Maternal Vitamin D Deficiency Is a Risk Factor for Infants’ Epigenetic Gestational Age Acceleration at Birth in Japan: A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Maternal and Newborn Assessments
2.3. DNA Methylation Analysis Using Umbilical Cord Blood Samples
2.4. Calculation of Gestational Age Acceleration
2.5. Statistical Analyses
3. Results
3.1. General Characteristics of the Study Population
3.2. Correlation of DNAmGA with Chronological Gestational Age
3.3. Gestational Age Acceleration at Birth Was Associated with Maternal Serum 25(OH)D Levels but Not with Cord Blood 25(OH)D
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GA | Gestational age |
DNA | Deoxyribonucleic acid |
DNAmGA | DNA methylation Gestational Age |
25(OH)D | 25-hydroxy vitamin D |
BMI | Body mass index |
References
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 138–145. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, Cd008873. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Mutoh, M.; Itoh, S.; Kobayashi, S.; Yamaguchi, T.; Iwata, H.; Tamura, N.; Koishi, M.; Kasai, M.; Kikuchi, E.; et al. Vitamin D concentration in maternal serum during pregnancy: Assessment in Hokkaido in adjunct study of the Japan Environment and Children’s Study (JECS). PLoS ONE 2024, 19, e0312516. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 498–1513. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E.; Makris, K.; Heijboer, A.C.; Herrmann, M.; Souberbielle, J.C. Vitamin D: Analytical Advances, Clinical Impact, and Ongoing Debates on Health Perspectives. Clin. Chem. 2024, 70, 1104–1121. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin, D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Camargo, C.A., Jr.; Rifas-Shiman, S.L.; Litonjua, A.A.; Rich-Edwards, J.W.; Weiss, S.T.; Gold, D.R.; Kleinman, K.; Gillman, M.W. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 2007, 85, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A., Jr.; Ingham, T.; Wickens, K.; Thadhani, R.; Silvers, K.M.; Epton, M.J.; Town, G.I.; Pattemore, P.K.; Espinola, J.A.; Crane, J.; et al. Cord-Blood 25-Hydroxyvitamin D Levels and Risk of Respiratory Infection, Wheezing, and Asthma. Pediatrics 2011, 127, e180–e187. [Google Scholar] [CrossRef]
- Kokkinari, A.; Dagla, M.; Antoniou, E.; Lykeridou, A.; Iatrakis, G. Are Maternal Vitamin D (25(OH)D) Levels a Predisposing Risk Factor for Neonatal Growth? A Cross-Sectional Study. Clin. Pract. 2024, 14, 265–279. [Google Scholar] [CrossRef]
- Beck, C.; Blue, N.R.; Silver, R.M.; Na, M.; Grobman, W.A.; Steller, J.; Parry, S.; Scifres, C.; Gernand, A.D. Maternal vitamin D status, fetal growth patterns, and adverse pregnancy outcomes in a multisite prospective pregnancy cohort. Am. J. Clin. Nutr. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Seipelt, E.M.; Tourniaire, F.; Couturier, C.; Astier, J.; Loriod, B.; Vachon, H.; Pucéat, M.; Mounien, L.; Landrier, J.F. Prenatal maternal vitamin D deficiency sex-dependently programs adipose tissue metabolism and energy homeostasis in offspring. FASEB J. 2020, 34, 14905–14919. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Riek, A.E.; Bauerle, K.T.; Dusso, A.; McNerney, K.P.; Barve, R.A.; Darwech, I.; Sprague, J.E.; Moynihan, C.; Zhang, R.M.; et al. Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes. Nat. Commun. 2023, 14, 3278. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015, 16, 25. [Google Scholar] [CrossRef]
