Serum Lipid Profile in Polish Women Adhering to Different Dietary Patterns: The Cardioprotective Potential of Plant-Based Diets
Abstract
1. Introduction
- Fasting and non-fasting TC < 190 mg/dL;
- Fasting and non-fasting LDL-C < 115 mg/dL;
- Fasting and non-fasting HDL-C: female > 45 mg/dL, male > 40 mg/dL;
- Fasting TGs < 100 mg/dL [9].
2. Materials and Methods
2.1. Participants
- Body mass (Jawon Medical X-contact 350, Gyeongsan-si, Republic of Korea) and height (stadiometer Seca 213, Hamburg, Germany), both used for calculating the body mass index (BMI);
- The circumference of waist and hips (tape measure Seca 201, Hamburg, Germany), used for calculating the waist-to-hip ratio (WHR);
- Body composition, using the BIA method (Jawon Medical X-contact 350, Gyeongsan-si, Republic of Korea).
2.2. Sample Collection and Lipid Profile Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 28 August 2025).
- Vervoort, D.; Wang, R.; Li, G.; Filbey, L.; Maduka, O.; Brewer, L.C.; Mamas, M.A.; Bahit, M.C.; Ahmed, S.B.; Van Spall, H.G.C. Addressing the Global Burden of Cardiovascular Disease in Women. J. Am. Coll. Cardiol. 2024, 83, 2690–2707. [Google Scholar] [CrossRef]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent Developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Pérez Mejia, E.L.; Faxas, S.M.; Taveras, N.T.; Talpur, A.S.; Jitesh, K.; Khalid, M.; Aruwani, S.K.; Khalid, D.; Khalid, H.; Memon, S. Peripheral Artery Disease as a Risk Factor for Myocardial Infarction. Cureus 2021, 13, e15655. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Belch, J.J.F.; Baumgartner, I.; Giovas, P.; Hoffmann, U. Morbidity and Mortality Associated with Atherosclerotic Peripheral Artery Disease: A Systematic Review. Atherosclerosis 2020, 293, 94–100. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef] [PubMed]
- Langlois, M.R.; Nordestgaard, B.G.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Borén, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; et al. Quantifying Atherogenic Lipoproteins for Lipid-Lowering Strategies: Consensus-Based Recommendations from EAS and EFLM. Clin. Chem. Lab. Med. 2020, 58, 496–517. [Google Scholar]
- Solnica, B.; Sygitowicz, G.; Sitkiewicz, D.; Jóźwiak, J.; Kasperczyk, S.; Broncel, M.; Wolska, A.; Odrowąż-Sypniewska, G.; Banach, M. 2024 Guidelines of the Polish Society of Laboratory Diagnostics and the Polish Lipid Association on Laboratory Diagnostics of Lipid Metabolism Disorders. Arch. Med. Sci. 2024, 20, 357–374. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef]
- Banach, M.; Shekoohi, N.; Mikhailidis, D.; Lip, G.; Hernandez, A.; Mazidi, M. Relationship between Low-Density Lipoprotein Cholesterol, Lipid Lowering Agents and the Risk of Stroke: A Meta-Analysis of Observational Studies (N = 355,591) and Randomized Controlled Trials (N = 165,988). Arch. Med. Sci. 2022, 18, 912–929. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Raj, S.; Guest, N.S.; Landry, M.J.; Mangels, A.R.; Pawlak, R.; Rozga, M. Vegetarian Dietary Patterns for Adults: A Position Paper of the Academy of Nutrition and Dietetics. J. Acad. Nutr. Diet 2025, 125, 831–846.e2. [Google Scholar] [CrossRef] [PubMed]
- Chakole, S.; Anjankar, N.; Anjankar, A.; Narkhede, H.; Mahajan, S. Influence of Vegetarian and Nonvegetarian Diets on Hs-CRP Levels, Lipid Profiles, and Cardiovascular Health in Adults. J. Pharm. Bioallied Sci. 2025, 17, S284–S286. [Google Scholar] [CrossRef] [PubMed]
