Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Sample Size Calculation
2.4. Participants
2.5. Study Procedures
2.6. Anthropometric Measurements
2.7. Dietary Assessment
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Taste Sensitivity Distribution
3.3. Gender and Age Associations
3.4. Food Consumption Patterns
3.5. Nutritional Intake Analysis
3.6. Obesity and Fat Taste Perception
3.7. Obesity and Sweet Taste Perception
4. Discussion
4.1. Individual Result Interpretation
4.1.1. Gender Differences in Fat Taste Sensitivity
4.1.2. High Prevalence of Low Taste Sensitivity
4.2. Fat Taste Sensitivity and Childhood Obesity
4.3. Absence of Sweet Taste–Obesity Association
4.4. Food Consumption and Preference Patterns
4.5. Nutritional Intake Implications
4.6. Practical Implications and Applications
4.6.1. Clinical Practice Recommendations
4.6.2. Future Research Directions
4.7. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iyun, O.B.; Okobi, O.E.; Nwachukwu, E.U.; Miranda, W.; Osemwegie, N.O.; Igbadumhe, R.; Olawoye, A.; Oragui, C.C.; Osagwu, N.A. Analyzing Obesity Trends in American Children and Adolescents: Comprehensive Examination Using the National Center for Health Statistics (NCHS) Database. Cureus 2024, 16, e61825. [Google Scholar] [CrossRef]
- GBD 2021 Adolescent BMI Collaborators. Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.-H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef]
- Zisis, K.; Athanasakis, K. Obesity in Childhood and Adolescence: Epidemiology and Financial Implications. Horm. Res. Paediatr. 2025, 16, 1–6. [Google Scholar] [CrossRef]
- Delvecchio, M.; Pastore, C.; Valente, F.; Giordano, P. Cardiovascular Implications in Idiopathic and Syndromic Obesity in Childhood: An Update. Front. Endocrinol. 2020, 11, 330. [Google Scholar] [CrossRef]
- Costanzo, A.; Orellana, L.; Nowson, C.; Duesing, K.; Keast, R. Fat Taste Sensitivity Is Associated with Short-Term and Habitual Fat Intake. Nutrients 2017, 9, 781. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ruiz, N.R.; López-Díaz, J.A.; Wall-Medrano, A.; Jiménez-Castro, J.A.; Angulo, O. Oral fat perception is related with body mass index, preference and consumption of high-fat foods. Physiol. Behav. 2014, 129, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.; Šerý, O.; Plesnik, J.; Daoudi, H.; Rouabah, A.; Rouabah, L.; Khan, N.A. CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int. J. Obes. 2015, 39, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Bajit, H.; Ait Si Mohammed, O.; Guennoun, Y.; Benaich, S.; Bouaiti, E.; Belghiti, H.; Mrabet, M.; Elfahime, E.M.; El Haloui, N.E.; Saeid, N.; et al. Single-nucleotide polymorphism rs1761667 in the CD36 gene is associated with orosensory perception of a fatty acid in obese and normal-weight Moroccan subjects. J. Nutr. Sci. 2020, 9, e24. [Google Scholar] [CrossRef]
- Plesník, J.; Šerý, O.; Khan, A.S.; Bielik, P.; Khan, N.A. The rs1527483, but not rs3212018, CD36 polymorphism associates with linoleic acid detection and obesity in Czech young adults. Br. J. Nutr. 2018, 119, 472–478. [Google Scholar] [CrossRef]
- Karthi, M.; Deepankumar, S.; Vinithra, P.; Gowtham, S.; Vasanth, K.; Praveen Raj, P.; Senthilkumar, R.; Selvakumar, S. Single nucleotide polymorphism in CD36: Correlation to peptide YY levels in obese and non-obese adults. Clin. Nutr. Edinb. Scotl. 2021, 40, 2707–2715. [Google Scholar] [CrossRef]
