Gut Microbiota, Intestinal Barrier Function, and Metabolism Across Adiposity and Glucose Tolerance
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ethical Approval and Experimental Design
2.3. Anthropometry, Body Composition, and Dietary Profile
2.4. Analyses of Metabolic and Intestinal Permeability Biomarkers
2.5. Histomorphometry, Protein Expression, and Enzymatic Activity of Intestinal Epithelium
2.6. Fecal Microbiota Composition (FMC) Analysis
2.7. Statistical Analysis
3. Results
3.1. Clinical and Metabolic–Inflammatory Characteristics of the Participants
3.2. Assessment of Intestinal Epithelial Permeability: Histomorphometry, Enzymatic Activity, and Protein Expression
3.3. Fecal Microbiota Composition and Diversity Across Study Groups
3.4. OTU Differential Abundance Profiles Assessed with MaAsLin 2
3.5. Associations Between Inflammatory and Intestinal Permeability Markers and Metabolic–Anthropometric Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CVD | Cardiovascular diseases |
| T2D | Type 2 diabetes mellitus |
| LPS | Lipopolysaccharide |
| LBP | LPS-binding protein |
| FMC | Fecal microbiota composition |
| IAP | Intestinal alkaline phosphatase |
| OTUs | Operational taxonomic units |
References
- Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.T.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409. [Google Scholar] [CrossRef]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Amabebe, E.; Robert, F.O.; Agbalalah, T.; Orubu, E.S.F. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br. J. Nutr. 2020, 123, 1127–1137. [Google Scholar] [CrossRef]
- Lee, C.J.; Sears, C.L.; Maruthur, N. Gut microbiome and its role in obesity and insulin resistance. Ann. N. Y. Acad. Sci. 2020, 1461, 37–52. [Google Scholar] [CrossRef]
- Blaut, M.; Klaus, S. Intestinal microbiota and obesity. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 251–273. [Google Scholar] [CrossRef]
- Teixeira, T.F.; Souza, N.C.; Chiarello, P.G.; Franceschini, S.C.; Bressan, J.; Ferreira, C.L.; Peluzio, M.C. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin. Nutr. 2012, 31, 735–740. [Google Scholar] [CrossRef]
- Saad, M.J.; Santos, A.; Prada, P.O. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 2016, 31, 283–293. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef]
- Bleau, C.; Karelis, A.D.; St-Pierre, D.H.; Lamontagne, L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab. Res. Rev. 2015, 31, 545–561. [Google Scholar] [CrossRef]
- Van Hul, M.; Cani, P.D.; Petitfils, C.; De Vos, W.M.; Tilg, H.; El-Omar, E.M. What defines a healthy gut microbiome? Gut 2024, 73, 1893–1908. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int. J. Mol. Sci. 2020, 21, 5214. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. Inflammation-Modulating Effect of Butyrate in the Prevention of Colon Cancer by Dietary Fiber. Clin. Color. Cancer 2018, 17, e541–e544. [Google Scholar] [CrossRef]
- de La Serre, C.B.; Ellis, C.L.; Lee, J.; Hartman, A.L.; Rutledge, J.C.; Raybould, H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G440–G448. [Google Scholar] [CrossRef]