- Cherekar, L.N.; Nishat, K.H. Comparison of Blood Biomarkers in Vegetarian and Non-Vegetarian Diets: Implications for Cardiovascular Health. Eur. J. Cardiovasc. Med. 2025, 15, 673–678. [Google Scholar]
- Gogga, P.; Sliwińska, A.; Aleksandrowicz-Wtona, E.; Malgorzewicz, S. Lipid Profile in Polish Women Following Lacto-Ovo-Vegetarian and Vegan Diets—Preliminary Study. Acta Biochim. Pol. 2021, 68, 751–755. [Google Scholar] [CrossRef]
- Austin, G.; Ferguson, J.J.A.; Eslick, S.; Oldmeadow, C.; Wood, L.G.; Garg, M.L. Plasma Lipids and Glycaemic Indices in Australians Following Plant-Based Diets versus a Meat-Eating Diet. Lipids Health Dis. 2024, 23, 348. [Google Scholar] [CrossRef]
- Grygorczuk, O.; Mrozik, M.; Lipert, A.; Kamińska, S.; Białas, A.; Drygas, W.; Rębowska, E.; Łęgocki, S.; Jegier, A.; Szmigielska, K.; et al. Cardiovascular Health and Diet Quality among Vegetarians, Vegans and Omnivores: Insights from a Large Urban Population in Poland. Nutrients 2024, 16, 3438. [Google Scholar] [CrossRef]
- Salehin, S.; Rasmussen, P.; Mai, S.; Mushtaq, M.; Agarwal, M.; Hasan, S.M.; Salehin, S.; Raja, M.; Gilani, S.; Khalife, W.I. Plant Based Diet and Its Effect on Cardiovascular Disease. Int. J. Environ. Res. Public Health 2023, 20, 3337. [Google Scholar] [CrossRef]
- Kuchta, A.; Lebiedzińska, A.; Fijałkowski, M.; Gałąska, R.; Kreft, E.; Totoń, M.; Czaja, K.; Kozłowska, A.; Ćwiklińska, A.; Kortas-Stempak, B.; et al. Impact of Plant-Based Diet on Lipid Risk Factors for Atherosclerosis. Cardiol. J. 2016, 23, 141–148. [Google Scholar] [CrossRef]
- Rajvi, B.; Vaghela, K.K.; Jadav, S. Comparative Analysis of Serum Lipid Profile in Vegetarians and Non-Vegetarians. Eur. J. Cardiovasc. Med. 2025, 15, 793–795. [Google Scholar] [CrossRef]
- Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; Food and Agricultural Organization of the United Nations: Rome, Italy, 2004; ISBN 9251052123.
- Fraser, G.; Katuli, S.; Anousheh, R.; Knutsen, S.; Herring, P.; Fan, J. Vegetarian Diets and Cardiovascular Risk Factors in Black Members of the Adventist Health Study-2. Public Health Nutr. 2015, 18, 537–545. [Google Scholar] [CrossRef]
- Matsumoto, S.; Beeson, W.L.; Shavlik, D.J.; Siapco, G.; Jaceldo-Siegl, K.; Fraser, G.; Knutsen, S.F. Association between Vegetarian Diets and Cardiovascular Risk Factors in Non-Hispanic White Participants of the Adventist Health Study-2. J. Nutr. Sci. 2019, 8, e6. [Google Scholar] [CrossRef] [PubMed]
- Termannsen, A.; Clemmensen, K.K.B.; Thomsen, J.M.; Nørgaard, O.; Díaz, L.J.; Torekov, S.S.; Quist, J.S.; Færch, K. Effects of Vegan Diets on Cardiometabolic Health: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Obes. Rev. 2022, 23, e13462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Chen, S.; Wei, Z.; Li, Z.; Zhao, S.; Lu, W. Comparison of Vegetarian Diets and Omnivorous Diets on Plasma Level of HDL-c: A Meta-Analysis. PLoS ONE 2014, 9, e92609. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.-H.; Chiang, Y.-C.; Lung, C.-C.; Ho, C.-C.; Ko, P.-C.; Ndi Nfor, O.; Chang, H.-C.; Liaw, Y.-C.; Liang, Y.-C.; Liaw, Y.-P. Vegetarian Diet and Cholesterol and TAG Levels by Gender. Public Health Nutr. 2015, 18, 721–726. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Jian, Z.-H.; Chang, H.-C.; Nfor, O.N.; Ko, P.-C.; Lung, C.-C.; Lin, L.-Y.; Ho, C.-C.; Chiang, Y.-C.; Liaw, Y.-P. Vegan Diet and Blood Lipid Profiles: A Cross-Sectional Study of Pre and Postmenopausal Women. BMC Womens Health 2014, 14, 55. [Google Scholar] [CrossRef]
