Nutritional Value, Health Properties, Safety Considerations, and Consumer Acceptance of Lemnoideae as Human Food
Abstract
1. Introduction
Population Group | Specific Nutritional Needs | Lemnoideae Contribution to Nutritional Needs | Knowledge Gaps/Research Needs | References |
---|---|---|---|---|
Vegans/vegetarians | Vitamin B12, complete protein, iron | Wolffia globosa provides bioavailable vitamin B12; Lemnoideae protein has a full amino acid profile and good iron bioavailability | Long-term clinical trials confirming safety and efficacy | [3,14,15] |
Elderly (risk of sarcopenia) | High-quality protein, branched-chain amino acids (BCAA), good digestibility | Lemnoideae contain high levels of BCAA; protein digestibility ~89%, comparable to whey protein | Randomized controlled trials in elderly populations | [16,17,18] |
Diabetics | Moderate postprandial glycemia, insulin response, glucose absorption and uptake, normalization of glycemia | Duckweed peptides have antidiabetic effects Positive glucose and insulin response after consuming Lemna minor Beneficial effects of Wolffia globosa on the gut microbiota and metabolism in the context of glucose metabolism | Broader human studies beyond pilot interventions | [19,20] |
People with cardiovascular disease | Omega-3 fatty acids, antioxidants, fiber | Balanced n6/n3 ratio; presence of antioxidants (ferulic acid, luteolin, kaempferol) supports vascular health | Clinical validation of cardioprotective effects | [15,19,21] |
Inpatients and space travelers | Compact, nutrient-dense source; rapid biomass growth; suitability for controlled cultivation | Lemnoideae species thrive in closed systems, provide sustainable protein, vitamins, and minerals, and are approved as GRAS and novel foods | Crop optimization and processing improvement for targeted applications | [9,16,22,23] |
2. Literature Search Methodology
3. Plants of the Lemnoideae Subfamily: Taxonomic Characteristics, Nutritional Composition and Applications in Human and Animal Nutrition
Genus | Species | Protein [%] | Lipid/Fatty Acid/Fat [%] | Carbohydrate/Iber/Tarch [%] | Ash [%] | References |
---|---|---|---|---|---|---|
Wolffia Horkel ex Schleid | W. angusta Landolt | 26 | 3.5 (f) 8.0 (fa) | 16 (s) | 13 | [25,28,29] |
W. arrhiza (L.) Horkel ex Wimm. | 17–51 | 0.5–6.1 (f) 8.9 (fa) 9 (lp) | 2.4–15 (fb) 2.4–17 (s) 9.4–44 (c) | 12–25 | [25,27,29,30,31,32,33,34,35,36] | |
W. australiana (Benth.) Hartog and Plas | 28 | 2.0 (f) 10 (fa) | 13 (s) | 21 | [25,29] | |
W. borealis (Engelm.) Landolt | 21–29 | 2.5 (f) 14 (fa) | 11–14 (s) | 16 | [25,29,32] | |
W. brasiliensis Wedd. | 25 | 5.2 (f) 5.6 (fa) | 11 (s) | 19 | [25,29] | |
W. columbiana H.Karst. | 23–36 | 0.7–6.6 (f) | 11 (f) 12 (s) | 17–22 | [25,37] | |
W. cylindracea Hegelm. | 22 | 2.1 (f) 6.7 (fa) | 11 (s) | 22 | [25,29] | |
W. elongata Landolt | 22 | 5.3 (f) | 14 (s) | 20 | [25] | |
W. globosa (Roxb.) Hartog and Plas | 21–48 | 0.5–4.9 (lp) 2.1–9.6 (f) 11 (fa) | 8.4–21 (fb) 10–29 (s) 37–48 (c) | 7.7–24 | [25,28,29,32,38,39,40,41,42,43,44] | |
W. microscopica (griff.) Kurz | 28–29 | 2.2–6.1 (f) | 4.8–10 (s) | 16–21 | [25,45] | |
W. neglecta Landolt | 21 | 4.7 (f) 12 (fa) | 14 (s) | 12 | [25,29] | |
Wolffiella Hegelm. | W. caudata Landolt | 35 | 7.0 (fa) | 9.7 (s) | n.d. | [29,32] |
W. gladiata (Hegelm.) Hegelm. | 29 | n.d. | 8.2 (s) | n.d. | [32] | |
W. hyalina (Delile) Monod | 34 | 6.6 (f) 10 (fa) | 5.8 (s) | n.d. | [29,45] | |
W. lingulata (Hegelm.) Hegelm. | n.d. | 5.7 (fa) | n.d. | n.d. | [29] | |
W. neotropica Landolt | 26 | 7.1 (fa) | 10 (s) | n.d. | [29,32] | |
W. oblonga (Phil.) Hegelm. | n.d. | 10 (fa) | n.d. | n.d. | [29] | |
W. repanda (Hegelm.) Monod | n.d. | 7.6 (fa) | n.d. | n.d. | [29] | |
W. rotunda Landolt | n.d. | n.d. | n.d. | n.d. | n.d. | |
W. welwitschii (Hegelm.) Monod | n.d. | 4.6 (fa) | n.d. | n.d. | [29] | |
Lemna L. | L. aequinoctialis Welw. | n.d. | 9.3 (fa) | n.d. | n.d. | [29] |
L. bistrosa Charit. | n.d. | n.d. | n.d. | n.d. | n.d. | |
