Ultra-Processed Food Consumption and Subclinical Cardiac Biomarkers: A Cross-Sectional Analysis of U.S. Adults in NHANES 2001–2004
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Cardiac Biomarker Assessment
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Socio-Demographic Factors, Behaviors, and Health Status
3.2. Nutritional Characteristics
3.3. Ultra-Processed Food Intake and Cardiac Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Hs-cTnI | High-sensitivity cardiac troponin I |
Hs-cTnT | High-sensitivity cardiac troponin T |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
UPF | Ultra-processed food |
NHANES | National Health and Nutrition Examination Survey |
SR | Standard reference |
USDA | US Department of Agriculture |
FNDDS | Food and Nutrient Database for Dietary Studies |
CV | Coefficient of variation |
BMI | Body mass index |
eGFR | Estimated glomerular filtration rate |
References
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Monteiro, C.; Cannon, G.; Lawrence, M.; Louzada, M.L.; Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption among US adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef]
- Srour, B.; Kordahi, M.C.; Bonazzi, E.; Deschasaux-Tanguy, M.; Touvier, M.; Chassaing, B. Ultra-processed foods and human health: From epidemiological evidence to mechanistic insights. Lancet Gastroenterol. Hepatol. 2022, 7, 1128–1140. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Lin, Y.; Deierlein, A.L.; Parekh, N. Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. J. Am. Coll. Cardiol. 2021, 77, 1520–1531. [Google Scholar] [CrossRef]
- Mendoza, K.; Smith-Warner, S.A.; Rossato, S.L.; Khandpur, N.; Manson, J.E.; Qi, L.; Rimm, E.B.; Mukamal, K.J.; Willett, W.C.; Wang, M.; et al. Ultra-processed foods and cardiovascular disease: Analysis of three large US prospective cohorts and a systematic review and meta-analysis of prospective cohort studies. Lancet Reg. Health–Am. 2024, 37, 100859. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef]
- Johnson, R.K.; Appel, L.J.; Brands, M.; Howard, B.V.; Lefevre, M.; Lustig, R.H.; Sacks, F.; Steffen, L.M.; Wylie-Rosett, J. Dietary sugars intake and cardiovascular health: A scientific statement from the American Heart Association. Circulation 2009, 120, 1011–1020. [Google Scholar] [CrossRef]
- Gupta, D.K.; Lewis, C.E.; Varady, K.A.; Su, Y.R.; Madhur, M.S.; Lackland, D.T.; Reis, J.P.; Wang, T.J.; Lloyd-Jones, D.M.; Allen, N.B. Effect of Dietary Sodium on Blood Pressure: A Crossover Trial. JAMA 2023, 330, 2258–2266. [Google Scholar] [CrossRef]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Sellem, L.; Srour, B.; Javaux, G.; Chazelas, E.; Chassaing, B.; Viennois, É.; Debras, C.; Salamé, C.; Druesne-Pecollo, N.; Esseddik, Y.; et al. Food additive emulsifiers and risk of cardiovascular disease in the NutriNet-Santé cohort: Prospective cohort study. BMJ 2023, 382, e076058. [Google Scholar] [CrossRef]
- Katrukha, I.A.; Katrukha, A.G. Myocardial Injury and the Release of Troponins I and T in the Blood of Patients. Clin. Chem. 2021, 67, 124–130. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Gallotta, M.; Quatrini, I.; Nuti, R. Natriuretic peptides (BNP and NT-proBNP): Measurement and relevance in heart failure. Vasc. Health Risk Manag. 2010, 6, 411–418. [Google Scholar] [CrossRef]
- Panagopoulou, V.; Deftereos, S.; Kossyvakis, C.; Raisakis, K.; Giannopoulos, G.; Bouras, G.; Pyrgakis, V.; Cleman, M.W. NTproBNP: An important biomarker in cardiac diseases. Curr. Top. Med. Chem. 2013, 13, 82–94. [Google Scholar] [CrossRef]
- Shemisa, K.; Bhatt, A.; Cheeran, D.; Neeland, I.J. Novel Biomarkers of Subclinical Cardiac Dysfunction in the General Population. Curr. Heart Fail. Rep. 2017, 14, 301–310. [Google Scholar] [CrossRef]
- NHANES—About the National Health and Nutrition Examination Survey. 31 May 2023. Available online: https://www.cdc.gov/nchs/nhanes/about/ (accessed on 20 October 2023).