- Khan, A.S.; Murtaza, B.; Hichami, A.; Khan, N.A. A cross-talk between fat and bitter taste modalities. Biochimie 2019, 159, 3–8. [Google Scholar] [CrossRef]
- Joseph, P.V.; Reed, D.R.; Mennella, J.A. Individual Differences Among Children in Sucrose Detection Thresholds: Relationship With Age, Gender, and Bitter Taste Genotype. Nurs. Res. 2016, 65, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.L.; Nicklaus, S.; Forhan, A.; Chabanet, C.; Heude, B.; Charles, M.-A.; Lange, C.; de Lauzon-Guillain, B. Associations between Infant Dietary Intakes and Liking for Sweetness and Fattiness Sensations in 8-to-12-Year-Old Children. Nutrients 2021, 13, 2659. [Google Scholar] [CrossRef]
- Bobowski, N.; Mennella, J.A. Personal Variation in Preference for Sweetness: Effects of Age and Obesity. Child. Obes. Print 2017, 13, 369–376. [Google Scholar] [CrossRef]
- Kaufman, A.; Choo, E.; Koh, A.; Dando, R. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biol. 2018, 16, e2001959. [Google Scholar] [CrossRef] [PubMed]
- Brondel, L.; Quilliot, D.; Mouillot, T.; Khan, N.A.; Bastable, P.; Boggio, V.; Leloup, C.; Pénicaud, L. Taste of Fat and Obesity: Different Hypotheses and Our Point of View. Nutrients 2022, 14, 555. [Google Scholar] [CrossRef]
- Mennella, J.A.; Bobowski, N.K.; Reed, D.R. The development of sweet taste: From biology to hedonics. Rev. Endocr. Metab. Disord. 2016, 17, 171–178. [Google Scholar] [CrossRef]
- Petty, S.; Salame, C.; Mennella, J.A.; Pepino, M.Y. Relationship between Sucrose Taste Detection Thresholds and Preferences in Children, Adolescents, and Adults. Nutrients 2020, 12, 1918. [Google Scholar] [CrossRef] [PubMed]
- Agbor Epse Muluh, E.; McCormack, J.C.; Mo, Y.; Garratt, M.; Peng, M. Gustatory and olfactory shifts during pregnancy and the postpartum period: A systematic review and meta-analysis. Physiol. Behav. 2024, 273, 114388. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Hayes, J.E.; Moskowitz, H.R.; Snyder, D.J. Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1137–1148. [Google Scholar] [CrossRef]
- Karmous, I.; Ben Othman, R.; Dergaa, I.; Ceylan, H.İ.; Bey, C.; Dhahbi, W.; Khan, A.S.; Jamoussi, H.; Muntean, R.I.; Khan, N.A. Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study. Nutrients 2025, 17, 2515. [Google Scholar] [CrossRef] [PubMed]
- Jilani, H.; Intemann, T.; Buchecker, K.; Charalambos, H.; Gianfagna, F.; De Henauw, S.; Lauria, F.; Molnar, D.; Moreno, L.A.; Lissner, L.; et al. Correlates of bitter, sweet, salty and umami taste sensitivity in European children: Role of sex, age and weight status—The IDEFICS study. Appetite 2022, 175, 106088. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.L.; Tepper, B.J. Inherited taste sensitivity to 6-n-propylthiouracil in diet and body weight in children. Obes. Res. 2004, 12, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Papantoni, A.; Shearrer, G.E.; Sadler, J.R.; Stice, E.; Burger, K.S. Longitudinal Associations Between Taste Sensitivity, Taste Liking, Dietary Intake and BMI in Adolescents. Front. Psychol. 2021, 12, 597704. [Google Scholar] [CrossRef]
- Fry Vennerød, F.F.; Nicklaus, S.; Lien, N.; Almli, V.L. The development of basic taste sensitivity and preferences in children. Appetite 2018, 127, 130–137. [Google Scholar] [CrossRef]
- Ervina, E.; Berget, I.; L Almli, V. Investigating the Relationships between Basic Tastes Sensitivities, Fattiness Sensitivity, and Food Liking in 11-Year-Old Children. Foods 2020, 9, 1315. [Google Scholar] [CrossRef]