L. disperma Hegelm. | n.d. | 11 (fa) | n.d. | n.d. | [29] | |
L. gibba L. | 25–34 | 3.4–4.7 (f) 11 (fa) | 1.9–14 (s) 3.3 (c) 9.4–26 (fb) | 3.3–18 | [29,32,37,45,46] | |
L. japonica Landolt | 26–36 | 8.0 (fa) | 1.7–35 (s) | n.d. | [29,32,47,48] | |
L. landoltii Halder and Venu | n.d. | n.d. | n.d. | n.d. | ||
L. minor L. | 7.5–42 | 1.3–4.7 (f) 1.5–9.0 (lp) 11 (fa) | 1.7–48 (s) 8.2–27 (fb) 34–61 (c) | 10–23 | [29,32,45,47,49,50,51,52,53,54,55,56,57,58,59,60] | |
L. minuta Kunth | 26 | 1.0 (lp) | 1.1–37 (s) | 24 | [47,61] | |
L. obscura (Austin) Daubs | 26–37 | 6.5 (lp) 7.5 (fa) | 3.8 (s) 12 (fb) | 5.6 | [29,32,62] | |
L. perpusilla Torr. | n.d. | 5.5 (fa) | n.d. | n.d. | [29] | |
L. tenera Kurz | n.d. | 6.7 (fa) | n.d. | n.d. | [29] | |
L. trisulca L. | n.d. | 5.9 (fa) | n.d. | n.d. | [29] | |
L. turionifera Landolt | n.d. | 8.3 (fa) | 2.5–32 (s) | n.d. | [29,47] | |
L. valdiviana Phil. | 24–29 | 1.0 (lp) 8.0 (fa) | 5.6 (s) | 2 | [29,32,61] | |
Spirodela Schleid. | S. oligorrhiza (Kurz) Hegelm. | n.d. | n.d. | 21 (s) | n.d. | [52] |
S. polyrhiza (L.) Schleid. | 24–36 | 1.7–4.7 (f) 2.2–7.2 (lp) 7.5 (fa) | 1.7–7.1 (s) 8.8–15.6 (fb) 38–42 (c) | 9.7–21 | [29,32,37,45,62,63,64,65,66] | |
S. punctata (G.Mey.) C.H.Thomps. | 14–38 | 3.8–5.5 (f) 6 (lp) 7.8–8.4 (fa) | 1.1–25 (s) 9.2 (fb) | 14 | [29,32,34,37,45,67] | |
S. sichuanensis M.G.Liu and K.M.Xie | n.d. | n.d. | n.d. | n.d. | n.d. |
4. Food Safety and Legal Regulations Regarding the Use of Lemnoideae
4.1. Legal Status of Duckweed as a Food Ingredient in Different Countries (European Union, USA, Asia)
4.2. Potential Dangers Associated with Accumulation of Pollutants in Duckweed
5. Potential Use in Targeted Nutrition
Effect | Species | Methodology | Outputs | Reference |
---|---|---|---|---|
Antioxidant activity | Wolfia globosa | DPPH Frap, Total phenolic content (TPC), Total Carotenoid content, Vitamin C content | Wolffia globosa exhibits strong antioxidant activity due to its high content of phenols, flavonoids, carotenoids, and vitamin C | [89] |
Spirodela punctata, Lemna gibba, and Spirodela polyrhiza, Wolffia borealis, and Wolffiella caudata | HPLC-DAD-ESI-MS/MS analysis of phenolic compounds, DPPH | DPPH free radical scavenging capacity: IC50 higher in species of the Lemnoideae subfamily, excluding S. punctata, compared to Wolffia and Wolffiella | [90] | |
Wolfia arrhiza | TPC-Folin–Ciocalteu, Total Flavonoid Content (TFC)-Rutin equivalent, DPPH, FRAP | TPC significantly higher than in other plant materials. TFC significantly higher than in most edible vegetables and fruits High antioxidant activity | [31] | |
Lemna minor | TPC-Folin–Ciocalteu, TFC-quercetin equivalent, Total antioxidant activity determination by ferric thiocyanate method, Total reduction capability, DPPH, ABTS | Lemna minor is effective antioxidant and antiradical in different in vitro assays, including reducing power, DPPH radical, ABTS•+ radical, and superoxide anion radical scavenging | [91] | |
Wolffia globosa | TPC-Folin–Ciocalteu, TFC-quercetin equivalent, Total Anthocyanin Content (TAC) | Presence of compounds with antioxidant properties was found; it was also found that duckweed may have an effect on blood pressure and endothelial function in humans | [77] | |
Anti-diabetic, glucose-modeling, and cardioprophylactic effects | Wolffia globosa, Mankai® | Assessment of postprandial glycemia and glycemic index of product | Reduction in postprandial glucose and glycemic index after consuming duckweed | [92] |
Wolffia globosa, Mankai® | Assessment of postprandial glycemia in patients with type 2 diabetes | Reduction in postprandial glucose | [93] | |
Lemna minor | Lemna minor consumption and evaluating level of fatty acids in products | Presence of duckweed in fish diet increased proportion of long-chain omega-3 fatty acids (LC-PUFA) | [94] | |
Wolffia globosa, Mankai® | Evaluating level of iron in blood after consuming Wolffia globosa | Iron from duckweed is bioavailable and may be effective in treating iron deficiency-related anemia | [95] | |