- NHANES 2001–2002 Laboratory Data Overview. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overviewlab.aspx?BeginYear=2001 (accessed on 19 November 2023).
- Steele, E.M.; O’Connor, L.E.; Juul, F.; Khandpur, N.; Baraldi, L.G.; Monteiro, C.A.; Parekh, N.; Herrick, K.A. Identifying and Estimating Ultraprocessed Food Intake in the US NHANES According to the Nova Classification System of Food Processing. J. Nutr. 2023, 153, 225–241. [Google Scholar] [CrossRef]
- NHANES—Measuring Guides. 24 February 2025. Available online: https://archive.cdc.gov/www_cdc_gov/nchs/nhanes/measuring_guides_dri/measuringguides.htm (accessed on 3 October 2025).
- SSTROP_A. Available online: https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/1999/DataFiles/SSTROP_A.htm (accessed on 29 September 2023).
- SSBNP_A. Available online: https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/1999/DataFiles/SSBNP_A.htm (accessed on 29 September 2023).
- Jia, X.; Sun, W.; Hoogeveen, R.C.; Nambi, V.; Matsushita, K.; Folsom, A.R.; Heiss, G.; Couper, D.J.; Solomon, S.D.; Boerwinkle, E.; et al. High-Sensitivity Troponin I and Incident Coronary Events, Stroke, Heart Failure Hospitalization, and Mortality in the ARIC Study. Circulation 2019, 139, 2642–2653. [Google Scholar] [CrossRef]
- Pokharel, Y.; Sun, W.; De Lemos, J.A.; Taffet, G.E.; Virani, S.S.; Ndumele, C.E.; Mosley, T.H.; Hoogeveen, R.C.; Coresh, J.; Wright, J.D.; et al. High-sensitivity troponin T and cardiovascular events in systolic blood pressure categories: Atherosclerosis risk in communities study. Hypertension 2015, 65, 78–84. [Google Scholar] [CrossRef]
- Tcheugui, J.B.; Zhang, S.; McEvoy, J.W.; Ndumele, C.E.; Hoogeveen, R.C.; Coresh, J.; Selvin, E. Elevated NT-ProBNP as a Cardiovascular Disease Risk Equivalent: Evidence from the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Med. 2022, 135, 1461–1467. [Google Scholar] [CrossRef]
- PAQ_B. Available online: https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2001/DataFiles/PAQ_B.htm#PAD200 (accessed on 8 October 2025).
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Yang, P.; Rooney, M.R.; Wallace, A.S.; Kim, H.; Echouffo-Tcheugui, J.B.; McEvoy, J.W.; Ndumele, C.; Christenson, R.H.; Selvin, E.; Rebholz, C.M. Associations between diet quality and NT-proBNP in U.S. adults, NHANES 1999-2004. Am. J. Prev. Cardiol. 2023, 16, 100528. [Google Scholar] [CrossRef]
- Steele, E.M.; Baraldi, L.G.; Louzada MLda, C.; Moubarac, J.C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef]
- Blaak, E.E.; Antoine, J.M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef]
- Jensen, J.; Ma, L.P.; Fu, M.L.X.; Svaninger, D.; Lundberg, P.A.; Hammarsten, O. Inflammation increases NT-proBNP and the NT-proBNP/BNP ratio. Clin. Res. Cardiol. 2010, 99, 445–452. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Kovell, L.C.; Appel, L.J.; Miller, E.R., III; Sacks, F.M.; Christenson, R.H.; Rebuck, H.; Chang, A.R.; Mukamal, K.J. Associations Between Dietary Patterns and Subclinical Cardiac Injury: An Observational Analysis from the DASH Trial. Ann. Intern. Med. 2020, 172, 786–794. [Google Scholar] [CrossRef]