- Malo, M.S.; Moaven, O.; Muhammad, N.; Biswas, B.; Alam, S.N.; Economopoulos, K.P.; Gul, S.S.; Hamarneh, S.R.; Malo, N.S.; Teshager, A.; et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G826–G838. [Google Scholar] [CrossRef]
- Kaliannan, K.; Hamarneh, S.R.; Economopoulos, K.P.; Nasrin Alam, S.; Moaven, O.; Patel, P.; Malo, N.S.; Ray, M.; Abtahi, S.M.; Muhammad, N.; et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 7003–7008. [Google Scholar] [CrossRef]
- American Diabetes, A. Standards of medical care in diabetes–2014. Diabetes Care 2014, 37 (Suppl. S1), S14–S80. [Google Scholar] [CrossRef]
- Sichieri, R.; Everhart, J.E. Validity of a Brazilian food frequency questionnaire against dietary recalls and estimated energy intake. Nutr. Res. 1998, 18, 1649–1659. [Google Scholar] [CrossRef]
- Cleeman, J.I. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Zhang, X.; Mallick, H.; Yi, N. Zero-inflated negative binomial regression for differential abundance testing in microbiome studies. J. Bioinform. Genom. 2016, 2, jbg.2016.2.2.1. [Google Scholar] [CrossRef]
- Rautava, S.; Luoto, R.; Salminen, S.; Isolauri, E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 565–576. [Google Scholar] [CrossRef]
- Fleissner, C.K.; Huebel, N.; Abd El-Bary, M.M.; Loh, G.; Klaus, S.; Blaut, M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 2010, 104, 919–929. [Google Scholar] [CrossRef]
- Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008, 32, 1720–1724. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef]
- Leung, C.; Rivera, L.; Furness, J.B.; Angus, P.W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 412–425. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Tidjani Alou, M.; Lagier, J.-C.; Raoult, D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human. Microbiome J. 2016, 1, 3–11. [Google Scholar] [CrossRef]
- Kehdy, F.S.G.; Gouveia, M.H.; Machado, M.; Magalhães, W.C.S.; Horimoto, A.R.; Horta, B.L.; Moreira, R.G.; Leal, T.P.; Scliar, M.O.; Soares-Souza, G.B.; et al. Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 8696–8701. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef]
- Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020, 11, 571731. [Google Scholar] [CrossRef]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020, 20, 40–54. [Google Scholar] [CrossRef]
- Winer, D.A.; Luck, H.; Tsai, S.; Winer, S. The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metab. 2016, 23, 413–426. [Google Scholar] [CrossRef]
- Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut Microbiota and Intestinal Trans-Epithelial Permeability. Int. J. Mol. Sci. 2020, 21, 6402. [Google Scholar] [CrossRef]
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes 2018, 9, 308–325. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.H.; Ko, Y.F.; Hwang, T.L.; Young, J.D.; Ojcius, D.M. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef]
- Neal, M.D.; Leaphart, C.; Levy, R.; Prince, J.; Billiar, T.R.; Watkins, S.; Li, J.; Cetin, S.; Ford, H.; Schreiber, A.; et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 2006, 176, 3070–3079. [Google Scholar] [CrossRef]