Antihypertensive activity | Duckweed Powder | Enzymatic hydrolysis, fractionation, analyses performed: degree of hydrolysis (DH)—measured with OPA method; Protein/Peptide Content and Recovery Yields—via Dumas combustion method; Peptide Identification—by RP-UPLC-MS/MS (485 sequences identified); Total Phenolic Content (TPC)—Folin–Ciocalteu assay; Antihypertensive Activity—evaluated in vitro via ACE-inhibition spectrophotometric assay (IC50 determination) | Results indicate that enzymatic hydrolysis of duckweed proteins makes it possible to obtain bioactive fractions with antihypertensive potential, which positions duckweed as a sustainable source of health-promoting compounds | [21] |
Duckweed Powder | Enzymatic hydrolysis, fractionation. Analyses included UPLC-MS/MS: Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry; Protein content (Dumas): measured by combustion method; Bioactivity assays: ACE—Angiotensin-Converting Enzyme inhibition, DPP-IV—Dipeptidyl Peptidase IV inhibition, DPPH/TEAC—antioxidant capacity assays; Machine learning models: PLS-DA—Partial Least Squares Discriminant Analysis, QSAR—Quantitative Structure-Activity Relationship modeling | Highest activities in supernatants (DS). ACE inhibition IC50 = 0.07–0.08 mg/mL (FAR, TYY, IAI, Pep1: 13–40 μM); DPP-IV inhibition IC50 = 0.70 mg/mL (API, IPYDTQVK: 100–200 μM); antioxidant activity from peptides such as DYK, TYY, IGF. Some peptides showed multi-target effects (antihypertensive, antidiabetic, antioxidant). | [19] | |
Antimicrobial/antibacterial activity | Lemna minor | Disk-diffusion test | Duckweed extracts (both aqueous and ethanolic) have antibacterial activity against Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus warneri, Citrobacter freundii, Citrobacter koseri, Neisseria lactamica, Neisseria sicca, Micrococcus luteus, Bacillus cereus, Bacillus subtilis, as well as Streptococcus pneumoniae, and show anti-candidophilic activity against Candida parapsilosis and Candida glabrata | [91] |
Lemna minor | Disk-diffusion test | Duckweed extracts have bacteriostatic and bactericidal effects against selected Gram-positive and -negative bacteria at MIC concentration = 1.8–2.0 mg/mL and MBC ≥ 2.0 mg/mL | [96] | |
Influence on intestinal microbiota (prebiotic) and anti-inflammatory effect | Wolffia globosa | Digestibility of Wolffia globosa in simulated human GI tract | Wolffia extracts demonstrate prebiotic potential | [28] |
Lemnoideae | Interleukin expression | Plants from this family have anti-inflammatory and anti-fibrotic effects | [97] |
5.1. Nutrition for People with Special Protein Requirements
5.2. Nutrition for People with Diabetes
5.3. Potential Use of Lemnoideae in Supporting Cardiovascular Well-Being
5.4. Nutrition for Immunosuppressed People
5.5. Potential of Lemnoideae as Food Source for Astronauts
6. Consumer Perception, Applications, and Market Challenges
7. Challenges Regarding Bioavailability and Processing of Duckweed
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takács, K.; Végh, R.; Mednyánszky, Z.; Haddad, J.; Allaf, K.; Du, M.; Chen, K.; Kan, J.; Cai, T.; Molnár, P. New Insights into Duckweed as an Alternative Source of Food and Feed: Key Components and Potential Technological Solutions to Increase Their Digestibility and Bioaccessibility. Appl. Sci. 2025, 15, 884. [Google Scholar] [CrossRef]
- Lima, N.P.; Maciel, G.M.; Pinheiro, D.F.; Ribeiro, I.S.; Lima, N.F.; Liviz, C.d.A.M.; Pedro, A.C.; Haminiuk, C.W.I. Innovative protein sources from freshwater and marine environments-a comprehensive review. Meas. Food 2025, 17, 100215. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Zhao, Y.; Zhang, W.; Li, Y. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 2023, 39, 3620–3634. [Google Scholar] [CrossRef]