- King, D.E.; Egan, B.M.; Geesey, M.E. Relation of dietary fat and fiber to elevation of C-reactive protein. Am. J. Cardiol. 2003, 92, 1335–1339. [Google Scholar] [CrossRef]
- Martens, R.J.; Henry, R.M.; Bekers, O.; Dagnelie, P.C.; van Dongen, M.C.; Eussen, S.J.; van Greevenbroek, M.; Kroon, A.A.; Stehouwer, C.D.; Wesselius, A.; et al. Associations of 24-Hour Urinary Sodium and Potassium Excretion with Cardiac Biomarkers: The Maastricht Study. J. Nutr. 2020, 150, 1413–1424. [Google Scholar] [CrossRef]
- Marti, C.N.; Gheorghiade, M.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Quyyumi, A.A.; Butler, J. Endothelial Dysfunction, Arterial Stiffness, and Heart Failure. J. Am. Coll. Cardiol. 2012, 60, 1455–1469. [Google Scholar] [CrossRef]
- Belanger, M.J.; Kovell, L.C.; Turkson-Ocran, R.A.; Mukamal, K.J.; Liu, X.; Appel, L.J.; Miller, E.R., III; Sacks, F.M.; Christenson, R.H.; Rebuck, H.; et al. Effects of the Dietary Approaches to Stop Hypertension Diet on Change in Cardiac Biomarkers Over Time: Results from the DASH-Sodium Trial. J. Am. Heart Assoc. 2023, 12, e026684. [Google Scholar] [CrossRef]
- Kapoor, K.; Fashanu, O.; Post, W.S.; Lutsey, P.L.; Michos, E.D.; deFilippi, C.R.; McEvoy, J.W. Relation of Dietary Sodium Intake With Subclinical Markers of Cardiovascular Disease (from MESA). Am. J. Cardiol. 2019, 124, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Avesani, C.M.; Cuppari, L.; Nerbass, F.B.; Lindholm, B.; Stenvinkel, P. Ultraprocessed foods and chronic kidney disease—Double trouble. Clin. Kidney J. 2023, 16, 1723–1736. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, B.; Grams, M.E.; Coresh, J.; McEvoy, J.W.; Echouffo-Tcheugui, J.B.; Mu, S.Z.; Tang, O.; Daya, N.R.; Kim, H.; Christenson, R.H.; et al. Associations of N-Terminal Pro-B-Type Natriuretic Peptide, Estimated Glomerular Filtration Rate, and Mortality in US Adults. Am. Heart J. 2023, 264, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Steele, E.; Khandpur, N.; Batis, C.; Bes-Rastrollo, M.; Bonaccio, M.; Cediel, G.; Huybrechts, I.; Juul, F.; Levy, R.B.; da Costa Louzada, M.L.; et al. Best practices for applying the Nova food classification system. Nat. Food. 2023, 4, 445–448. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
Characteristics | Total | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 |
---|---|---|---|---|---|
Unweighted N † | 6615 | 1772 | 1703 | 1609 | 1531 |
UPF intake (%grams) median | 37.0 | 12.9 | 29.9 | 47.3 | 71.2 |
Age, years | 44.5 (0.3) | 49.2 (0.5) | 46.6 (0.6) | 43.9 (0.5) | 38.2 (0.4) |
Female | 51.8 (0.6) | 48.7 (1.3) | 50.2 (1.4) | 51.3 (1.6) | 56.0 (1.4) |
