18, 10985. [Google Scholar] [CrossRef]
- Rosa, L.; Tripepi, G.; Naldi, E.; Aimati, M.; Santangeli, S.; Venditto, F.; Caldarelli, M.; Valenti, P. Ambulatory COVID-19 patients treated with lactoferrin as a supplementary antiviral agent: A preliminary study. J. Clin. Med. 2021, 10, 4276. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Paredes, J.L.; Tucto, L.; Medina, C.; Angles-Yanqui, E.; Nario, J.C.; Ruiz-Cabrejos, J.; Quintana, J.L.; Turpo-Espinoza, K.; Mejia-Cordero, F.; et al. Bovine lactoferrin for the prevention of COVID-19 infection in health care personnel: A double-blinded randomized clinical trial (LF-COVID). Biometals 2023, 36, 463–472. [Google Scholar] [CrossRef]
- Matino, E.; Tavella, E.; Rizzi, M.; Avanzi, G.C.; Azzolina, D.; Battaglia, A.; Becco, P.; Bellan, M.; Bertinieri, G.; Bertoletti, M.; et al. Effect of lactoferrin on clinical outcomes of hospitalized patients with COVID-19, the LAC randomized clinical trial. Nutrients 2023, 15, 1285. [Google Scholar] [CrossRef]
- Algahtani, F.D.; Elabbasy, M.T.; Samak, M.A.; Adeboye, A.A.; Yusuf, R.A.; Ghoniem, M.E. The prospect of lactoferrin use as adjunctive agent in management of SARS-CoV-2 patients: A randomized pilot study. Medicina 2021, 57, 842. [Google Scholar] [CrossRef] [PubMed]
- Wotring, J.W.; Fursmidt, R.; Ward, L.; Sexton, J.Z. Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. J. Dairy Sci. 2022, 105, 2791–2802. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Yuan, H.; Li, A.; Wang, J.; Zhu, X.; Xiu, W.; Zhang, G.; Chen, Y.; Chen, L.; et al. Association of plasma lactoferrin levels with disease severity in glaucoma patients. Front. Med. 2024, 11, 1385358. [Google Scholar] [CrossRef]
- GBD 2021 Rheumatoid Arthritis Collaborators. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050, a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e594–e610. [Google Scholar] [CrossRef]
- Caccavo, D.; Garzia, P.; Sebastiani, G.D.; Ferri, G.M.; Galluzzo, S.; Vadacca, M.; Rigon, A.; Afeltra, A.; Amoroso, A. Expression of lactoferrin on neutrophil granulocytes from synovial fluid and peripheral blood of patients with rheumatoid arthritis. J. Rheumatol. 2003, 30, 220–224. [Google Scholar]
- Caccavo, D.; Sebastiani, G.D.; Di Monaco, C.; Guido, F.; Galeazzi, M.; Ferri, G.M.; Bonomo, L.; Afeltra, A. Increased levels of lactoferrin in synovial fluid but not in serum from patients with rheumatoid arthritis. Int. J. Clin. Lab. Res. 1999, 29, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Delcheva, G.; Stefanova, K.; Stankova, T.; Maneva, A. Serum thioredoxin and lactoferrin in rheumatoid arthritis and their association with rheumatoid factor. J. Med. Biochem. 2025, 44, 312–318. [Google Scholar] [CrossRef]
- Peng, J.; Feinstein, D.; DeSimone, S.; Gentile, P. A review of the tear film biomarkers used to diagnose Sjogren’s syndrome. Int. J. Mol. Sci. 2024, 25, 10380. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Hong, C.; Hsu, M.Y.; Lai, T.T.; Huang, C.W.; Lu, C.Y.; Chen, W.L.; Cheng, C.M. Fluorescence-based reagent and spectrum-based optical reader for lactoferrin detection in tears: Differentiating Sjögren’s syndrome from non-Sjögren’s dry eye syndrome. Sci. Rep. 2024, 14, 14505. [Google Scholar] [CrossRef]
- Karns, K.; Herr, A.E. Human tear protein analysis enabled by an alkaline microfluidic homogeneous immunoassay. Anal. Chem. 2011, 83, 8115–8122. [Google Scholar] [CrossRef]
- Zhou, X.L.; Xu, W.; Tang, X.X.; Luo, L.S.; Tu, J.F.; Zhang, C.J.; Xu, X.; Wu, Q.D.; Pan, W.S. Fecal lactoferrin in discriminating inflammatory bowel disease from irritable bowel syndrome: A diagnostic meta-analysis. BMC Gastroenterol. 2014, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Stragier, E.; Van Assche, G. The use of fecal calprotectin and lactoferrin in patients with IBD. Review. Acta Gastroenterol. Belg. 2013, 76, 322–328. [Google Scholar]