- Prochazka, P.; Soukupova, J.; Abrham, J.; Mullen, K.J.; Tomsik, K.; Cechura, L.; Cabelkova, I.; Smutka, L. Protein consumption in Europe: Sustainability, tradition, and policy implications. Sustain. Dev. 2025, 33, 1124–1135. [Google Scholar] [CrossRef]
- de la O, V.; Zazpe, I.; De la Fuente-Arrillaga, C.; Santiago, S.; Goni, L.; Martínez-González, M.Á.; Ruiz-Canela, M. Association between a new dietary protein quality index and micronutrient intake adequacy: A cross-sectional study in a young adult Spanish Mediterranean cohort. Eur. J. Nutr. 2023, 62, 419–432. [Google Scholar] [CrossRef]
- Bergman, P.; Brighenti, S. Targeted nutrition in chronic disease. Nutrients 2020, 12, 1682. [Google Scholar] [CrossRef]
- Choręziak, A.; Rosiejka, D.; Michałowska, J.; Bogdański, P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview. Nutrients 2025, 17, 1148. [Google Scholar] [CrossRef] [PubMed]
- Hau, E.H.; Mah, S.H. Duckweed: Growth factor and applications in nonfood, food, and health. Food Saf. Health 2025, 3, 144–154. [Google Scholar] [CrossRef]
- Ofoedu, C.E.; Bozkurt, H.; Mortimer, J.C. Towards sustainable food security: Exploring the potential of duckweed (Lemnaceae) in diversifying food systems. Trends Food Sci. Technol. 2025, 161, 105073. [Google Scholar] [CrossRef]
- Sosa, D.; Alves, F.M.; Prieto, M.A.; Pedrosa, M.C.; Heleno, S.A.; Barros, L.; Feliciano, M.; Carocho, M. Lemna minor: Unlocking the value of this duckweed for the food and feed industry. Foods 2024, 13, 1435. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, X.; Wang, X.; Xia, M.; Ba, S.; Lim, B.L.; Hou, H. Biomonitoring of heavy metals and their phytoremediation by duckweeds: Advances and prospects. Environ. Res. 2024, 245, 118015. [Google Scholar] [CrossRef]
- Moyo, S.; Dalu, J.; Ndamba, J. The microbiological safety of duckweed fed chickens: A risk assessment of using duckweed reared on domestic wastewater as a protein source in broiler chickens. Phys. Chem. Earth A B C 2003, 28, 1125–1129. [Google Scholar] [CrossRef]
- Milana, M.; van Asselt, E.D.; van der Fels-Klerx, I.H. A review of the toxicological effects and allergenic potential of emerging alternative protein sources. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70123. [Google Scholar] [CrossRef]
- Acosta, K.; Sree, K.S.; Okamoto, N.; Koseki, K.; Sorrels, S.; Jahreis, G.; Watanabe, F.; Appenroth, K.-J.; Lam, E. Source of Vitamin B12 in plants of the Lemnaceae family and its production by duckweed-associated bacteria. J. Food Compos. Anal. 2024, 135, 106603. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Z.; Liu, S.; Luo, S.; He, R.; Yang, X.; Li, S.; Yang, X.; An, Y.; Lu, Y. Utilization of microalgae and duckweed as sustainable protein sources for food and feed: Nutritional potential and functional applications. J. Agric. Food Chem. 2025, 73, 4466–4482. [Google Scholar] [CrossRef] [PubMed]
- Mes, J.J.; Esser, D.; Oosterink, E.; van den Dool, R.T.; Engel, J.; de Jong, G.A.; Wehrens, R.; van der Meer, I.M. A controlled human intervention trial to study protein quality by amino acid uptake kinetics with the novel Lemna protein concentrate as case study. Int. J. Food Sci. Nutr. 2022, 73, 251–262. [Google Scholar] [CrossRef]
- Muller, T.; Bazinet, L. Water lentil (duckweed) protein purification by chemical (HCl) and electrochemical (Electrodialysis with bipolar membranes) acidification: Composition, structure and functional properties vs commercial protein isolates. Food Chem. 2025, 489, 144901. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, N.S.; Zaini, H.M.; Ishak, W.R.W.; Matanjun, P.; George, R.; Mantihal, S.; Ching, F.F.; Pindi, W. Duckweed protein: Extraction, modification, and potential application. Food Chem. 2025, 463, 141544. [Google Scholar] [CrossRef]
- Cournoyer, A.; Bernier, M.-È.; Aboubacar, H.; de Toro-Martín, J.; Vohl, M.-C.; Ravallec, R.; Cudennec, B.; Bazinet, L. Machine learning-driven discovery of bioactive peptides from duckweed (Lemnaceae) protein hydrolysates: Identification and experimental validation of 20 novel antihypertensive, antidiabetic, and/or antioxidant peptides. Food Chem. 2025, 482, 144029. [Google Scholar] [CrossRef]