Race/ethnicity | |||||
Non-Hispanic White | 72.6 (2.1) | 75.7 (2.3) | 75.2 (2.2) | 71.3 (2.3) | 68.2 (3.0) |
Non-Hispanic Black | 10.5 (1.2) | 6.8 (0.9) | 7.8 (1.10) | 11.0 (1.3) | 16.4 (2.0) |
Mexican | 7.6 (1.1) | 6.6 (1.0) | 7.9 (1.1) | 8.6 (1.3) | 7.5 (1.3) |
Other ‡ | 9.3 (1.2) | 11.0 (1.5) | 9.2 (1.2) | 9.2 (1.1) | 7.9 (1.8) |
Education | |||||
Less than high school | 16.5 (0.7) | 17.1 (1.0) | 14.6 (1.0) | 17.1 (1.2) | 17.2 (1.1) |
High school | 25.9 (0.8) | 23.7 (1.3) | 24.1 (1.2) | 26.5 (1.7) | 29.4 (1.4) |
Higher than high school | 57.6 (1.2) | 59.2 (1.7) | 61.3 (1.6) | 56.5 (1.8) | 53.4 (1.8) |
Total energy intake, kcal | 2270 (13.5) | 2224 (27.5) | 2298 (24.3) | 2285 (33.7) | 2275 (32.5) |
Smoking status | |||||
Current smoker | 25.2 (1.0) | 26.3 (1.1) | 23.7 (1.6) | 22.1 (1.3) | 28.9 (1.6) |
Former smoker | 23.3 (1.0) | 26.2 (1.4) | 26.0 (1.7) | 24.6 (1.9) | 16.7 (1.4) |
Never smoked | 51.4 (1.2) | 47.5 (1.8) | 50.3 (1.7) | 53.3 (1.5) | 54.5 (2.0) |
Physically Active | 67.7 (1.0) | 68.5 (1.8) | 69.6 (1.6) | 67.3 (1.4) | 65.2 (1.8) |
BMI | |||||
Underweight | 1.7 (0.2) | 2.1 (0.4) | 1.6 (0.3) | 1.0 (0.4) | 2.1 (0.5) |
Normal weight | 34.1 (0.8) | 38.7 (1.4) | 37.3 (1.7) | 31.4 (1.8) | 28.9 (0.9) |
Overweight | 34.4 (0.8) | 35.9 (1.6) | 36.0 (1.4) | 35.2 (1.8) | 30.4 (1.1) |
Obese | 29.8 (0.8) | 23.3 (1.4) | 25.1 (1.4) | 32.3 (1.3) | 38.6 (1.1) |
Waist Circumference, cm | 95.9 (0.3) | 94.6 (0.4) | 96.0 (0.5) | 96.4 (0.5) | 96.6 (0.4) |
Hypertension | 43.4 (0.9) | 49.2 (2.0) | 43.5 (1.6) | 42.8 (1.7) | 37.9 (1.4) |
Diabetes | 7.3 (0.4) | 8.4 (0.9) | 6.9 (0.6) | 7.6 (0.8) | 6.5 (0.7) |
eGFR < 60 mL/min/1.73 m2 | 2.3 (0.2) | 2.6 (0.3) | 2.6 (0.4) | 2.8 (0.5) | 1.1 (0.2) |
Categorical UPF Intake (% grams) | p-Trend | ||||
---|---|---|---|---|---|
Quartile 1 N = 1772 | Quartile 2 N = 1703 | Quartile 3 N = 1609 | Quartile 4 N = 1531 | ||
UPF intake (%grams), median | 12.9 | 29.9 | 47.3 | 71.2 | |
hs-cTnI Elevated ‡ (%) | 2.2 | 2.2 | 1.9 | 1.7 | |
Model 1 § | 1 [reference] | 1.13 (0.65, 1.96) | 1.05 (0.61, 1.79) | 1.19 (0.70, 2.04) | 0.58 |
Model 2 ‖ | 1 [reference] | 1.14 (0.65, 1.99) | 1.06 (0.61, 1.84) | 1.19 (0.70, 2.02) | 0.57 |
Model 3 ¶ | 1 [reference] | 1.16 (0.66, 2.05) | 0.97 (0.55, 1.71) | 1.20 (0.68, 2.10) | 0.68 |
hs-cTnT Elevated (%) | 7.8 | 7.1 | 5.4 | 3.9 | |
Model 1 | 1 [reference] | 1.20 (0.85, 1.69) | 1.16 (0.80, 1.70) | 1.39 (0.96, 2.01) | 0.11 |
Model 2 | 1 [reference] | 1.20 (0.85, 1.70) | 1.13 (0.78, 1.65) | 1.31 (0.90, 1.90) | 0.19 |
Model 3 | 1 [reference] | 1.24 (0.85, 1.82) | 0.98 (0.64, 1.49) | 1.27 (0.85, 1.91) | 0.46 |
NT-proBNP Elevated (%) | 13.9 | 13.5 | 12.7 | 10.2 | |
Model 1 | 1 [reference] | 1.05 (0.79, 1.39) | 1.19 (0.91, 1.54) | 1.29 (1.00, 1.67) * | 0.02 |
Model 2 | 1 [reference] | 1.06 (0.80, 1.41) | 1.19 (0.90, 1.55) | 1.27 (1.00, 1.61) * | 0.02 |