- Horvath, S.; Pirazzini, C.; Bacalini, M.G.; Gentilini, D.; Di Blasio, A.M.; Delledonne, M.; Mari, D.; Arosio, B.; Monti, D.; Passarino, G.; et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 2015, 7, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Kashima, K.; Kawai, T.; Nishimura, R.; Shiwa, Y.; Urayama, K.Y.; Kamura, H.; Takeda, K.; Aoto, S.; Ito, A.; Matsubara, K.; et al. Identification of epigenetic memory candidates associated with gestational age at birth through analysis of methylome and transcriptional data. Sci. Rep. 2021, 9, 3381. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Suderman, M.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Tilling, K.; Davey Smith, G.; Relton, C.L. Longitudinal analysis of DNA methylation associated with birth weight and gestational age. Hum. Mol. Genet. 2015, 24, 3752–3763. [Google Scholar] [CrossRef] [PubMed]
- Bohlin, J.; Håberg, S.E.; Magnus, P.; Reese, S.E.; Gjessing, H.K.; Magnus, M.C.; Parr, C.L.; Page, C.M.; London, S.J.; Nystad, W. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 2016, 17, 207. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.K.; Craig, J.M.; Theda, C.; Bækvad-Hansen, M.; Bybjerg-Grauholm, J.; Hansen, C.S.; Hollegaard, M.V.; Hougaard, D.M.; Mortensen, P.B.; Weinsheimer, S.M.; et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016, 17, 206. [Google Scholar] [CrossRef]
- Bozack, A.K.; Rifas-Shiman, S.L.; Gold, D.R.; Laubach, Z.M.; Perng, W.; Hivert, M.F.; Cardenas, A. DNA methylation age at birth and childhood: Performance of epigenetic clocks and characteristics associated with epigenetic age acceleration in the Project Viva cohort. Clin. Epigenetics 2023, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Agha, G.; Hajj, H.; Rifas-Shiman, S.L.; Just, A.C.; Hivert, M.F.; Burris, H.H.; Lin, X.; Litonjua, A.A.; Oken, E.; DeMeo, D.L.; et al. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin. Epigenetics 2016, 16, 118. [Google Scholar] [CrossRef]
- McEwen, L.M.; O’Donnell, K.J.; McGill, M.G.; Edgar, R.D.; Jones, M.J.; MacIsaac, J.L.; Lin, D.T.S.; Ramadori, K.; Morin, A.; Gladish, N.; et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci. USA 2020, 117, 23329–23335. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, N.; Konwar, C.; Gladish, N.; Au-Young, S.H.; Guo, T.; Sheng, M.; Merrill, S.M.; Kelly, E.; Chau, V.; Branson, H.M.; et al. Association of Pediatric Buccal Epigenetic Age Acceleration With Adverse Neonatal Brain Growth and Neurodevelopmental Outcomes Among Children Born Very Preterm With a Neonatal Infection. JAMA Netw. Open 2022, 5, e2239796. [Google Scholar] [CrossRef] [PubMed]
- Van Lieshout, R.J.; McGowan, P.O.; de Vega, W.C.; Savoy, C.D.; Morrison, K.M.; Saigal, S.; Mathewson, K.J.; Schmidt, L.A. Extremely Low Birth Weight and Accelerated Biological Aging. Pediatrics 2021, 147, e2020001230. [Google Scholar] [CrossRef]
- Chen, L.; Wagner, C.L.; Dong, Y.; Wang, X.; Shary, J.R.; Huang, Y.; Hollis, B.W.; Zhu, H. Effects of Maternal Vitamin D3 Supplementation on Offspring Epigenetic Clock of Gestational Age at Birth: A Post-hoc Analysis of a Randomized Controlled Trial. Epigenetics 2020, 15, 830–840. [Google Scholar] [CrossRef]