- Zeinstra, G.G.; Somhorst, D.; Oosterink, E.; Fick, H.; Klopping-Ketelaars, I.; Van Der Meer, I.M.; Mes, J.J. Postprandial amino acid, glucose and insulin responses among healthy adults after a single intake of Lemna minor in comparison with green peas: A randomised trial. J. Nutr. Sci. 2019, 8, e28. [Google Scholar] [CrossRef]
- Bernier, M.-È.; Thibodeau, J.; Bazinet, L. Enzymatic hydrolysis of water lentil (duckweed): An emerging source of proteins for the production of antihypertensive fractions. Foods 2024, 13, 323. [Google Scholar] [CrossRef]
- Ujong, A.; Naibaho, J.; Ghalamara, S.; Tiwari, B.K.; Hanon, S.; Tiwari, U. Duckweed: Exploring its farm-to-fork potential for food production and biorefineries. Sustain. Food Technol. 2025, 3, 54–80. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Ziegler, P.; Sree, K.S. Accumulation of starch in duckweeds (Lemnaceae), potential energy plants. Physiol. Mol. Biol. Plants 2021, 27, 2621–2633. [Google Scholar] [CrossRef]
- Bog, M.; Appenroth, K.-J.; Sree, K.S. Duckweed (Lemnaceae): Its molecular taxonomy. Front. Sustain. Food Syst. 2019, 3, 117. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Sree, K.S.; Bog, M.; Ecker, J.; Seeliger, C.; Böhm, V.; Lorkowski, S.; Sommer, K.; Vetter, W.; Tolzin-Banasch, K. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem. 2018, 6, 483. [Google Scholar] [CrossRef] [PubMed]
- Landolt, E.; Kandeler, R. Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 4: The family of Lemnaceae—A monographic study, Vol. 2 (phytochemistry, physiology, application, bibliography). In Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel (Switzerland); Geobotanisches Institut der Eidgenoessischen Technischen Hochschule, Stiftung Ruebel: Zurich, Switzerland, 1987; Volume 71, 556p. [Google Scholar]
- Fujita, M.; Mori, K.; Kodera, T. Nutrient removal and starch production through cultivation of Wolffia arrhiza. J. Biosci. Bioeng. 1999, 87, 194–198. [Google Scholar] [CrossRef]
- Dhamaratana, S.; Methacanon, P.; Charoensiddhi, S. Chemical composition and in vitro digestibility of duckweed (Wolffia globosa) and its polysaccharide and protein fractions. Food Chem. Adv. 2025, 6, 100867. [Google Scholar] [CrossRef]
- Yan, Y.; Candreva, J.; Shi, H.; Ernst, E.; Martienssen, R.; Schwender, J.; Shanklin, J. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biol. 2013, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Bhanthumnavin, K.; MCGARRY, M.G. Wolffia arrhiza as a possible source of inexpensive protein. Nature 1971, 232, 495. [Google Scholar] [CrossRef]
- Hu, Z.; Fang, Y.; Yi, Z.; Tian, X.; Li, J.; Jin, Y.; He, K.; Liu, P.; Du, A.; Huang, Y. Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions. LWT 2022, 153, 112477. [Google Scholar] [CrossRef]
- Pagliuso, D.; Grandis, A.; Fortirer, J.S.; Camargo, P.; Floh, E.I.S.; Buckeridge, M.S. Duckweeds as promising food feedstocks globally. Agronomy 2022, 12, 796. [Google Scholar] [CrossRef]
- Jairakphan, S. Khai-nam: Food plant of human in 2000. J. Sci. Technol. Rajabhat Inst. Udonthani 1999, 2, 17–20. [Google Scholar]
- Sembada, A.A.; Faizal, A. Protein and lipid composition of duckweeds (Landoltia punctata and Wolffia arrhiza) grown in a controlled cultivation system. Asian J. Plant Sci. 2022, 21, 637–642. [Google Scholar] [CrossRef]
- Masavang, S.; Winckler, P.; Tira-umphon, A.; Phahom, T. New insights into moisture sorption characteristics, nutritional composition, and antioxidant and morphological properties of dried duckweed [Wolffia arrhiza (L.) Wimm]. J. Sci. Food Agric. 2022, 102, 2135–2143. [Google Scholar] [CrossRef]
- Prosridee, K.; Oonsivilai, R.; Tira-Aumphon, A.; Singthong, J.; Oonmetta-Aree, J.; Oonsivilai, A. Optimum aquaculture and drying conditions for Wolffia arrhiza (L.) Wimn. Heliyon 2023, 9, e19730. [Google Scholar] [CrossRef]