- Capodici, A.; Mocciaro, G.; Gori, D.; Landry, M.J.; Masini, A.; Sanmarchi, F.; Fiore, M.; Coa, A.A.; Castagna, G.; Gardner, C.D.; et al. Cardiovascular Health and Cancer Risk Associated with Plant Based Diets: An Umbrella Review. PLoS ONE 2024, 19, e0300711. [Google Scholar] [CrossRef]
- Chermon, D.; Birk, R. Polygenic Risk, Modifiable Lifestyle Behaviors, and Metabolic Factors: Associations with HDL-C, Triglyceride Levels, and Cardiovascular Risk. Nutrients 2025, 17, 2244. [Google Scholar] [CrossRef]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef]
- Vincent, M.J.; Allen, B.; Palacios, O.M.; Haber, L.T.; Maki, K.C. Meta-Regression Analysis of the Effects of Dietary Cholesterol Intake on LDL and HDL Cholesterol. Am. J. Clin. Nutr. 2019, 109, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-X.; Li, Y.; Zhang, Y.-B.; Wang, Y.; Zhou, Y.-F.; Geng, T.; Liu, G.; Pan, A.; Liao, Y.-F. Nonlinear Relationship between High-Density Lipoprotein Cholesterol and Cardiovascular Disease: An Observational and Mendelian Randomization Analysis. Metabolism 2024, 154, 155817. [Google Scholar] [CrossRef] [PubMed]
- Trimarco, V.; Izzo, R.; Morisco, C.; Mone, P.; Virginia Manzi, M.; Falco, A.; Pacella, D.; Gallo, P.; Lembo, M.; Santulli, G.; et al. High HDL (High-Density Lipoprotein) Cholesterol Increases Cardiovascular Risk in Hypertensive Patients. Hypertension 2022, 79, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, J.C.; Vinagre, C.G.; Pozzi, F.S.; Slywitch, E.; Maranhão, R.C. Metabolism of Triglyceride-Rich Lipoproteins and Transfer of Lipids to High-Density Lipoproteins (HDL) in Vegan and Omnivore Subjects. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 61–67. [Google Scholar] [CrossRef]
- García-Maldonado, E.; Zapatera, B.; Alcorta, A.; Vaquero, M.P. Metabolic and Nutritional Biomarkers in Adults Consuming Lacto-Ovo Vegetarian, Vegan and Omnivorous Diets in Spain. A Cross-Sectional Study. Food Funct. 2023, 14, 1608–1616. [Google Scholar] [CrossRef]
- Espinosa-Marrón, A.; Laviada-Molina, H.; Moreno-Enríquez, A.; Sosa-Crespo, I.F.; Molina-Segui, F.; Fernanda Villaseñor-Espinosa, M.; Antonio Ciau-Mendoza, J.; Alfredo Araujo-León, J. Serum Fatty Acids Chemical Characterization after Prolonged Exposure to a Vegan Diet. J. Food Nutr. Res. 2019, 7, 742–750. [Google Scholar] [CrossRef]
- Oh, B.; Sung, J.; Chun, S. Potentially Modifiable Blood Triglyceride Levels by the Control of Conventional Risk Factors. Lipids Health Dis. 2019, 18, 222. [Google Scholar] [CrossRef]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and Cardiovascular Disease. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef]
- Chiu, S.; Williams, P.T.; Krauss, R.M. Effects of a Very High Saturated Fat Diet on LDL Particles in Adults with Atherogenic Dyslipidemia: A Randomized Controlled Trial. PLoS ONE 2017, 12, e0170664. [Google Scholar] [CrossRef]
- Victora, C.G.; Horta, B.L.; Post, P.; Lima, R.C.; De Leon Elizalde, J.W.; Gerson, B.M.C.; Barros, F.C. Breast Feeding and Blood Lipid Concentrations in Male Brazilian Adolescents. J. Epidemiol. Community Health 2006, 60, 621–625. [Google Scholar] [CrossRef]
- Papaodyssea, I.; Lagiou, A.; Tzoulaki, I.; Valanou, E.; Naska, A. The Effect of Increased Plant Protein Intake on the Lipid Profile of Chronic Kidney Disease Patients: A Meta-Analysis of Controlled Clinical Trials. Nutrients 2025, 17, 1408. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, G.; Qian, S.; Zhang, Q.; Tan, M. Associations between Dietary Fiber Intake and Cardiovascular Risk Factors: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Front. Nutr. 2022, 9, 972399. [Google Scholar] [CrossRef] [PubMed]