- Yamakawa, T.; Miyake, T.; Yokoyama, Y.; Kazama, T.; Hayashi, Y.; Hirayama, D.; Yoshii, S.; Yamano, H.O.; Takahashi, S.; Nakase, H. Clinical performance of fecal calprotectin, lactoferrin, and hemoglobin for evaluating the disease activity of IBD and detecting colorectal tumors. JGH Open 2024, 8, e13077. [Google Scholar] [CrossRef]
- Dai, C.; Jiang, M.; Sun, M.J.; Cao, Q. Fecal lactoferrin for assessment of inflammatory bowel disease activity: A systematic review and meta-analysis. J. Clin. Gastroenterol. 2020, 54, 545–553. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, F.; Wang, X.; Sun, Z.; Hu, C.; Dou, H. Diagnostic accuracy of fecal lactoferrin for inflammatory bowel disease: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 12319–12332. [Google Scholar]
- Sipponen, T.; Savilahti, E.; Kärkkäinen, P.; Kolho, K.L.; Nuutinen, H.; Turunen, U.; Färkkilä, M. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn’s disease. Inflamm. Bowel Dis. 2008, 14, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.P. Fecal lactoferrin testing. Gastroenterol. Hepatol. 2018, 14, 713–716. [Google Scholar]
- Caccaro, R.; Angriman, I.; D’Incà, R. Relevance of fecal calprotectin and lactoferrin in the post-operative management of inflammatory bowel diseases. World J. Gastrointest. Surg. 2016, 8, 193–201. [Google Scholar] [CrossRef]
- Johnson, L.M.; White, S.K.; Schmidt, R.L. Are calprotectin and lactoferrin equivalent screening tests for inflammatory bowel disease? Clin. Chim. Acta 2020, 510, 191–195. [Google Scholar] [CrossRef] [PubMed]

| Gram-Negative Bacteria | Reference | Gram-Positive Bacteria | Reference | 
|---|---|---|---|
| Aggregatibacter | [3,45] | Actinobacillus | [45] | 
| Bacteriosides | [45] | Bacillus | [45] | 
| Escherichia | [3,24,46] | Bifidobacterium | [45] | 
| Enterobacter | [45] | Clostridium | [3,45] | 
| Campylobacter | [45] | Corynebacterium | [45] | 
| Chlamydophila | [24] | Enterococcus | [45] | 
| Helicobacter | [3,24,45] | Lactobacillus | [45] | 
| Klebsiella | [24,45] | Listeria | [3,24,45] | 
| Legionella | [24,45] | Micrococcus | [45] | 
| Mycobacterium | [24] | Staphylococcus | [3,24,45] | 
| Porphyromonas | [24] | Streptococcus | [3,24,46] | 
| Proteus | [45] | ||
| Pseudomonas | [3,45,46] | ||
| Salmonella | [24,45,46] | ||
| Vibrio | [24,45] | ||
| Yersinia | [3,45] | 
| Enveloped Viruses | Reference | Naked Viruses | Reference | 
|---|---|---|---|
| Chikungunya | [7,47] | Adenoviruses | [3,45,46,50,62] | 
| Coronaviruses (SARS-CoV-1, SARS-CoV-2) | [45,47,60] | Echoviruses | [3,45,46] | 
| Dengue | [7] | Enteroviruses | [3,46] | 
| Feline herpes (FHV-1) | [46,47] | Human papilloma (HPV-5, HPV-16) | [3,45] | 
| Hepatitis B (HBV) | [3,45,46,50] | Noroviruses | [61] | 
| Hepatitis C (HCV) | [3,45,46,47,50,62] | Polioviruses | [3,46,62] | 
| Hepatitis G (HGV) | [45,46] | Respiratory syncytial virus (RSV) | [3,60] | 
| Herpes simplex (HSV-1, HSV-2) | [3,7,45,47,50,62] | Rotaviruses | [3,45,46,50,60,62] | 
| Human cytomegalovirus (HCMV) | [3,7,45,47,50,62] | ||
| Human immunodeficiency (HIV-1, HIV-2) | [3,7,45,46,47,50,62] | ||
| Influenza A (H1N1, H3N2, H5N1) | [45] | ||
| Hantaviruses | [3,45,46] | ||
| Zika | [7,47] | 
| Country | Study Design | Participants | Intervention | Main Findings | Reference | 
|---|---|---|---|---|---|
| Italy | Randomized, open-label, single-center clinical trial | Total of 74 consecutive patients (preliminary analysis—study designed to enroll 150 subjects). Total of 24 were allocated to group I, 26 were allocated to group II, and 24 were allocated to group III | Group I (400 mg/die bovine lactoferrin in addition to rabeprazole, clarithromycin, tinidazole) vs. group II (rabeprazole, clarithromycin, tinidazole) vs. group III (rabeprazole, clarithromycin, tinidazole). Intervention duration: 7 days for group I and II, 10 days for group III | Overall, 100% eradication rate with 7-day quadruple therapy (lactoferrin, rabeprazole, clarithromycin, tinidazole) vs. 76.9% with 7-day triple therapy and 70.8% with 10-day triple therapy | [126] | 