- Vijay-Kumar, M.; Aitken, J.D.; Carvalho, F.A.; Cullender, T.C.; Mwangi, S.; Srinivasan, S.; Sitaraman, S.V.; Knight, R.; Ley, R.E.; Gewirtz, A.T. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010, 328, 228–231. [Google Scholar] [CrossRef]
- Genser, L.; Aguanno, D.; Soula, H.A.; Dong, L.; Trystram, L.; Assmann, K.; Salem, J.E.; Vaillant, J.C.; Oppert, J.M.; Laugerette, F.; et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J. Pathol. 2018, 246, 217–230. [Google Scholar] [CrossRef]
- Goldberg, R.F.; Austen, W.G., Jr.; Zhang, X.; Munene, G.; Mostafa, G.; Biswas, S.; McCormack, M.; Eberlin, K.R.; Nguyen, J.T.; Tatlidede, H.S.; et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc. Natl. Acad. Sci. USA 2008, 105, 3551–3556. [Google Scholar] [CrossRef]
- Geddes, K.; Philpott, D.J. A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology 2008, 135, 8–12. [Google Scholar] [CrossRef]
- Lalles, J.P. Intestinal alkaline phosphatase: Novel functions and protective effects. Nutr. Rev. 2014, 72, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Malo, M.S. A High Level of Intestinal Alkaline Phosphatase Is Protective Against Type 2 Diabetes Mellitus Irrespective of Obesity. EBioMedicine 2015, 2, 2016–2023. [Google Scholar] [CrossRef] [PubMed]
- Malo, J.; Alam, M.J.; Islam, S.; Mottalib, M.A.; Rocki, M.M.H.; Barmon, G.; Tinni, S.A.; Barman, S.K.; Sarker, T.; Khan, M.N.I.; et al. Intestinal alkaline phosphatase deficiency increases the risk of diabetes. BMJ Open Diabetes Res. Care 2022, 10, e002643. [Google Scholar] [CrossRef] [PubMed]
- Calabro, A.R.; Gazarian, D.I.; Barile, F.A. Effect of metals on β-actin and total protein synthesis in cultured human intestinal epithelial cells. J. Pharmacol. Toxicol. Methods 2011, 63, 47–58. [Google Scholar] [CrossRef]

| Variables | Pooled Sample (n = 46) | CON (n = 16) | NOB (n = 15) | DOB (n = 15) | p-Value |
|---|---|---|---|---|---|
| Demographic characteristics | |||||
| Age (years) | 38.3 ± 7.8 | 39.2 ± 7.4 | 33.0 ± 7.8 | 41.7 ± 6.2 † | 0.02 |
| Females (n, %) | 38 (82.6) | 10 (62.5) | 13 (86.6) | 15 (100) * | 0.02 |
| Weight (kg) | 89.4 ± 16.1 | 71.3 ± 11.2 | 98.9 ± 12.8 * | 93.2 ± 12.0 * | <0.001 |
| BMI (kg/m2) | 32.6 ± 5.1 | 25.5 ± 2.3 | 34.9 ± 3.4 * | 35.2 ± 2.6 * | <0.001 |
| Waist circumference (cm) | 104.6 ± 11.4 | 89.5 ± 7.4 | 112.1 ± 6.1 * | 108.4 ± 7.0 * | <0.001 |
| Hip circumference (cm) | 115 [110–122] | 99 [95.7–107] | 116 [113–127] * | 114.5 [110–122] * | 0.02 |
| Waist-to-hip ratio | 0.9 [0.87–0.95] | 0.88 [0.82–0.91] | 0.94 [0.88–0.95] | 0.90 [0.88–0.99] | 0.15 |
| Hypertension (n, %) | 10 (21.7) | 0 (0) | 2 (13.3) | 8 (53.3) * | <0.001 |
| Body composition | |||||
| Lean mass (kg) | 53.3 [47.38–58.3] | 48.1 [43.0–56.6] | 56.2 [49.8–61.5] | 53 [50.9–58.6] | 0.06 |
| Fat mass (%) | 38.5 [28.9–41.3] | 25.6 [23.7–28.5] | 41.3 [36.6–45.0] * | 40.7 [38.1–41.3] * | <0.001 |
| Metabolic/inflammatory profile | |||||
| Fasting glucose (mg/dL) | 104 [96.5–115.5] | 99 [93–109] | 101 [94.7–104.5] | 118.5 [113.8–152.5] *† | <0.001 |
| Insulin (pg/mL) | 299 [158.5–453] | 136 [89.8–276] | 310.5 [228.8–390] | 451 [319–557] * | 0.001 |
| HOMA-IR | 1.79 [0.93–3.05] | 0.79 [0.51–1.77] | 1.78 [1.43–2.46] | 3.21 [1.78–6.03] * | 0.001 |
| HbA1c (%) | 5.4 [5.3–5.9] | 5.3 [5.0–5.4] | 5.5 [5.3–5.6] | 6.1 [6.0–8.4] * | <0.001 |