- Jwa, S.C.; Ogawa, K.; Kobayashi, M.; Morisaki, N.; Sago, H.; Fujiwara, T. Validation of a food-frequency questionnaire for assessing vitamin intake of Japanese women in early and late pregnancy with and without nausea and vomiting. J. Nutr. Sci. 2016, 5, e27. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.C.; Heser, D.W. Simultaneous determination of 25-hydroxy- and 1,25-dihydroxyvitamin D from a single sample by dual-cartridge extraction. Clin. Chem. 1984, 30, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, Y.; Kawai, T.; Miyakoshi, K.; Hori, A.; Tamagawa, M.; Hasegawa, K.; Ikenoue, S.; Ochiai, D.; Saisho, Y.; Hida, M.; et al. DNA methylation analysis of cord blood samples in neonates born to gestational diabetes mothers diagnosed before 24 gestational weeks. BMJ Open Diabetes Res. Care 2022, 10, e002539. [Google Scholar] [CrossRef]
- Kasuga, Y.; Kawai, T.; Miyakoshi, K.; Saisho, Y.; Tamagawa, M.; Hasegawa, K.; Ikenoue, S.; Ochiai, D.; Hida, M.; Tanaka, M.; et al. Epigenetic Changes in Neonates Born to Mothers with Gestational Diabetes Mellitus May Be Associated with Neonatal Hypoglycaemia. Front. Endocrinol. 2021, 12, 690648. [Google Scholar] [CrossRef]
- Xu, Z.; Niu, L.; Li, L.; Taylor, J.A. ENmix: A novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 2016, 44, e20. [Google Scholar] [CrossRef] [PubMed]
- Pelegí-Sisó, D.; de Prado, P.; Ronkainen, J.; Bustamante, M.; González, J.R. methylclock: A Bioconductor package to estimate DNA methylation age. Bioinformatics 2021, 37, 1759–1760. [Google Scholar] [CrossRef]
- Simpkin, A.J.; Suderman, M.; Howe, L.D. Epigenetic clocks for gestational age: Statistical and study design considerations. Clin. Epigenetics 2017, 9, 100. [Google Scholar] [CrossRef]
- McGrath, J.J.; Saha, S.; Burne, T.H.; Eyles, D.W. A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 2010, 121, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Baca, K.M.; Govil, M.; Zmuda, J.M.; Simhan, H.N.; Marazita, M.L.; Bodnar, L.M. Vitamin D metabolic loci and vitamin D status in Black and White pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemy, Z.; Shahdadian, F.; Ziaei, R.; Saneei, P. Serum vitamin D levels in relation to abdominal obesity: A systematic review and dose-response meta-analysis of epidemiologic studies. Obes. Rev. 2021, 22, e13134. [Google Scholar] [CrossRef]
- Nakajima, H.; Sakamoto, Y.; Honda, Y.; Sasaki, T.; Igeta, Y.; Ogishima, D.; Matsuoka, S.; Kim, S.G.; Ishijima, M.; Miyagawa, K. Estimation of the vitamin D (VD) status of pregnant Japanese women based on food intake and VD synthesis by solar UV-B radiation using a questionnaire and UV-B observations. J. Steroid Biochem. Mol. Biol. 2023, 229, 106272. [Google Scholar] [CrossRef] [PubMed]
- Yaskolka Meir, A.; Wang, G.; Hong, X.; Hu, F.B.; Wang, X.; Liang, L. Newborn DNA methylation age differentiates long-term weight trajectories: The Boston Birth Cohort. BMC Med. 2024, 22, 373. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Howe, L.D.; Tilling, K.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Horvath, S.; Smith, G.D.; Relton, C.L. The epigenetic clock and physical development during childhood and adolescence: Longitudinal analysis from a UK birth cohort. Int. J. Epidemiol. 2017, 46, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yaskolka Meir, A.; Hong, X.; Wang, G.; Hu, F.B.; Wang, X.; Liang, L. Epigenetic Clock at Birth and Childhood Blood Pressure Trajectory: A Prospective Birth Cohort Study. Hypertension 2024, 81, e113–e124. [Google Scholar] [CrossRef]