- Jilani, H.; Intemann, T.; Eiben, G.; Lauria, F.; Lissner, L.; Michels, N.; Molnár, D.; Moreno, L.A.; Pala, V.; Tornaritis, M.; et al. Association of ability to rank sweet and fat taste intensities with sweet and fat food propensity ratios of children, adolescents and adults: The I.Family study. Eur. J. Nutr. 2024, 64, 42. [Google Scholar] [CrossRef]
- Guelmami, N.; Aissa, M.B.; Ammar, A.; Dergaa, I.; Trabelsi, K.; Jahrami, H. Guidelines for applying psychometrics in sports science: Transitioning from traditional methods to the AI Era. Tunis. J. Sports Sci. Med. 2023, 1, 32–47. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Sina, E.; Buck, C.; Ahrens, W.; De Henauw, S.; Jilani, H.; Lissner, L.; Molnár, D.; Moreno, L.A.; Pala, V.; Reisch, L.; et al. Digital Media Use in Association with Sensory Taste Preferences in European Children and Adolescents—Results from the I.Family Study. Foods 2021, 10, 377. [Google Scholar] [CrossRef]
- Dahir, N.S.; Calder, A.N.; McKinley, B.J.; Liu, Y.; Gilbertson, T.A. Sex differences in fat taste responsiveness are modulated by estradiol. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E566–E580. [Google Scholar] [CrossRef]
- Şeref, B.; Yıldıran, H. A new perspective on obesity: Perception of fat taste and its relationship with obesity. Nutr. Rev. 2025, 83, e486–e492. [Google Scholar] [CrossRef]
- Farapti, F.; Sari, A.N.; Fadilla, C.; Issa, Z.M. Association between taste sensitivity, taste preference, and obesity: Study of healthy snacks in children aged 9–14 years. Food Prod. Process. Nutr. 2024, 6, 37. [Google Scholar] [CrossRef]
- Goodman, J.R.; Dando, R. To Detect and Reject, Parallel Roles for Taste and Immunity. Curr. Nutr. Rep. 2021, 10, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Harnischfeger, F.; Dando, R. Obesity-induced taste dysfunction, and its implications for dietary intake. Int. J. Obes. 2021, 45, 1644–1655. [Google Scholar] [CrossRef]
- Kimmeswenger, I.; Lieder, B. Novel Perspective on the Plasticity of Taste Perception: Is Food- and Exercise-Induced Inflammation Associated with Sweet Taste Sensitivity and Preference? J. Agric. Food Chem. 2024, 72, 15122–15127. [Google Scholar] [CrossRef]
- Fathi, M.; Javid, A.Z.; Mansoori, A. Effects of weight change on taste function; a systematic review. Nutr. J. 2023, 22, 22. [Google Scholar] [CrossRef]
- Khalighi, H.; Mortazavi, H.; Anbari, F.; Eftekhari, M.S.; Mohammadnia, N.; Mirzaei, H.; Nashibi, S. Gustatory thresholds and obesity: A comparative study of five main tastes. BMC Nutr. 2025, 11, 142. [Google Scholar] [CrossRef]
- Kamil, A.; Wilson, A.R. Sweet Taste Perceptions and Preferences May Not Be Associated With Food Intakes or Obesity. Nutr. Today 2021, 56, 62. [Google Scholar] [CrossRef]
- Ponnusamy, V.; Subramanian, G.; Muthuswamy, K.; Shanmugamprema, D.; Krishnan, V.; Velusamy, T.; Subramaniam, S. Genetic variation in sweet taste receptors and a mechanistic perspective on sweet and fat taste sensation in the context of obesity. Obes. Rev. 2022, 23, e13512. [Google Scholar] [CrossRef] [PubMed]
- Lanfer, A.; Knof, K.; Barba, G.; Veidebaum, T.; Papoutsou, S.; de Henauw, S.; Soós, T.; Moreno, L.A.; Ahrens, W.; Lissner, L. Taste preferences in association with dietary habits and weight status in European children: Results from the IDEFICS study. Int. J. Obes. 2005 2012, 36, 27–34. [Google Scholar] [CrossRef]