- Juhász, A.E.; Greff, D.; Teutsch, B.; Gede, N.; Hegyi, P.; Horváth, E.M.; Deák, P.Á.; Nyirády, P.; Ács, N.; Juhász, R. Galactomannans Are the Most Effective Soluble Dietary Fibers in Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Am. J. Clin. Nutr. 2023, 117, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. Review: Nutrient Density and Nutritional Value of Meat Products and Non-Meat Foods High in Protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Blaurock, J.; Kaiser, B.; Stelzl, T.; Weech, M.; Fallaize, R.; Franco, R.Z.; Hwang, F.; Lovegrove, J.; Finglas, P.M.; Gedrich, K. Dietary Quality in Vegetarian and Omnivorous Female Students in Germany: A Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 1888. [Google Scholar] [CrossRef]
- Dawczynski, C.; Weidauer, T.; Richert, C.; Schlattmann, P.; Dawczynski, K.; Kiehntopf, M. Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores—The Nutritional Evaluation (NuEva) Study. Front. Nutr. 2022, 9, 819106. [Google Scholar] [CrossRef]
- Kripp, A.M.; Feichter, A.; König, D. A Low-Carbohydrate, High-Fat Diet Leads to Unfavorable Changes in Blood Lipid Profiles Compared to Carbohydrate-Rich Diets with Different Glycemic Indices in Recreationally Active Men. Front. Nutr. 2024, 11, 1473747. [Google Scholar] [CrossRef]
- Fechner, E.; Smeets, E.T.H.C.; Schrauwen, P.; Mensink, R.P. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans-A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 991. [Google Scholar] [CrossRef]
- Ozen, E.; Mihaylova, R.; Weech, M.; Kinsella, S.; Lovegrove, J.A.; Jackson, K.G. Association between Dietary Saturated Fat with Cardiovascular Disease Risk Markers and Body Composition in Healthy Adults: Findings from the Cross-Sectional BODYCON Study. Nutr. Metab. 2022, 19, 15. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Krauss, R.M. Public Health Guidelines Should Recommend Reducing Saturated Fat Consumption as Much as Possible: YES. Am. J. Clin. Nutr. 2020, 112, 13–18. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Murillo, A.G. Is There a Correlation between Dietary and Blood Cholesterol? Evidence from Epidemiological Data and Clinical Interventions. Nutrients 2022, 14, 2168. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T.; et al. Intake of Macro- and Micronutrients in Danish Vegans. Nutr. J. 2015, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Menzel, J.; Longree, A.; Abraham, K.; Schulze, M.B.; Weikert, C. Dietary and Plasma Phospholipid Profiles in Vegans and Omnivores—Results from the RBVD Study. Nutrients 2022, 14, 2900. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Zhang, Y.; He, W.; Chen, X.; Chen, J.; He, L.; Mao, L.; Wu, F.; Jiao, J. Dietary Fats in Relation to Total and Cause-Specific Mortality in a Prospective Cohort of 521 120 Individuals with 16 Years of Follow-Up. Circ. Res. 2019, 124, 757–768. [Google Scholar] [CrossRef]
- Zhubi-Bakija, F.; Bajraktari, G.; Bytyçi, I.; Mikhailidis, D.P.; Henein, M.Y.; Latkovskis, G.; Rexhaj, Z.; Zhubi, E.; Banach, M.; Alnouri, F.; et al. The Impact of Type of Dietary Protein, Animal versus Vegetable, in Modifying Cardiometabolic Risk Factors: A Position Paper from the International Lipid Expert Panel (ILEP). Clin. Nutr. 2021, 40, 255–276. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Chen, X.; Yang, J.; Zhou, Y.; Du, L.; Li, K. Red/Processed Meat Consumption and Non-Cancer-Related Outcomes in Humans: Umbrella Review. Br. J. Nutr. 2023, 130, 484–494. [Google Scholar] [CrossRef]