- Yang, W.C.; Chitale, R.; O’Callaghan, K.M.; Sudfeld, C.R.; Smith, E.R. The Effects of Vitamin D Supplementation During Pregnancy on Maternal, Neonatal, and Infant Health: A Systematic Review and Meta-analysis. Nutr. Rev. 2024, nuae065. [Google Scholar] [CrossRef] [PubMed]
- Parenti, M.; Melough, M.M.; Lapehn, S.; MacDonald, J.; Bammler, T.; Firsick, E.J.; Choi, H.Y.; Derefinko, K.J.; Enquobahrie, D.A.; Carroll, K.N.; et al. Associations Between Prenatal Vitamin D and Placental Gene Expression. J. Nutr. 2024, 154, 3603–3614. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, B.; Galati, J.C.; Chen, A.; Morley, R.; Craig, J.M.; Saffery, R. Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. Am. J. Clin. Nutr. 2012, 96, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Seuter, S.; Neme, A.; Carlberg, C. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF. Nucleic Acids Res. 2016, 44, 4090–4104. [Google Scholar] [CrossRef] [PubMed]
- Monasso, G.S.; Küpers, L.K.; Jaddoe, V.W.V.; Heil, S.G.; Felix, J.F. Associations of circulating folate, vitamin B12 and homocysteine concentrations in early pregnancy and cord blood with epigenetic gestational age: The Generation R Study. Clin. Epigenetics 2021, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Gilfix, B.M. Vitamin B12 and homocysteine. CMAJ 2005, 173, 1360. [Google Scholar] [CrossRef] [PubMed]
- Monasso, G.S.; Voortman, T.; Felix, J.F. Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth. Epigenetics 2022, 17, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhong, S.; Liu, L.; Liu, S.; Li, X.; Zhou, T.; Zhang, J. Vitamin D deficiency and the risk of anemia: A meta-analysis of observational studies. Ren. Fail. 2015, 37, 929–934. [Google Scholar] [CrossRef]
- Smith, E.M.; Alvarez, J.A.; Martin, G.S.; Zughaier, S.M.; Ziegler, T.R.; Tangpricha, V. Vitamin D deficiency is associated with anaemia among African Americans in a US cohort. Br. J. Nutr. 2015, 113, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Zughaier, S.M.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Tangpricha, V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J. Clin. Transl. Endocrinol. 2014, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Alvarez, J.A.; Kearns, M.D.; Hao, L.; Sloan, J.H.; Konrad, R.J.; Ziegler, T.R.; Zughaier, S.M.; Tangpricha, V. High-dose vitamin D(3) reduces circulating hepcidin concentrations: A pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin. Nutr. 2017, 36, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, V.S.; Crozier, S.R.; D’Angelo, S.; Prentice, A.; Cooper, C.; Harvey, N.C.; Jones, K.S. The Effect of Vitamin D Supplementation on Hepcidin, Iron Status, and Inflammation in Pregnant Women in the United Kingdom. Nutrients 2019, 11, 190. [Google Scholar] [CrossRef]