| Italy | Prospective, randomized, open-label, multicenter clinical trial | Total of 133 consecutive adult patients with non-ulcer dyspepsia and H. pylori infection. Total of 65 were allocated to receive lactoferrin in addition to standard triple therapy and 68 were allocated to receive standard triple therapy alone | Amount of 400 mg/die lactoferrin in addition to standard triple therapy (esomeprazole, clarithromycin, amoxycillin) vs. standard triple therapy alone. Intervention duration: 7 days | No significant increase in H. pylori cure rate | [127] | 
| Japan | Randomized, double-blind, placebo-controlled, single-center clinical trial | Total of 59 subjects (34 adults and 25 children). Total of 17 adults were allocated to receive lactoferrin and 17 were allocated to receive placebo. Total of 14 children were allocated to receive lactoferrin and 11 were allocated to receive placebo | Amount of 400 mg/die bovine lactoferrin vs. placebo (dextrin). Intervention duration: 12 weeks | Reduction in H. pylori colonization, as testified by a more than 50% decrease in the 13C-urea breath test value | [117] | 
| Italy | Randomized, prospective, single center clinical trial | Total of 206 consecutive patients, where 105 were allocated to receive lactoferrin in addition to triple eradication therapy and 101 were allocated to receive triple eradication therapy alone | Amount of 400 mg/die bovine lactoferrin and probiotic formula in addition to triple eradication therapy (esomeprazole, clarithromycin, amoxicillin) vs. triple eradication therapy alone. Intervention duration: 7 days | Increase in the eradication rate and reduction in side effects of the triple therapy (nausea, diarrhea, metallic taste, abdominal pain, and glossitis) | [125] | 
| Italy | Prospective therapeutic trial, based on two pilot studies carried out simultaneously | Total of 77 subjects (53 in one pilot study and 24 in the other); 53 were allocated to receive lactoferrin in addition to triple therapy and 24 were allocated to receive triple therapy alone | Amount of 300 mg/die bovine lactoferrin in addition to triple therapy (esomeprazole, amoxicillin, levofloxacin) vs. triple therapy alone. Intervention duration: 10 days | Increase in the successful eradication and cure rate | [115] | 
| Egypt | Randomized, parallel, controlled, superiority, single-center clinical trial | Total of 400 patients; 100 were allocated to group I (analyzed 90), 100 were allocated to group II (analyzed 91), 100 were allocated to group III (analyzed 91), and 100 were allocated to group IV (93 analyzed) | Group I (400 mg/die bovine lactoferrin in addition to proton-pump-based triple therapy (esomeprazole, amoxicillin, clarithromycin)) vs. group II (400 mg/die bovine lactoferrin in addition to sequential therapy (esomeprazole, amoxicillin for 5 days, then esomeprazole, metronidazole, clarithromycin for 10 days)) vs. group III (proton-pump-based triple therapy alone) vs. group IV (sequential therapy alone). Intervention duration: 15 days | Increase in the successful eradication rate for both proton-pump-based triple therapy and sequential therapy when administered in combination with bovine lactoferrin | [124] | 
| Country | Study Design | Participants | Intervention | Main Findings | Reference | 
|---|---|---|---|---|---|
| Italy | Prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial | Total of 472 very-low-birth-weight neonates; 153 were allocated to group I, 151 were allocated to group II, and 168 were allocated to receive placebo | Group I (100 mg/die bovine lactoferrin) vs. group II (100 mg/die bovine lactoferrin + 6 × 109 CFU/die LGG) vs. placebo Intervention duration: 30 days (45 for neonates < 1000 g at birth) | Bovine lactoferrin, alone or combined with LGG, reduced the incidence of a first episode of late-onset sepsis in very-low-birth-weight neonates | [133] | 