- Ha, A.W.; Lee, J.-H.; Kim, S.H. Yearly trend of sugar-sweetened beverage intake and nutritional status in Korean elementary school children using the 2007~2015 Korea national health and nutrition examination survey. J. Korean Soc. Food Sci. Nutr. 2021, 50, 858–870. [Google Scholar] [CrossRef]
- Pioltine, M.B.; de Melo, M.E.; Santos, A.S.; Machado, A.D.; Fernandes, A.E.; Fujiwara, C.T.; Cercato, C.; Mancini, M.C. Genetic variations in sweet taste receptor gene are related to chocolate powder and dietary fiber intake in obese children and adolescents. J. Pers. Med. 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.L.; Olsen, A.; Cravener, T.L.; Bloom, R.; Chung, W.K.; Deng, L.; Lanzano, P.; Meyermann, K. Bitter taste phenotype and body weight predict children’s selection of sweet and savory foods at a palatable test-meal. Appetite 2014, 77, 113–121. [Google Scholar] [CrossRef] [PubMed]
Subjects | Tested Concentration (mM) | Preparation of the Solution | |
---|---|---|---|
Tasters | Super tasters | 0.018 | 4 mL of the 0.18 mM solution + 20 mL of water (5% gum arabic) |
0.18 | 4 mL of the 0.37 mM solution + 4 mL of water (5% gum arabic) | ||
Low tasters | 0.37 | 4 mL of the 0.75 mM solution + 4 mL of water (5% gum arabic) | |
0.75 | 4 mL of the 1.5 mM solution + 4 mL of water (5% gum arabic) | ||
1.5 | 4 mL of the 3 mM solution + 4 mL of water (5% gum arabic) | ||
3 | 4 mL of the 6 mM solution + 4 mL of water (5% gum arabic) | ||
6 | 4 mL of the 12 mM solution + 4 mL of water (5% gum arabic) | ||
12 | 30 µL of the solution (3.2 M) + 8 mL of water (5% gum arabic) | ||
Non-tasters | 0 |
Subjects | Tested Concentration (mol/L) | Preparation of the Solution | |
---|---|---|---|
Tasters | Super tasters | 0.00125 | 7.5 mL of the solution 2.5 × 10−3 mol/L + 7.5 mL of water |
0.0025 | 7.5 mL of the 5 × 10−3 mol/L solution + 7.5 mL of water | ||
Low tasters | 0.005 | 7.5 mL of the 1 × 10−2 mol/L solution + 7.5 mL of water | |
0.01 | 7.5 mL of the solution 2 × 10−2 mol/L + 7.5 mL of water | ||
0.02 | 7.5 mL of the solution 4 × 10−2 mol/L + 7.5 mL of water | ||
0.04 | 7.5 mL of the 8 × 10−2 mol/L solution + 7.5 mL of water | ||
0.08 | 7.5 mL of the 1.6 × 10−1 mol/L solution + 7.5 mL of water | ||
0.16 | 7.5 mL of the solution 3.2× 10−1 mol/L + 7.5 mL of water | ||
0.32 | 7.5 mL of the solution 6.4 × 10−1 mol/L + 7.5 mL of water | ||
Non-tasters | 0 |
Fat Taste n (%) | Sweet Taste n (%) | |||||
---|---|---|---|---|---|---|
Tasters n = 51 | Non-Tasters n = 49 | p | Tasters n = 95 | Non-Tasters n = 5 | p | |
Age (years) | 8.12 ± 1.45 | 7.98 ± 1.44 | 0.634 | 8.07 ± 1.42 | 7.60 ± 1.82 | 0.476 |
Sex female/male (%) | 68.6/31.4 | 38.8/61.2 | 0.003 | 55/44 | 20/80 | 0.177 |
Snacking n (%) | 49 (96.1) | 45 (91.8) | 0.432 | 89 (93.7) | 5 (100) | 0.432 |
Sweet Taste | n (%) | ||||
---|---|---|---|---|---|
Food | Every Day | 1 or Twice/Week | Rarely | p | |
Chocolate | Tasters | 26 (27.4) | 54 (56.8) | 15 (15.8) | 0.586 |
Non-tasters | 2 (40) | 3 (60) | 0 (0) | ||
Sweet drinks | Tasters | 10 (10.5) | 54 (56.8) | 31 (32.6) | 0.548 |
Non-tasters | 0 (0) | 4 (80) | 1 (20) | ||
Sugars | Tasters | 8 (15.7) | 12 (23.5) | 31 (60.8) | 0.047 |
Non-tasters | 17 (34.7) | 13 (26.5) | 19 (38.8) | ||
Fat taste | n (%) | ||||
Cheese | Tasters | 29 (56.9) | 13 (25.5) | 9 (17.6) | 0.039 |
Non-tasters | 26 (53.1) | 21 (42.9) | 2 (4.1) | ||
Sour cream | Tasters | 3 (5.9) | 22 (43.1) | 26 (51.0) | 0.004 |
Non-tasters | 2 (4.1) | 37 (75.5) | 10 (20.4) | ||
Fast food | Tasters | 0 (0.0) | 37 (72.5) | 14 (27.5) | 0.012 |