- Sheweita, S.A.; El-Bendery, H.A.; Mostafa, M.H. Novel Study on N-Nitrosamines as Risk Factors of Cardiovascular Diseases. Biomed. Res. Int. 2014, 2014, 817019. [Google Scholar] [CrossRef]
- Päivärinta, E.; Itkonen, S.; Pellinen, T.; Lehtovirta, M.; Erkkola, M.; Pajari, A.-M. Replacing Animal-Based Proteins with Plant-Based Proteins Changes the Composition of a Whole Nordic Diet—A Randomised Clinical Trial in Healthy Finnish Adults. Nutrients 2020, 12, 943. [Google Scholar] [CrossRef]
- Budhathoki, S.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Goto, A.; Kotemori, A.; Ishihara, J.; Takachi, R.; Charvat, H.; Mizoue, T.; et al. Association of Animal and Plant Protein Intake with All-Cause and Cause-Specific Mortality in a Japanese Cohort. JAMA Intern. Med. 2019, 179, 1509. [Google Scholar] [CrossRef]
- Li, S.S.; Blanco Mejia, S.; Lytvyn, L.; Stewart, S.E.; Viguiliouk, E.; Ha, V.; de Souza, R.J.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; et al. Effect of Plant Protein on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6, e006659. [Google Scholar] [CrossRef]
- Lamberg-Allardt, C.; Bärebring, L.; Arnesen, E.K.; Nwaru, B.I.; Thorisdottir, B.; Ramel, A.; Söderlund, F.; Dierkes, J.; Åkesson, A. Animal versus Plant-Based Protein and Risk of Cardiovascular Disease and Type 2 Diabetes: A Systematic Review of Randomized Controlled Trials and Prospective Cohort Studies. Food Nutr. Res. 2023, 67, 10-29219. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Q.; Chia, A.; Whitton, C.; Cameron-Smith, D.; Sim, X.; van Dam, R.M.; Chong, M.F.-F. Isocaloric Substitution of Plant-Based Protein for Animal-Based Protein and Cardiometabolic Risk Factors in a Multiethnic Asian Population. J. Nutr. 2023, 153, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, M.; Stadelmaier, J.; Eble, J.; Grummich, K.; Szczerba, E.; Kiesswetter, E.; Schlesinger, S.; Schwingshackl, L. Substitution of Animal-Based with Plant-Based Foods on Cardiometabolic Health and All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. BMC Med. 2023, 21, 404. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Bizzozero-Peroni, B.; Díaz-Goñi, V.; Garrido-Miguel, M.; Bertotti, G.; Roldán-Ruiz, A.; López-Moreno, M. Plant-Based Meat Alternatives and Cardiometabolic Health: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2025, 121, 274–283. [Google Scholar] [CrossRef]
- Nie, Y.; Luo, F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxid. Med. Cell. Longev. 2021, 2021, 5542342. [Google Scholar] [CrossRef]
- Wu, D.; Wan, J.; Li, W.; Li, J.; Guo, W.; Zheng, X.; Gan, R.-Y.; Hu, Y.; Zou, L. Comparison of Soluble Dietary Fibers Extracted from Ten Traditional Legumes: Physicochemical Properties and Biological Functions. Foods 2023, 12, 2352. [Google Scholar] [CrossRef]
- Groufh-Jacobsen, S.; Larsson, C.; Mulkerrins, I.; Aune, D.; Medin, A.C. Food Groups, Macronutrient Intake and Objective Measures of Total Carotenoids and Fatty Acids in 16-to-24-Year-Olds Following Different Plant-Based Diets Compared to an Omnivorous Diet. PLoS ONE 2025, 20, e0311118. [Google Scholar] [CrossRef]
- Jedut, P.; Glibowski, P.; Skrzypek, M. Comparison of the Health Status of Vegetarians and Omnivores Based on Biochemical Blood Tests, Body Composition Analysis and Quality of Nutrition. Nutrients 2023, 15, 3038. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Ye, J.; Guo, Q.; Wang, W.; Sun, Y.; Zeng, Q. Separate and Combined Associations of Physical Activity and Obesity with Lipid-Related Indices in Non-Diabetic and Diabetic Patients. Lipids Health Dis. 2019, 18, 49. [Google Scholar] [CrossRef]