| Turkey | Prospective, randomized, double-blind, placebo-controlled, single-center clinical trial | Total of 50 very-low-birth-weight or premature (born before 32 weeks’ gestation) neonates; 25 were allocated to receive lactoferrin and 25 were allocated to receive placebo (22 analyzed) | Amount of 200 mg/die bovine lactoferrin vs. placebo. Intervention duration: until discharge | Bovine lactoferrin supplementation reduced nosocomial sepsis and increased regulatory T lymphocytes levels in very-low-birth-weight neonates | [134] | 
| Italy and New Zealand | International, randomized, double-blind, placebo-controlled, multicenter clinical trial | Total of 743 very-low-birth- weight neonates; 247 were allocated to group I, 238 were allocated to group II, and 258 were allocated to receive placebo | Group I (100 mg/die bovine lactoferrin) vs. group II (100 mg/die bovine lactoferrin + 6 × 109 CFU/die LGG) vs. placebo Intervention duration: 30 days (45 for neonates < 1000 g at birth) | Bovine lactoferrin, alone or combined with LGG, reduced the incidence of severe necrotizing enterocolitis (≥stage 2) and/or of death in very-low-birth-weight neonates | [135] | 
| India | Randomized, double-blind, placebo-controlled, single-center clinical trial | Total of 132 neonates with birth weight < 2000 g; 65 were allocated to receive lactoferrin (63 analyzed) and 67 were allocated to placebo | Amount of 100 mg/die bovine lactoferrin for neonates between 1000 and 1249 g, 150 mg/die bovine lactoferrin for neonates between 1250 and 1499 g, 200 mg/die bovine lactoferrin for neonates between 1500 and 1749 g and 250 mg/die bovine lactoferrin for neonates between 1750 and 1999 g. Intervention duration: 28 days | Reduction in the incidence of the first episode of late-onset sepsis in low-birth-weight neonates | [136] | 
| Peru | Pilot, randomized, double-blind, placebo-controlled, multicenter clinical trial | Total of 190 neonates with birth weight of 500–2500 g; 95 were allocated to receive lactoferrin (94 received the intervention) and 95 were allocated to placebo | Amount of 200 mg/kg/die bovine lactoferrin vs. placebo. Intervention duration: 4 weeks | No statistically significant reduction in late-onset sepsis, with confidence interval suggestive of an effect that justifies larger trials | [137] | 
| United States of America | Randomized, blinded, placebo-controlled clinical trial | Total of 120 neonates with birth weight of 750–1500 g; 60 were allocated to receive lactoferrin and 60 were allocated to receive placebo | Amount of 300 mg/kg/die talactoferrin vs. placebo. Intervention duration: 28 days | Modulation of fecal microbiota and reduction in hospital-acquired infections in very-low-birth-weight infants | [138,139] | 
| United Kingdom | Randomized, placebo-controlled multicenter clinical trial | Total of 2203 neonates born before 32 weeks’ gestation; 1099 were allocated to receive lactoferrin (1051 received the full intervention) and 1104 were allocated to receive placebo (1057 received the full treatment) | Amount of 150 mg/kg/die (maximum 300 mg/die) bovine lactoferrin vs. placebo (sucrose). Intervention duration: from the time at which the infant’s enteral feed volume was >12 mL/kg/die until 34 weeks’ postmenstrual age | No significant reduction in the risk of late-onset infections, mortality or other morbidity in very-preterm infants | [140] | 
| Peru | Randomized, double-blind, placebo-controlled, multicenter clinical trial | Total of 414 neonates with birth weight of 500–2000 g; 209 were allocated to receive lactoferrin and 205 were allocated to receive placebo | Amount of 200 mg/kg/die bovine lactoferrin vs. placebo. Intervention duration: 8 weeks | No significant effects in decreasing the incidence of sepsis in infants with birth weight < 2000 g | [141] | 