Non-tasters | 3 (6.1) | 42 (85.7) | 4 (8.2) | ||
Frying | Tasters | 3 (5.9) | 44 (86.3) | 4 (7.8) | 0.197 |
Non-tasters | 0 (0.0) | 42 (85.7) | 7 (14.3) |
Sweet Taste | Fat Taste | |||||||
---|---|---|---|---|---|---|---|---|
Non-Tasters n = 5 | Tasters n = 95 | p | Effect Size | Non-Tasters n = 49 | Tasters n = 51 | p | Effect Size | |
Candies | 2 (1–9) * | 5 (1–9) * | 0.756 | 0.08 | 5 (1–8.50) * | 5 (1–9) * | 0.840 | 0.02 |
Cookies | 10.0 | 7.23 ± 2.60 | <0.001 | 1.50 | 7.82 ± 2.32 | 6.94 ± 2.81 | 0.094 | 0.34 |
Chips | 10 (6.50–10) * | 6 (1–8) * | 0.022 | −0.60 | 8 (0–10) | 3 (0–10) | <0.001 | −0.38 |
Peanuts | 7.80 ± 2.59 | 6.37 ± 3.74 | 0.403 | 0.39 | 7.29 ± 3.27 | 5.65 ± 3.92 | 0.026 | 0.45 |
Fries | 7.80 ± 2.86 | 7.77 ± 2.57 | 0.979 | 0.01 | 8.31 ± 2.16 | 7.25 ± 2.83 | 0.040 | 0.42 |
Hamburgers | 7.00 ± 4.24 | 6.83 ± 3.49 | 0.917 | 0.05 | 7.59 ± 3.19 | 6.12 ± 3.68 | 0.035 | 0.43 |
Industrial juices | 9 (6.50–10) * | 6 (3–9) * | 0.035 | −0.48 | 7 (0–10) * | 6 (0–10) * | 0.071 | −0.24 |
Sweet Taste | Fat Taste | |||||||
---|---|---|---|---|---|---|---|---|
Non-Tasters n = 5 | Tasters n = 95 | p | Effect Size | Non-Tasters n = 49 | Tasters n = 51 | p | Effect Size | |
Calories (Kcal/d) | 2028 ± 220 | 2048 ± 392 | 0.912 | −0.05 | 2092 ± 408 | 2004 ± 361 | 0.254 | 0.23 |
Carbohydrates (g/d) | 241 ± 29.2 | 234 ± 56.0 | 0.795 | 0.12 | 243 ± 56.9 | 227 ± 52.3 | 0.163 | 0.28 |
Lipids (g/d) | 81.2 ± 15.8 | 86.7 ± 25.9 | 0.641 | −0.21 | 88.2 ± 25.6 | 84.7 ± 25.4 | 0.497 | 0.14 |
Proteins (g/d) | 68.8 ± 11.9 | 70.4 ± 14.5 | 0.809 | −0.11 | 71.0 ± 16.4 | 69.8 ± 12.3 | 0.684 | 0.008 |
Vitamin C (mg/d) | 48.7 ± 11.1 | 66.0 ± 25.6 | 0.831 | 0.06 | 66.6 ± 27 | 56.4 ± 24.2 | 0.986 | 0.01 |
Magnesium (mg/d) | 308 ± 116 | 357 ± 306 | 0.720 | −0.16 | 425 ± 414 | 287 ± 60.8 | 0.026 | 0.47 |
Calcium (mg/d) | 578 ± 134 | 715 ± 203 | 0.141 | −0.68 | 715 ± 221 | 701 ± 185 | 0.726 | 0.07 |
Iron (mg/d) | 8.06 ± 1.47 | 7.89 ± 1.97 | 0.854 | 0.08 | 7.95 ± 1.93 | 7.85 ± 1.97 | 0.796 | 0.05 |
Fibers (g/d) | 22.0 ± 12.7 | 21.6 ± 10.5 | 0.888 | 0.06 | 22.9 ± 7.51 | 20.3 ± 5.32 | 0.048 | 0.40 |
Sucrose (g/d) | 85.9 ± 64.9 | 70.3 ± 62.3 | 0.033 | 0.18 | 74.9 ± 63.3 | 71.4 ± 66.1 | 0.507 | −0.25 |
Sodium (mg/d) | 2201 ± 1034 | 3056 ± 1169 | 0.112 | 0.740 | 3028 ± 1159 | 3000 ± 1197 | 0.906 | 0.024 |
Vitamin D (µg/d) | 1.47 ± 0.78 | 8.35 ± 1.79 | 0.073 | 3.91 | 8.4 ± 1.5 | 7.9 ± 1.9 | 0.931 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Othman, R.; Karmous, I.; Aissa, F.; Ceylan, H.İ.; Zanina, Y.; Jamoussi, H.; Bragazzi, N.L.; Dergaa, I. Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study. Nutrients 2025, 17, 3095. https://doi.org/10.3390/nu17193095
Ben Othman R, Karmous I, Aissa F, Ceylan Hİ, Zanina Y, Jamoussi H, Bragazzi NL, Dergaa I. Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study. Nutrients. 2025; 17(19):3095. https://doi.org/10.3390/nu17193095
Chicago/Turabian StyleBen Othman, Rym, Inchirah Karmous, Farah Aissa, Halil İbrahim Ceylan, Youssef Zanina, Henda Jamoussi, Nicola Luigi Bragazzi, and Ismail Dergaa. 2025. "Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study" Nutrients 17, no. 19: 3095. https://doi.org/10.3390/nu17193095
APA StyleBen Othman, R., Karmous, I., Aissa, F., Ceylan, H. İ., Zanina, Y., Jamoussi, H., Bragazzi, N. L., & Dergaa, I. (2025). Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study. Nutrients, 17(19), 3095. https://doi.org/10.3390/nu17193095