- Michalski, E.S.; Nguyen, P.H.; Gonzalez-Casanova, I.; Nguyen, S.V.; Martorell, R.; Tangpricha, V.; Ramakrishnan, U. Serum 25-hydroxyvitamin D but not dietary vitamin D intake is associated with hemoglobin in women of reproductive age in rural northern Vietnam. J. Clin. Transl. Endocrinol. 2017, 8, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Si, S.; Peng, Z.; Cheng, H.; Zhuang, Y.; Chi, P.; Alifu, X.; Zhou, H.; Mo, M.; Yu, Y. Association of Vitamin D in Different Trimester with Hemoglobin during Pregnancy. Nutrients 2022, 14, 2455. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.E.; Guillet, R.; Queenan, R.A.; Cooper, E.M.; Kent, T.R.; Pressman, E.K.; Vermeylen, F.M.; Roberson, M.S.; O’Brien, K.O. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am. J. Clin. Nutr. 2015, 102, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Girchenko, P.; Lahti, J.; Czamara, D.; Knight, A.K.; Jones, M.J.; Suarez, A.; Hämäläinen, E.; Kajantie, E.; Laivuori, H.; Villa, P.M.; et al. Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth. Clin. Epigenetics 2017, 9, 49. [Google Scholar] [CrossRef]
- Daredia, S.; Huen, K.; Van Der Laan, L.; Collender, P.A.; Nwanaji-Enwerem, J.C.; Harley, K.; Deardorff, J.; Eskenazi, B.; Holland, N.; Cardenas, A. Prenatal and birth associations of epigenetic gestational age acceleration in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort. Epigenetics 2022, 17, 2006–2021. [Google Scholar] [CrossRef] [PubMed]
- Young, B.E.; McNanley, T.J.; Cooper, E.M.; McIntyre, A.W.; Witter, F.; Harris, Z.L.; O’Brien, K.O. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am. J. Clin. Nutr. 2012, 95, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Mosavat, M.; Arabiat, D.; Smyth, A.; Newnham, J.; Whitehead, L. Second-trimester maternal serum vitamin D and pregnancy outcome: The Western Australian Raine cohort study. Diabetes Res. Clin. Pract. 2021, 175, 108779. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, X.; Tian, Y.; Zhang, J.; Zhang, Y.; Li, J.; Yang, F.; Xu, M.; Yu, X. Shanghai Birth Cohort Study. Associations between maternal vitamin D status during three trimesters and cord blood 25(OH)D concentrations in newborns: A prospective Shanghai birth cohort study. Eur. J. Nutr. 2021, 60, 3473–3483. [Google Scholar] [CrossRef] [PubMed]
- Francis, E.C.; Hinkle, S.N.; Song, Y.; Rawal, S.; Donnelly, S.R.; Zhu, Y.; Chen, L.; Zhang, C. Longitudinal Maternal Vitamin D Status during Pregnancy Is Associated with Neonatal Anthropometric Measures. Nutrients 2018, 10, 1631. [Google Scholar] [CrossRef]
- Gangloff, A.; Bergeron, J.; Lemieux, I.; Després, J.P. Changes in circulating vitamin D levels with loss of adipose tissue. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 464–470. [Google Scholar] [CrossRef] [PubMed]
Parental Characteristics | |
---|---|
Age at delivery (years) | 37.5 ± 3.7 |
Paternal age at newborn’s birth (years) | 38.9 ± 8.2 (missing n = 15) |
Pre-pregnant BMI (kg/m2) | 19.97 ± 2.48 |
Gestational weight gain (kg) | 10.64 ± 4.98 |
Maternal blood 25(OH)D (ng/mL) | 21.02 ± 7.87 |
Newborn’s Characteristics | |
Birth weight (g) | 3054 ± 383 |
Birth height (cm) | 49.5 ± 1.9 |
Gestational age at birth (weeks) | 39.52 ± 1.15 |
Birth weight SD score | 0.10 ± 1.02 |
Birth height SD score | 0.26 ± 0.92 |
Cord blood 25(OH)D (ng/mL) | 13.15 ± 4.39 (missing n = 3) |
AgeAcceleration_Bohlin | AgeAcceleration_Knight | |||
---|---|---|---|---|
Regression Coefficiency (95% CI) | p Value | Regression Coefficiency (95% CI) | p Value | |
Parental Characteristics | ||||
Age at delivery (years) | 0.049 (0.013, 0.085) | 0.009 * | 0.016 (−0.051, 0.083) | 0.635 |