| Australia and New Zealand | International, pragmatic, randomized, double-blind, multicenter, superiority clinical trial | Total of 1542 neonates with birth weight < 1500 g and aged < 8 days; 771 were allocated to lactoferrin (770 analyzed) and 771 were allocated to no intervention group | Amount of 200 mg/kg bovine lactoferrin vs. no intervention. Intervention duration: until 34 weeks’ postmenstrual age (or for 2 weeks if longer) or until discharge (if it occurred first) | No significant effects on mortality, brain injury, stage II or III necrotizing enterocolitis, late-onset sepsis, and retinopathy treated before discharge | [142] | 
| Country | Study Design | Participants | Intervention | Main Findings | Reference | 
|---|---|---|---|---|---|
| United States of America | Pilot, randomized, double-blind, placebo-controlled, single-center clinical trial | Total of 79 infants aged between 0 and 4 weeks, born at ≥34 weeks of gestation and with a birth weight ≥ 2000 g. Of the 52 who completed the study period, 26 were allocated to the lactoferrin fortified formula group and 26 were allocated to the cow milk-based formula | Bovine lactoferrin fortified formula (850 mg/L) vs. cow milk-based formula (102 mg/L). Intervention duration: 12 months | Significant reduction in lower respiratory tract illnesses | [150] | 
| China | Prospective, randomized, controlled, blinded, multicenter clinical trial | Total of 390 term infants aged between 4 and 6 months, exclusively breastfed but weaned; 130 were allocated to group I, 130 were allocated to group II and 130 were allocated to the control group | Group I (bovine lactoferrin fortified formula, containing 38 mg/100 g lactoferrin) vs. group II (lactoferrin-free formula) vs. control (exclusive breastfeeding). Intervention duration: 3 months | Reduced incidence of respiratory-related illnesses and fewer symptoms of running nose, cough, and wheezing in infants receiving bovine lactoferrin fortified formula or being exclusively breastfed | [149] | 
| Japan | Randomized, double-blind, placebo-controlled, parallel-group, comparative, single-center clinical trial | Total of 310 adults; 103 were allocated to group I (95 analyzed), 103 were allocated to group II (96 analyzed), and 104 were allocated to receive placebo (99 analyzed) | Group I (200 mg/die bovine lactoferrin) vs. group II (600 mg/die bovine lactoferrin) vs. placebo. Intervention duration: 12 weeks | Dose-dependent attenuation of summer infectious diseases, including summer colds | [152] | 
| Japan | Randomized, double-blind, placebo-controlled, single-center clinical trial | Total of 157 adult subjects; 78 were allocated to receive lactoferrin (68 analyzed) and 79 were allocated to receive placebo (77 analyzed) | Amount of 200 mg/die bovine lactoferrin vs. placebo. Intervention duration: 12 weeks | Reduction in the total score for respiratory and systemic symptoms and increase in CD86 and HLA-DR on plasmacytoid dendritic cells | [151] | 
| Italy | Randomized, controlled clinical trial | Total of 50 children aged between 3 and 6 years, attending nursery/preschool, with a history of recurrent respiratory infections; 25 were allocated to receive lactoferrin and 25 were allocated to the control group | Amount of 400 mg/die bovine lactoferrin in addition to pharmacological treatment for ongoing infections (if needed) vs. no additional treatment to support pharmacological intervention for infections (if needed). Intervention duration: 4 months | Reduction in frequency and duration of respiratory infection episodes and reduction in corticosteroid use | [147] | 
| Country | Study Design | Participants | Intervention | Main Findings | Reference | 
|---|---|---|---|---|---|
| Spain | Prospective, observational study | Total of 75 COVID-19 adult patients in home-based isolation | Amount of 256–384 mg/die liposomal bovine lactoferrin nutritional syrup food supplement in addition to zinc solution or only liposomal bovine lactoferrin solution. Intervention duration: 10 days | Improvement of COVID-19 symptoms | [164] | 