| Total cholesterol (mg/dL) | 179.2 ± 31.87 | 183.4 ± 33.9 | 178.7 ± 38.8 | 175 ± 23.4 | 0.34 |
| HDL-cholesterol (mg/dL) | 49 [39.50–57.75] | 51.5 [42–59.7] | 54 [40–62.5] | 46 [39–49] | 0.22 |
| LDL-cholesterol (mg/dL) | 108 [93–122.5] | 106 [93–133] | 104 [88–117.5] | 111 [93–119] | 0.85 |
| Triglycerides (mg/dL) | 98 [71.8–43.8] | 96.5 [74.2–131.5] | 83 [65–135.5] | 118 [86–155] | 0.22 |
| AST (U/mL) | 17 [13–22] | 16.5 [12–19] | 16.5 [13.5–22] | 18.5 [13–25] | 0.64 |
| ALT (U/mL) | 17.5 [11.8–26] | 11 [9–23.5] | 17 [12–24] | 24.5 [16.2–34.7] * | 0.05 |
| LPS (U/mL) | 1.10 [0.55–1.45] | 1.02 [0.47–1.47] | 1.17 [0.91–1.50] | 1.10 [0.53–1.65] | 0.60 |
| LBP (μg/mL) | 23.28 [20.79–27.72] | 23.5 [19.4–26.6] | 23.5 [22.0–30.6] | 22.9 [20.8–27.6] | 0.26 |
| Variables | Pooled Sample (n = 44) | CON (n = 14) | NOB (n = 15) | DOB (n = 15) | p-Value |
|---|---|---|---|---|---|
| Histomorphometric analysis | |||||
| Total epithelial thickness (µm) | 13.76 [11.18–17.20] | 14.45 [12.21–17.20] | 13.07 [11.18–17.20] | 13.76 [11.18–15.48] | 0.53 |
| Intestinal villus height (µm) | 12.04 [9.46–14.62] | 12.04 [10.75–15.90] | 12.04 [9.46–14.62] | 12.04 [9.29–13.76] | 0.53 |
| Villus diameter I (µm) | 3.96 [3.44–4.30] | 3.78 [3.44–4.73] | 3.78 [3.44–4.30] | 4.13 [3.44–5.16] | 0.51 |
| Villus diameter II (µm) | 1.03 [1.03–1.38] | 1.03 [1.03–1.20] | 1.03 [1.03–1.38] | 1.20 [1.03–1.72] | 0.25 |
| Crypt height (µm) | 1.38 [0.86–1.72] | 1.03 [0.86–1.72] | 1.38 [0.86–1.89] | 1.55 [1.03–1.72] | 0.78 |
| Villus-to-crypt ratio (µm) | 9.47 ± 3.62 | 10.80 ± 2.83 | 9.38 ± 4.54 | 8.33 ± 3.12 | 0.20 |
| Enzymatic activity | |||||
| Intestinal Alkaline phosphatase (U/mL) | 0.58 ± 0.29 | 0.75 ± 0.23 | 0.56 ± 0.27 | 0.43 ± 0.31 * | 0.02 |
| Protein expression | |||||
| Villin-1 | 0.82 [0.74–0.86] | 0.83 [0.75–0.89] | 0.81 [0.74–0.86] | 0.81 [0.74 0.86] | 0.72 |
| Myosin-2 light chain | 0.19 [0.08–0.43] | 0.25 [0.05–0.45] | 0.19 [0.09–0.38] | 0.15 [0.08–0.33] | 0.86 |
| Phosphomyosine | 0.15 [0.04–0.46] | 0.18 [0.03–0.62] | 0.25 [0.04–0.51] | 0.09 [0.05–0.25] | 0.56 |
| β-actin | 0.11 [0.07–0.23] | 0.20 [0.08–0.43] | 0.11 [0.06–0.30] | 0.10 [0.04–0.15] | 0.16 |
| NOB vs. CON | ||||||
| Feature | Log2FC | St.Error | p-Value | FDR | Taxonomy | |
| OTU104 | 2.73 | 0.687 | 7.07 × 10−5 | 0.0019 | p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides | |
| DOB vs. CON | ||||||
| Feature | Log2FC | St.Error | p-value | FDR | Taxonomy | |
| OTU028x | −3.91 | 0.707 | 3.13 × 10−8 | 7.58 × 10−6 | p_Firmicutes | |
| OTU243 | −2.33 | 0.483 | 1.40 × 10−6 | 0.000127 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Coprococcus | |
| OTU272 | −2.19 | 0.456 | 1.58 × 10−6 | 0.000127 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Coprococcus | |
| OTU278x | −3.59 | 0.761 | 2.40 × 10−6 | 0.000145 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Veillonellaceae; g_Veillonella | |
| OTU183x | −4.49 | 0.999 | 6.92 × 10−6 | 0.000335 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Clostridiaceae; s_Clostridium celatum | |
| OTU168x | −2.21 | 0.497 | 8.97 × 10−6 | 0.000362 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; s_Ruminococcus gnavus | |