- Wood, G.; Taylor, E.; Ng, V.; Murrell, A.; Patil, A.; van der Touw, T.; Sigal, R.; Wolden, M.; Smart, N. Determining the Effect Size of Aerobic Exercise Training on the Standard Lipid Profile in Sedentary Adults with Three or More Metabolic Syndrome Factors: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br. J. Sports Med. 2022, 56, 1032–1041. [Google Scholar] [CrossRef]
- Nezlek, J.B.; Forestell, C.A. Recent Increases in Vegetarianism May Be Limited to Women: A 15-Year Study of Young Adults at an American University. Sex Roles 2024, 90, 1234–1243. [Google Scholar] [CrossRef]
- Modlinska, K.; Adamczyk, D.; Maison, D.; Pisula, W. Gender Differences in Attitudes to Vegans/Vegetarians and Their Food Preferences, and Their Implications for Promoting Sustainable Dietary Patterns–A Systematic Review. Sustainability 2020, 12, 6292. [Google Scholar] [CrossRef]
- Matthews, S.; Cook, S.; Clayton, T.; Murray, S.; Wynne, R.; Sanders, J. Factors Affecting Women’s Participation in Cardiovascular Research: A Scoping Review. Eur. J. Cardiovasc. Nurs. 2024, 23, 107–114. [Google Scholar] [CrossRef]
- Temkin, S.M.; Noursi, S.; Regensteiner, J.G.; Stratton, P.; Clayton, J.A. Perspectives from Advancing National Institutes of Health Research to Inform and Improve the Health of Women. Obstet. Gynecol. 2022, 140, 10–19. [Google Scholar] [CrossRef]
- Regensteiner, J.G.; Reusch, J.E.B. Sex Differences in Cardiovascular Consequences of Hypertension, Obesity, and Diabetes. J. Am. Coll. Cardiol. 2022, 79, 1492–1505. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Wang, X.J.; Voortman, T.; de Crom, T.O.E.; Tilly, M.; Kavousi, M.; Ikram, M.K.; Steur, M. Healthy and Unhealthy Plant-Based Diets and the Risk of Cardiovascular Diseases: The Rotterdam Study and Updated Meta-Analysis. Prog. Cardiovasc. Dis. 2024, 87, 8–15. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef]
- Wang, T.; Masedunskas, A.; Willett, W.C.; Fontana, L. Vegetarian and Vegan Diets: Benefits and Drawbacks. Eur. Heart J. 2023, 44, 3423–3439. [Google Scholar] [CrossRef]
- Chand, G.; Nohri, A.R.; Mumtaz, N.; Memon, A.; Waryah, G.M.; Memon, S. Plant-Based Diets and Dyslipidemia in Tharparkar: A Cross-Sectional Study on Lipid Imbalances. J. Liaquat Univ. Med. Health Sci. 2025. [Google Scholar] [CrossRef]
- Sisay, T.; Tolessa, T.; Mekonen, W. Changes in Biochemical Parameters by Gender and Time: Effect of Short-Term Vegan Diet Adherence. PLoS ONE 2020, 15, e0237065. [Google Scholar] [CrossRef] [PubMed]
- Glenn, A.J.; Lo, K.; Jenkins, D.J.A.; Boucher, B.A.; Hanley, A.J.; Kendall, C.W.C.; Manson, J.E.; Vitolins, M.Z.; Snetselaar, L.G.; Liu, S.; et al. Relationship Between a Plant-Based Dietary Portfolio and Risk of Cardiovascular Disease: Findings from the Women’s Health Initiative Prospective Cohort Study. J. Am. Heart Assoc. 2021, 10, e021515. [Google Scholar] [CrossRef]
- Janice, D.; Prathima, M.B.; Chandrika, N.S.; Manooja, M.; Kiran, P.K.; Nair, S.; Reshma, S. Impact of Diet on Serum Lipids, Atherogenic Index of Plasma and Non HDL-c in Pre and Postmenopausal Women. J. Clin. Diagn. Res. 2023, 17, BC11–BC15. [Google Scholar] [CrossRef]
- Lombardo, M.; Rizzo, G.; Feraco, A.; Perrone, M.A.; Bellia, C.; Lauro, D.; Caprio, M.; Bellia, A.; Padua, E. High Plant-Based Diet and Physical Activity in Women during Menopausal Transition. Nutr. Food Sci. 2022, 52, 547–560. [Google Scholar] [CrossRef]