- Rusoff, L.L.; Blakeney Jr, E.W.; Culley Jr, D.D. Duckweeds (Lemnaceae family): A potential source of protein and amino acids. J. Agric. Food Chem. 1980, 28, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Ruekaewma, N.; Piyatiratitivorakul, S.; Powtongsook, S. Culture system for Wolffia globosa L. (Lemnaceae) for hygiene human food. Songklanakarin J. Sci. Technol 2015, 37, 575–580. [Google Scholar]
- Fujita, T.; Nakao, E.; Takeuchi, M.; Tanimura, A.; Ando, A.; Kishino, S.; Kikukawa, H.; Shima, J.; Ogawa, J.; Shimizu, S. Characterization of starch-accumulating duckweeds, Wolffia globosa, as renewable carbon source for bioethanol production. Biocatal. Agric. Biotechnol. 2016, 6, 123–127. [Google Scholar] [CrossRef]
- Duangjarus, N.; Chaiworapuek, W.; Rachtanapun, C.; Ritthiruangdej, P.; Charoensiddhi, S. Antimicrobial and functional properties of duckweed (Wolffia globosa) protein and peptide extracts prepared by ultrasound-assisted extraction. Foods 2022, 11, 2348. [Google Scholar] [CrossRef]
- Boonarsa, P.; Bunyatratchata, A.; Chumroenphat, T.; Thammapat, P.; Chaikwang, T.; Siripan, T.; Li, H.; Siriamornpun, S. Nutritional Quality, Functional Properties, and Biological Characterization of Watermeal (Wolffia globosa). Horticulturae 2024, 10, 1171. [Google Scholar] [CrossRef]
- Siriwat, W.; Ungwiwatkul, S.; Unban, K.; Laokuldilok, T.; Klunklin, W.; Tangjaidee, P.; Potikanond, S.; Kaur, L.; Phongthai, S. Extraction, enzymatic modification, and anti-cancer potential of an alternative plant-based protein from Wolffia globosa. Foods 2023, 12, 3815. [Google Scholar] [CrossRef]
- Yadav, N.K.; Patel, A.B.; Debbarma, S.; Priyadarshini, M.B.; Kumar, G.; Baidya, S.; Upadhyay, A.D. Characterization of phenolic compounds in watermeal (Wolffia globosa) through LC-ESI-QTOF-MS/MS: Assessment of bioactive compounds, in vitro antioxidant and anti-diabetic activities following different drying methods. J. Food Meas. Charact. 2024, 18, 8651–8672. [Google Scholar] [CrossRef]
- Yadav, N.K.; Patel, A.B.; Priyadarshi, H.; Baidya, S. Salinity stress-induced impacts on biomass production, bioactive compounds, antioxidant activities and oxidative stress in watermeal (Wolffia globosa). Discov. Appl. Sci. 2025, 7, 106. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef]
- Nieuwland, M.; Geerdink, P.; Engelen-Smit, N.P.; Van Der Meer, I.M.; America, A.H.; Mes, J.J.; Kootstra, A.M.J.; Henket, J.T.; Mulder, W.J. Isolation and gelling properties of duckweed protein concentrate. ACS Food Sci. Technol. 2021, 1, 908–916. [Google Scholar] [CrossRef]
- Smith, K.E.; Schäfer, M.; Lim, M.; Robles-Zazueta, C.A.; Cowan, L.; Fisk, I.D.; Xu, S.; Murchie, E.H. Aroma and metabolite profiling in duckweeds: Exploring species and ecotypic variation to enable wider adoption as a food crop. J. Agric. Food Res. 2024, 18, 101263. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, Y.; Jin, Y.; Huang, J.; Bao, S.; Fu, T.; He, Z.; Wang, F.; Zhao, H. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: A pilot-scale comparison with water hyacinth. Bioresour. Technol. 2014, 163, 82–91. [Google Scholar] [CrossRef]
- Miltko, R.; Majewska, M.; Wojtak, W.; Białek, M.; Kowalik, B.; Czauderna, M. Comparing the chemical composition of lesser duckweed (Lemna minor L.) grown in natural and laboratory settings. J. Anim. Feed Sci. 2024, 33, 357–367. [Google Scholar] [CrossRef]
- Maciejewska-Potapczykowa, W.; Konopska, L.; Narzymska, E. Proteins in duckweed (Lemna minor L.). Acta Soc. Bot. Pol. 1970, 39, 251–255. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, C.; Ma, Y.; Xu, H.; Wang, S.; Wang, Y.; Liu, X.; Zhou, G. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor. Carbohydr. Res. 2016, 435, 208–214. [Google Scholar] [CrossRef]
- Kolb, M.; Wichmann, H.; Schröder, U. GC/MS-screening analyses of valuable products in the aqueous phase from microwave-assisted hydrothermal processing of Lemna minor. Sustain. Chem. Pharm. 2019, 13, 100165. [Google Scholar] [CrossRef]