Paternal age at newborn’s birth (years) | 0.003 (−0.015, 0.021) | 0.748 | −0.002 (−0.034, 0.030) | 0.917 |
Pre-pregnant BMI (kg/m2) | −0.005 (−0.059, 0.049) | 0.856 | 0.021 (−0.078, 0.119) | 0.676 |
Gestational weight gain (kg) | 0.002 (−0.026, 0.029) | 0.913 | 0.021 (−0.028, 0.070) | 0.398 |
Maternal blood 25(OH)D (ng/mL) | −0.022 (−0.039, −0.005) | 0.010 * | −0.015 (−0.046, 0.016) | 0.335 |
Newborn’s Characteristics | ||||
Birth weight (g) | −0.0002 (−0.0006, 0.0001) | 0.192 | −0.0003 (−0.0009, 0.0004) | 0.411 |
Birth height (cm) | −0.071 (−0.142, −0.005) | 0.048 * | −0.105 (−0.234, 0.024) | 0.109 |
Birth weight SD score | 0.069 (−0.062, 0.200) | 0.302 | 0.044 (−0.195, 0.284) | 0.715 |
Birth height SD score | 0.020 (−0.128, 0.167) | 0.792 | −0.081 (−0.348, 0.186) | 0.551 |
Cord blood 25(OH)D (ng/mL) | −0.016 (−0.047, 0.015) | 0.299 | −0.011 (−0.068, 0.045) | 0.695 |
AgeAcceleration_Bohlin | AgeAcceleration_Knight | |||
---|---|---|---|---|
Regression Coefficiency (95% CI) | p Value | Regression Coefficiency (95% CI) | p Value | |
Parental Characteristics | ||||
Age at delivery (years) | 0.048 (0.012, 0.085) | 0.009 * | 0.016 (−0.050, 0.084) | 0.630 |
Paternal age at newborn’s birth (years) | 0.002 (−0.016, 0.020) | 0.852 | −0.001 (−0.034, 0.031) | 0.928 |
Pre-pregnant BMI (kg/m2) | −0.004 (−0.0058, 0.051) | 0.895 | 0.019 (−0.080, 0.119) | 0.698 |
Gestational weight gain (kg) | 0.002 (−0.025, 0.029) | 0.899 | 0.021 (−0.028, 0.070) | 0.405 |
Maternal blood 25(OH)D (ng/mL) | −0.022 (−0.039, −0.005) | 0.013 * | −0.017 (−0.048, 0.015) | 0.299 |
Newborn’s Characteristics | ||||
Birth weight (g) | −0.0002 (−0.0006, 0.0001) | 0.170 | −0.0003 (−0.0009, 0.0004) | 0.433 |
Birth height (cm) | −0.075 (−0.146, −0.003) | 0.040 * | −0.103 (−0.233, 0.027) | 0.118 |
Birth weight SD score | 0.072 (−0.060, 0.204) | 0.285 | 0.042 (−0.199, 0.282) | 0.733 |
Birth height SD score | 0.014 (−0.135, 0.162) | 0.858 | −0.075 (−0.344, 0.195) | 0.585 |
Cord blood 25(OH)D (ng/mL) | −0.019 (−0.050, 0.013) | 0.238 | −0.010 (−0.067, 0.048) | 0.740 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawai, T.; Jwa, S.C.; Ogawa, K.; Tanaka, H.; Aoto, S.; Kamura, H.; Morisaki, N.; Fujiwara, T.; Hata, K. Maternal Vitamin D Deficiency Is a Risk Factor for Infants’ Epigenetic Gestational Age Acceleration at Birth in Japan: A Cohort Study. Nutrients 2025, 17, 368. https://doi.org/10.3390/nu17020368
Kawai T, Jwa SC, Ogawa K, Tanaka H, Aoto S, Kamura H, Morisaki N, Fujiwara T, Hata K. Maternal Vitamin D Deficiency Is a Risk Factor for Infants’ Epigenetic Gestational Age Acceleration at Birth in Japan: A Cohort Study. Nutrients. 2025; 17(2):368. https://doi.org/10.3390/nu17020368
Chicago/Turabian StyleKawai, Tomoko, Seung Chik Jwa, Kohei Ogawa, Hisako Tanaka, Saki Aoto, Hiromi Kamura, Naho Morisaki, Takeo Fujiwara, and Kenichiro Hata. 2025. "Maternal Vitamin D Deficiency Is a Risk Factor for Infants’ Epigenetic Gestational Age Acceleration at Birth in Japan: A Cohort Study" Nutrients 17, no. 2: 368. https://doi.org/10.3390/nu17020368
APA StyleKawai, T., Jwa, S. C., Ogawa, K., Tanaka, H., Aoto, S., Kamura, H., Morisaki, N., Fujiwara, T., & Hata, K. (2025). Maternal Vitamin D Deficiency Is a Risk Factor for Infants’ Epigenetic Gestational Age Acceleration at Birth in Japan: A Cohort Study. Nutrients, 17(2), 368. https://doi.org/10.3390/nu17020368