| OTU125x | −3.66 | 0.901 | 4.85 × 10−5 | 0.00153 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae | |
| OTU261x | −2.36 | 0.583 | 5.07 × 10−5 | 0.00153 | p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; s_Blautia obeum | |
| Metabolic Markers | Anthropometric Markers | ||||||
|---|---|---|---|---|---|---|---|
| Fasting Glucose | Insulin | HOMA-IR | HbA1c | Body Weight | BMI | Waist/Hip Ratio | |
| Intestinal permeability | |||||||
| LPS (EU/mL) | −0.01 | −0.10 | −0.09 | 0.07 | 0.32 * | 0.27 | −0.05 |
| LBP (μg/mL) | −0.03 | 0.08 | 0.10 | 0.26 | 0.03 | 0.05 | 0.37 * |
| Histomorphometric analysis | |||||||
| Total epithelial thickness (µm) | 0.03 | −0.03 | −0.10 | 0.05 | 0.05 | −0.07 | 0.29 |
| Intestinal villus height (µm) | 0.04 | −0.01 | −0.07 | −0.05 | −0.03 | −0.18 | 0.29 |
| Villus diameter I (µm) | 0.20 | 0.11 | 0.17 | 0.03 | 0.01 | 0.03 | −0.22 |
| Villus diameter II (µm) | −0.03 | 0.10 | 0.06 | 0.32 | 0.13 | 0.26 | −0.12 |
| Crypt height (µm) | 0.30 | 0.21 | 0.20 | 0.31 | 0.19 | 0.27 | 0.16 |
| Villus-to-crypt ratio (µm) | −0.23 | −0.29 | −0.31 | −0.33 | −0.27 | −0.44 † | −0.03 |
| Enzymatic activity | |||||||
| IAP (U/mL) | −0.50 † | −0.23 | −0.30 | −0.62 † | −0.09 | −0.23 | −0.33 |
| Protein expression | |||||||
| Villin-1 | 0.17 | 0.01 | 0.06 | 0.05 | −0.01 | 0.01 | −0.28 |
| Myosin-2 light chain | −0.22 | −0.01 | −0.03 | −0.24 | −0.09 | −0.14 | 0.26 |
| Phosphomyosine | −0.14 | −0.01 | −0.11 | −0.01 | 0.15 | 0.09 | −0.04 |
| β-actin | −0.49 † | −0.49 † | −0.55 Φ | −0.24 | −0.26 | −0.32 * | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, K.G.; de Souza, M.d.G.C.; Marques Lopes, F.d.A.; da Silva Júnior, V.L.; Carvalho, A.T.P.; Rapozo, D.C.M.; de Lemos Barbosa, C.M.; Bouskela, E.; Castiglione, R.C.; Albano, R.M.; et al. Gut Microbiota, Intestinal Barrier Function, and Metabolism Across Adiposity and Glucose Tolerance. Nutrients 2025, 17, 3380. https://doi.org/10.3390/nu17213380
Lopes KG, de Souza MdGC, Marques Lopes FdA, da Silva Júnior VL, Carvalho ATP, Rapozo DCM, de Lemos Barbosa CM, Bouskela E, Castiglione RC, Albano RM, et al. Gut Microbiota, Intestinal Barrier Function, and Metabolism Across Adiposity and Glucose Tolerance. Nutrients. 2025; 17(21):3380. https://doi.org/10.3390/nu17213380
Chicago/Turabian StyleLopes, Karynne Grutter, Maria das Graças Coelho de Souza, Fernanda de Azevedo Marques Lopes, Vicente Lopes da Silva Júnior, Ana Teresa Pugas Carvalho, Davy Carlos Mendes Rapozo, Carolina Monteiro de Lemos Barbosa, Eliete Bouskela, Raquel Carvalho Castiglione, Rodolpho Matos Albano, and et al. 2025. "Gut Microbiota, Intestinal Barrier Function, and Metabolism Across Adiposity and Glucose Tolerance" Nutrients 17, no. 21: 3380. https://doi.org/10.3390/nu17213380
APA StyleLopes, K. G., de Souza, M. d. G. C., Marques Lopes, F. d. A., da Silva Júnior, V. L., Carvalho, A. T. P., Rapozo, D. C. M., de Lemos Barbosa, C. M., Bouskela, E., Castiglione, R. C., Albano, R. M., & Kraemer-Aguiar, L. G. (2025). Gut Microbiota, Intestinal Barrier Function, and Metabolism Across Adiposity and Glucose Tolerance. Nutrients, 17(21), 3380. https://doi.org/10.3390/nu17213380