- Mirón-Mérida, V.A.; Soria-Hernández, C.; Richards-Chávez, A.; Ochoa-García, J.C.; Rodríguez-López, J.L.; Chuck-Hernández, C. The effect of ultrasound on the extraction and functionality of proteins from duckweed (Lemna minor). Molecules 2024, 29, 1122. [Google Scholar] [CrossRef] [PubMed]
- Sońta, M.; Więcek, J.; Szara, E.; Rekiel, A.; Zalewska, A.; Batorska, M. Quantitative and qualitative traits of duckweed (Lemna minor) produced on growth media with Pig Slurry. Agronomy 2023, 13, 1951. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Zeb, U. Effect of salt stress on proximate composition of duckweed (Lemna minor L.). Heliyon 2021, 7, e07399. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Akhtar, N.; Rehman, K.U.; Zeb, U. Effect of growth medium nitrogen and phosphorus on nutritional composition of Lemna minor (an alternative fish and poultry feed). BMC Plant Biol. 2022, 22, 214. [Google Scholar] [CrossRef]
- Okwuosa, O.; Eyo, J.; Amadi-Ibiam, C. Growth and Nutritional profile of Duckweed (Lemna minor) cultured with different organic manure. Int. Adv. Res. J. Sci. Eng. Technol. 2021, 8, 12. [Google Scholar]
- Ifie, I.; Olatunde, S.; Ogbon, O.; Umukoro, J.E. Processing techniques on phytochemical content, proximate composition, and toxic components in duckweed. Int. J. Veg. Sci. 2021, 27, 294–302. [Google Scholar] [CrossRef]
- Zhao, X.; Moates, G.; Wellner, N.; Collins, S.; Coleman, M.; Waldron, K. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohydr. Polym. 2014, 111, 410–418. [Google Scholar] [CrossRef]
- Velichkova, K.; Sirakov, I.; Valkova, E.; Stoyanova, S.; Kostadinova, G. Bioacumulation and protein content of Lemna minuta Kunth and Lemna valdiviana Phil. in Bulgarian water reservoirs. Sci. Pap. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2017, 6, 105–107. [Google Scholar]
- Demann, J.; Petersen, F.; Dusel, G.; Bog, M.; Devlamynck, R.; Ulbrich, A.; Olfs, H.-W.; Westendarp, H. Nutritional value of duckweed as protein feed for broiler chickens—Digestibility of crude protein, amino acids and phosphorus. Animals 2022, 13, 130. [Google Scholar] [CrossRef]
- Sharma, J.; Clark, W.D.; Shrivastav, A.K.; Goswami, R.K.; Tocher, D.R.; Chakrabarti, R. Production potential of greater duckweed Spirodela polyrhiza (L. Schleiden) and its biochemical composition evaluation. Aquaculture 2019, 513, 734419. [Google Scholar] [CrossRef]
- Fasakin, E. Nutrient quality of leaf protein concentrates produced from water fern (Azolla africana Desv) and duckweed (Spirodela polyrrhiza L. Schleiden). Bioresour. Technol. 1999, 69, 185–187. [Google Scholar] [CrossRef]
- Yu, G.; Liu, H.; Venkateshan, K.; Yan, S.; Cheng, J.; Sun, X.; Wang, D. Functional, physiochemical, and rheological properties of duckweed (Spirodela polyrhiza) protein. Trans. ASABE 2011, 54, 555–561. [Google Scholar] [CrossRef]
- Said, D.; Chrismadha, T.; Mayasari, N.; Widiyanto, T.; Ramandita, A. Nutritional content and growth ability of duckweed Spirodela polyrhiza on various culture media. Proc. IOP Conf. Ser. Earth Environ. Sci. 2022, 1062, 012009. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, Y.; Zhang, G.; Fang, Y.; Xiao, Y.; Zhao, H. Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 2012, 5, 3019–3032. [Google Scholar] [CrossRef]
- Seephua, N.; Boonarsa, P.; Li, H.; Thammapat, P.; Siriamornpun, S. Nutritional Composition and Bioactive Profiles of Farmed and Wild Watermeal (Wolffia globosa). Foods 2025, 14, 1832. [Google Scholar] [CrossRef]
- Achoki, J.; Orina, P.; Kaingu, C.; Oduma, J.; Olale, K.; Chepkirui, M.; Getabu, A. Comparative Study on Fatty Acids Composition of Lemna minor (Duckweed) Cultured in Indoor Plastic Tanks and Outdoor Earthen Ponds. Aquac. Res. 2024, 2024, 5563513. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, X.H.; Anaokar, S.; Shi, H.; Dahl, W.B.; Cai, Y.; Luo, G.; Chai, J.; Cai, Y.; Mollá-Morales, A. Engineering triacylglycerol accumulation in duckweed (Lemna japonica). Plant Biotechnol. J. 2023, 21, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, V. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 1989, 148, 130–137. [Google Scholar] [CrossRef]