- van Oortmerssen, J.A.E.; Mulder, J.W.C.M.; Kavousi, M.; Roeters van Lennep, J.E. Lipid Metabolism in Women: A Review. Atherosclerosis 2025, 405, 119213. [Google Scholar] [CrossRef]
- Silva, T.R.; Oppermann, K.; Reis, F.M.; Spritzer, P.M. Nutrition in Menopausal Women: A Narrative Review. Nutrients 2021, 13, 2149. [Google Scholar] [CrossRef]
- Amiri, M.; Karabegović, I.; van Westing, A.C.; Verkaar, A.J.C.F.; Beigrezaei, S.; Lara, M.; Bramer, W.M.; Voortman, T. Whole-Diet Interventions and Cardiovascular Risk Factors in Postmenopausal Women: A Systematic Review of Controlled Clinical Trials. Maturitas 2022, 155, 40–53. [Google Scholar] [CrossRef]

| Variable | Diet Type | p | |||
|---|---|---|---|---|---|
| VEG (n = 45) | LOV (n = 52) | PSC (n = 12) | OMN (n = 19) | ||
| Age (y) | 24.0 ± 4.5 | 26.0 ± 3.5 | 26.5 ± 6.7 | 31.0 ± 6.0 | 0.14 |
| Time on diet (y) | 2.2 ± 1.1 | 2.8 ± 2.8 | 3.4 ± 2.9 | n/a | 1.00 |
| BMI (kg/m2) | 21.0 ± 1.6 | 21.40 ± 1.79 | 22.05 ± 2.02 | 21.55 ± 1.74 | 0.28 |
| Body fat (%) | 24.4 ± 3.85 | 24.95 ± 3.61 | 24.77 ± 3.47 | 24.77 ± 3.02 | 0.93 |
| WHR | 0.763 ± 0.025 | 0.749 ± 0.031 * | 0.767 ± 0.033 | 0.796 ± 0.026 * | 0.02 |
| Lipid Profile | Diet Type | Mean ± SD | 95% CI | n | p | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| VEG vs. LOV | VEG vs. PSC | VEG vs. OMN | LOV vs. PSC | LOV vs. OMN | PSC vs. OMN | |||||
| HDL-C | VEG | 74.27 ± 20.65 | 67.99–80.55 | 44 | 0.447 | |||||
| LOV | 80.09 ± 21.88 | 73.87–86.31 | 51 | |||||||
| PSC | 82.02 ± 15.49 | 72.18–91.86 | 12 | |||||||
| OMN | 81.63 ± 25.68 | 69.25–94.01 | 19 | |||||||
| LDL-C | VEG | 69.04 ± 24.67 | 61.45–76.63 | 43 | 0.754 | 0.808 | <0.001 | 0.983 | <0.001 | 0.028 |
| LOV | 76.65 ± 28.60 | 68.60–84.69 | 51 | |||||||
| PSC | 82.02 ± 16.57 | 71.49–92.56 | 12 | |||||||
| OMN | 122.43 ± 68.10 | 89.60–155.25 | 19 | |||||||
| TC | VEG | 162.34 ± 20.81 | 156.02–168.67 | 44 | 0.490 | 1.0 | 0.007 | 0.914 | 0.093 | 0.052 |
| LOV | 169.03 ± 19.85 | 163.45–174.62 | 52 | |||||||
| PSC | 163.09 ± 17.63 | 151.89–174.29 | 12 | |||||||
| OMN | 186.20 ± 32.39 | 170.09–202.30 | 18 | |||||||
| TGs * | VEG | 105.78 ± 24.89 | 91.78–116.67 | 43 | 1.0 | 1.0 | 0.046 | 1.0 | 0.083 | 0.042 |
| LOV | 108.89 ± 19.44 | 99.56–121.33 | 49 | |||||||
| PSC | 93.33 ± 22.17 | 82.44–126.78 | 12 | |||||||
| OMN | 137.48 ± 12.44 | 122.89–147.78 | 16 | |||||||
| Nutrient Intake | Diet Type | Mean ± SD | 95% CI | n | p | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| VEG vs. LOV | VEG vs. PSC | VEG vs. OMN | LOV vs. PSC | LOV vs. OMN | PSC vs. OMN | |||||
| Total energy (kcal) | VEG | 2001 ± 458 | 1861.99–2140.53 | 44 | 0.112 | |||||
| LOV | 1824 ± 309 | 1731.09–1917.04 | 45 | |||||||
| PSC | 1935 ± 261 | 1760.45–2110.90 | 11 | |||||||
| OMN | 1999 ± 338 | 1835.59–2161.93 | 19 | |||||||
| Protein (% of energy) | VEG | 12.2 ± 1.8 | 11.66–12.81 | 42 | 0.393 | 0.196 | <0.001 | 0.659 | <0.001 | <0.001 |
| LOV | 13.4 ± 1.9 | 12.79–13.96 | 45 | |||||||
| PSC | 14.9 ± 2.8 | 13.17–16.67 | 12 | |||||||
| OMN | 20.5 ± 6.9 | 17.14–23.77 | 19 | |||||||
| Animal protein (g) | VEG | 0.0 ± 0.0 | not applied | 45 | <0.001 | <0.001 | <0.001 | 0.220 | <0.001 | <0.001 |
| LOV | 16.2 ± 10.3 | 13.10–19.23 | 46 | |||||||
| PSC | 24.6 ± 12.4 | 16.68–32.46 | 12 | |||||||
| OMN | 51.4 ± 19.6 | 41.91–60.80 | 19 | |||||||
| Plant protein (g) | VEG | 44.0 ± 14.0 | 39.70–48.34 | 43 | <0.001 | 0.110 | 0.007 | 0.761 | 0.895 | 0.984 |
| LOV | 30.8 ± 11.0 | 27.56–34.01 | 47 | |||||||