Model 3 | 1 [reference] | 1.07 (0.81, 1.43) | 1.19 (0.91, 1.54) | 1.26 (0.98, 1.61) | 0.03 |
Categorical UPF Intake (%kcal) | p-Trend | ||||
---|---|---|---|---|---|
Quartile 1 N = 1771 | Quartile 2 N = 1712 | Quartile 3 N = 1638 | Quartile 4 N = 1494 | ||
UPF intake (%kcal), median | 30.9 | 47.5 | 60.1 | 75.2 | |
hs-cTnI Elevated ‡ (%) | 2.1 | 2.0 | 2.2 | 1.8 | |
Model 1 § | 1 [reference] | 1.01 (0.63, 1.62) | 1.11 (0.67, 1.84) | 1.03 (0.60, 1.79) | 0.81 |
Model 2 ‖ | 1 [reference] | 1.01 (0.63, 1.62) | 1.11 (0.67, 1.84) | 1.01 (0.58, 1.78) | 0.86 |
Model 3 ¶ | 1 [reference] | 1.03 (0.63, 1.71) | 1.08 (0.64, 1.81) | 0.99 (0.55, 1.77) | 0.98 |
hs-cTnT Elevated (%) | 7.1 | 5.9 | 6.6 | 4.7 | |
Model 1 | 1 [reference] | 0.92 (0.64, 1.31) | 1.05 (0.69, 1.58) | 0.94 (0.61, 1.42) | 0.95 |
Model 2 | 1 [reference] | 0.91 (0.63, 1.30) | 1.04 (0.68, 1.58) | 0.90 (0.60, 1.36) | 0.82 |
Model 3 | 1 [reference] | 0.88 (0.62, 1.26) | 0.92 (0.60, 1.41) | 0.81 (0.52, 1.27) | 0.45 |
NT-proBNP Elevated (%) | 11.6 | 14.4 | 12.4 | 11.9 | |
Model 1 | 1 [reference] | 1.34 (1.03, 1.75) * | 1.11 (0.84, 1.46) | 1.19 (0.92, 1.53) | 0.42 |
Model 2 | 1 [reference] | 1.36 (1.04, 1.77) * | 1.10 (0.85, 1.44) | 1.14 (0.89, 1.46) | 0.62 |
Model 3 | 1 [reference] | 1.39 (1.07, 1.81) * | 1.09 (0.83, 1.42) | 1.13 (0.90, 1.42) | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.H.; Du, S.; Sullivan, V.K.; Bernard, L.; Garcia-Larsen, V.; Martínez-Steele, E.; Hallal, A.L.C.; Wolfson, J.A.; Matsuzaki, M.; Wallace, A.S.; et al. Ultra-Processed Food Consumption and Subclinical Cardiac Biomarkers: A Cross-Sectional Analysis of U.S. Adults in NHANES 2001–2004. Nutrients 2025, 17, 3294. https://doi.org/10.3390/nu17203294
He JH, Du S, Sullivan VK, Bernard L, Garcia-Larsen V, Martínez-Steele E, Hallal ALC, Wolfson JA, Matsuzaki M, Wallace AS, et al. Ultra-Processed Food Consumption and Subclinical Cardiac Biomarkers: A Cross-Sectional Analysis of U.S. Adults in NHANES 2001–2004. Nutrients. 2025; 17(20):3294. https://doi.org/10.3390/nu17203294
Chicago/Turabian StyleHe, Jiahuan Helen, Shutong Du, Valerie K. Sullivan, Lauren Bernard, Vanessa Garcia-Larsen, Eurídice Martínez-Steele, Ana Luiza Curi Hallal, Julia A. Wolfson, Mika Matsuzaki, Amelia S. Wallace, and et al. 2025. "Ultra-Processed Food Consumption and Subclinical Cardiac Biomarkers: A Cross-Sectional Analysis of U.S. Adults in NHANES 2001–2004" Nutrients 17, no. 20: 3294. https://doi.org/10.3390/nu17203294
APA StyleHe, J. H., Du, S., Sullivan, V. K., Bernard, L., Garcia-Larsen, V., Martínez-Steele, E., Hallal, A. L. C., Wolfson, J. A., Matsuzaki, M., Wallace, A. S., Rooney, M. R., Fang, M., McEvoy, J. W., Selvin, E., & Rebholz, C. M. (2025). Ultra-Processed Food Consumption and Subclinical Cardiac Biomarkers: A Cross-Sectional Analysis of U.S. Adults in NHANES 2001–2004. Nutrients, 17(20), 3294. https://doi.org/10.3390/nu17203294