| Italy | Retrospective study | Total of 121 adult, asymptomatic, paucisymptomatic, and moderately symptomatic patients in home-based isolation; 82 were allocated to bovine lactoferrin and 39 were allocated to the bovine lactoferrin untreated group | Amount of 200 mg–1 g/die bovine lactoferrin (median dose: 400 mg/die in asymptomatic patients, 600 mg/die in paucisymptomatic patients, 1 g/die in moderate symptomatic patients) in addition to other medications (ibuprofen, paracetamol, azithromycin, heparin, and cortisone) depending on patient-specific conditions vs. other medications alone. Intervention duration: until the negativization | Reduction in the time to negativization | [166] | 
| Italy | Randomized, parallel arm, open label, interventional clinical trial | Total of 92 adult, asymptomatic (25/92) and mild-to-moderate (67/92) COVID-19 hospitalized and in home-based isolation patients; 32 were allocated to group I, 32 were allocated to group II and 28 were allocated to group III. Total of 32 healthy volunteers represented the control group | Control group did not receive any treatment or placebo. Group I (1 g/die bovine lactoferrin for the oral administration and 16 mg/nostril/die bovine lactoferrin for the intranasal formulation) vs. group II (standard-of-care therapy) vs. group III (no COVID-19 treatment) | Reduction in the time to negativization and improvement of COVID-19 symptoms | [165] | 
| Egypt | Randomized, single-center prospective, interventional clinical trial | Total of 54 adult patients hospitalized with mild-to-moderate COVID-19; 18 were allocated to the control group, 18 were allocated to group I, and 18 were allocated to group II | Control group (locally approved standard-of-care therapy) vs. group I (200 mg/die lactoferrin in addition to the standard-of-care therapy) vs. group II (400 mg/die lactoferrin in addition to the standard-of-care therapy). Intervention duration: 7 days | No additional benefits compared to the standard-of-care therapy | [169] | 
| Italy | Randomized, multicenter, double blind, parallel arm, placebo-controlled clinical trial | Total of 218 adult patients hospitalized with moderate-to-severe COVID-19; 113 were allocated to receive lactoferrin (113 analyzed) and 105 were allocated to receive placebo | Amount of 800 mg/die bovine lactoferrin vs. placebo (corn starch) in combination with standard-of-care therapy. Intervention duration: 30 days | No additional benefits compared to the standard-of-care therapy | [168] | 
| Peru | Randomized, double-blind, placebo-controlled, multicenter clinical trial | Total of 209 hospital workers; 104 were allocated to receive lactoferrin and 105 were allocated to receive placebo | Amount of 600 mg/die bovine lactoferrin vs. placebo (maltodextrin). Intervention duration: 90 days | No significant effect in preventing SARS-CoV-2 infection | [167] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzi, M.; Manzoni, P.; Germano, C.; Quevedo, M.F.; Sainaghi, P.P. Lactoferrin, a Natural Protein with Multiple Functions in Health and Disease. Nutrients 2025, 17, 3403. https://doi.org/10.3390/nu17213403
Rizzi M, Manzoni P, Germano C, Quevedo MF, Sainaghi PP. Lactoferrin, a Natural Protein with Multiple Functions in Health and Disease. Nutrients. 2025; 17(21):3403. https://doi.org/10.3390/nu17213403
Chicago/Turabian StyleRizzi, Manuela, Paolo Manzoni, Chiara Germano, Maria Florencia Quevedo, and Pier Paolo Sainaghi. 2025. "Lactoferrin, a Natural Protein with Multiple Functions in Health and Disease" Nutrients 17, no. 21: 3403. https://doi.org/10.3390/nu17213403
APA StyleRizzi, M., Manzoni, P., Germano, C., Quevedo, M. F., & Sainaghi, P. P. (2025). Lactoferrin, a Natural Protein with Multiple Functions in Health and Disease. Nutrients, 17(21), 3403. https://doi.org/10.3390/nu17213403
 
        



 
       