| PSC | 34.7 ± 11.7 | 26.87–42.62 | 11 | |||||||
| OMN | 33.1 ± 9.7 | 28.44–37.75 | 19 | |||||||
| Fats (% of energy) | VEG | 29.1 ± 6.0 | 27.24–30.87 | 44 | 0.030 | 0.126 | <0.001 | 0.974 | 0.027 | 0.321 |
| LOV | 32.0 ± 4.4 | 30.75–33.32 | 48 | |||||||
| PSC | 32.7 ± 5.4 | 29.32–36.16 | 12 | |||||||
| OMN | 36.0 ± 4.3 | 33.89–38.04 | 19 | |||||||
| SFAs (g) | VEG | 13.4 ± 5.6 | 11.72–15.16 | 43 | 0.006 | 0.062 | <0.001 | 0.839 | 0.064 | 0.705 |
| LOV | 18.0 ± 5.7 | 16.34–19.70 | 47 | |||||||
| PSC | 20.3 ± 6.2 | 16.12–24.44 | 11 | |||||||
| OMN | 23.2 ± 9.2 | 18.79–27.62 | 19 | |||||||
| MUFAs (g) | VEG | 19.2 ± 6.9 | 17.06–21.37 | 42 | 0.670 | 0.277 | <0.001 | 0.680 | 0.004 | 0.454 |
| LOV | 20.8 ± 6.7 | 18.89–22.74 | 49 | |||||||
| PSC | 23.3 ± 6.5 | 18.94–27.69 | 11 | |||||||
| OMN | 27.1 ± 6.4 | 24.00–30.15 | 19 | |||||||
| PUFAs (g) | VEG | 16.5 ± 7.2 | 14.38–18.70 | 45 | <0.001 | 0.323 | 0.156 | 0.964 | 0.868 | 1.0 |
| LOV | 11.3 ± 4.5 | 9.98–12.63 | 47 | |||||||
| PSC | 12.4 ± 4.4 | 9.46–15.44 | 11 | |||||||
| OMN | 12.7 ± 4.0 | 10.77–14.63 | 19 | |||||||
| Cholesterol (mg) | VEG | 0.0 ± 0.0 | not applied | 45 | <0.001 | <0.001 | <0.001 | 0.476 | <0.001 | 0.377 |
| LOV | 160.5 ± 111.8 | 128.03–192.94 | 48 | |||||||
| PSC | 220.5 ± 105.1 | 149.94–291.13 | 11 | |||||||
| OMN | 287.6 ± 158.5 | 208.74–366.36 | 18 | |||||||
| Carbohydrates (% of energy) | VEG | 56.6 ± 5.5 | 54.86–58.30 | 42 | 0.026 | 0.175 | 0.185 | 0.951 | 0.999 | 0.978 |
| LOV | 52.3 ± 5.7 | 50.69–53.96 | 49 | |||||||
| PSC | 50.8 ± 5.2 | 47.52–54.15 | 12 | |||||||
| OMN | 52.0 ± 11.8 | 46.07–57.85 | 18 | |||||||
| Fiber (g) | VEG | 44.4 ± 15.1 | 39.76–48.96 | 44 | <0.001 | 0.207 | 0.018 | 0.754 | 0.951 | 0.964 |
| LOV | 31.3 ± 12.5 | 27.74–34.92 | 49 | |||||||
| PSC | 35.7 ± 10.8 | 28.79–42.55 | 12 | |||||||
| OMN | 33.3 ± 13.8 | 26.61–39.95 | 19 | |||||||
| Lipid Profile | F | β ± SE | t | R2 | Adjusted R2 |
|---|---|---|---|---|---|
| HDL-C | 1.40; p = 0.23 | No significant predictors | 0.061 | 0.017 | |
| LDL-C | 8.14; p < 0.001 | Diet (omnivorous): 45.85 ± 9.05 | 5.07; p < 0.001 | 0.274 | 0.240 |
| Total energy intake: −0.019 ± 0.009 | −2.10; p = 0.038 | ||||
| TC | 7.451; p < 0.001 | BMI: 2.42 ± 1.18 | 2.06; p = 0.042 | 0.255 | 0.221 |
| Age: 1.09 ± 0.26 | 4.00; p < 0.001 | ||||
| Physical activity (high): −12.65 ± 6.25 | −2.03; p = 0.045 | ||||
| Diet (omnivorous): 16.37 ± 5.52 | 2.97; p = 0.004 | ||||
| TGs | 2.635; p = 0.028 | Diet (omnivorous): 19.35 ± 8.32 | 2.35; p = 0.021 | 0.112 | 0.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogga, P.; Szulc, P.; Janczy, A. Serum Lipid Profile in Polish Women Adhering to Different Dietary Patterns: The Cardioprotective Potential of Plant-Based Diets. Nutrients 2025, 17, 3381. https://doi.org/10.3390/nu17213381
Gogga P, Szulc P, Janczy A. Serum Lipid Profile in Polish Women Adhering to Different Dietary Patterns: The Cardioprotective Potential of Plant-Based Diets. Nutrients. 2025; 17(21):3381. https://doi.org/10.3390/nu17213381
Chicago/Turabian StyleGogga, Patrycja, Patrycja Szulc, and Agata Janczy. 2025. "Serum Lipid Profile in Polish Women Adhering to Different Dietary Patterns: The Cardioprotective Potential of Plant-Based Diets" Nutrients 17, no. 21: 3381. https://doi.org/10.3390/nu17213381
APA StyleGogga, P., Szulc, P., & Janczy, A. (2025). Serum Lipid Profile in Polish Women Adhering to Different Dietary Patterns: The Cardioprotective Potential of Plant-Based Diets. Nutrients, 17(21), 3381. https://doi.org/10.3390/nu17213381