- Mazen, A.M.; Zhang, D.; Franceschi, V.R. Calcium oxalate formation in Lemna minor: Physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol. 2004, 161, 435–448. [Google Scholar] [CrossRef]
- Baek, G.; Saeed, M.; Choi, H.-K. Duckweeds: Their utilization, metabolites and cultivation. Appl. Biol. Chem. 2021, 64, 73. [Google Scholar] [CrossRef] [PubMed]
- Lemon, G.D.; Posluszny, U. Comparative shoot development and evolution in the Lemnaceae. Int. J. Plant Sci. 2000, 161, 733–748. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Stomp, A.-M.; Cheng, J.J. The production of duckweed as a source of biofuels. Biofuels 2012, 3, 589–601. [Google Scholar] [CrossRef]
- Stadtlander, T.; Tschudi, F.; Seitz, A.; Sigrist, M.; Refardt, D.; Leiber, F. Partial replacement of fishmeal with duckweed (Spirodela polyrhiza) in feed for two carnivorous fish species, Eurasian perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2023, 2023, 6680943. [Google Scholar] [CrossRef]
- Monthakantirat, O.; Chulikhit, Y.; Maneenet, J.; Khamphukdee, C.; Chotritthirong, Y.; Limsakul, S.; Punya, T.; Turapra, B.; Boonyarat, C.; Daodee, S. Total active compounds and mineral contents in Wolffia globosa. J. Chem. 2022, 2022, 9212872. [Google Scholar] [CrossRef]
- Yahaya, N.; Hamdan, N.H.; Zabidi, A.R.; Mohamad, A.M.; Suhaimi, M.L.H.; Johari, M.A.A.M.; Yahya, H.N.; Yahya, H. Duckweed as a future food: Evidence from metabolite profile, nutritional and microbial analyses. Future Foods 2022, 5, 100128. [Google Scholar] [CrossRef]
- Akyüz, A.; Ersus, S. Innovative Integration of Duckweed Proteins: Enhancing the Nutritional and Textural Properties of Snack Bars, Roll Breads, and Muffins Enhancing Baked Goods With Duckweed Protein. J. Food Sci. 2025, 90, e70374. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Muller, T.; Bernier, M.-È.; Bazinet, L. Optimization of water lentil (duckweed) leaf protein purification: Identification, structure, and foaming properties. Foods 2023, 12, 3424. [Google Scholar] [CrossRef] [PubMed]
- Siripahanakul, T.; Thongsila, S.; Tanuthong, T.; Chockchaisawasdee, S. Product development of Wolffia-pork ball. Int. Food Res. J. 2013, 20, 213. [Google Scholar]
- European Food Safety Authority (EFSA). Technical Report on the Notification of Fresh PLANTs of Wolffia arrhiza and Wolffia globosa as a Traditional Food from a Third Country Pursuant to Article 14 of Regulation (EU) 2015/2283; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 2397–8325. [Google Scholar]
- Boonyapookana, B.; Upatham, E.S.; Kruatrachue, M.; Pokethitiyook, P.; Singhakaew, S. Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int. J. Phytoremediat. 2002, 4, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, F.J.; Huang, Q.; Williams, P.N.; Sun, G.X.; Zhu, Y.G. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol. 2009, 182, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Bitar, A.; Bianchini Jr, I. Mineralisaton assays of some organic resources of aquatic systems. Braz. J. Biol. 2002, 62, 557–564. [Google Scholar] [CrossRef]
- Piotrowska, A.; Bajguz, A.; Godlewska-Żyłkiewicz, B.; Zambrzycka, E. Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch. Environ. Contam. Toxicol. 2010, 58, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Romano, L.E.; Aronne, G. The world smallest plants (Wolffia sp.) as potential species for bioregenerative life support systems in space. Plants 2021, 10, 1896. [Google Scholar] [CrossRef]
- Yadav, N.K.; Patel, A.B.; Debbarma, S.; Priyadarshini, M.B.; Priyadarshi, H. Characterization of bioactive metabolites and antioxidant activities in solid and liquid fractions of fresh duckweed (Wolffia globosa) subjected to different cell wall rupture methods. ACS Omega 2024, 9, 19940–19955. [Google Scholar] [CrossRef]
- Pagliuso, D.; Jara, C.E.P.; Grandis, A.; Lam, E.; Ferreira, M.J.P.; Buckeridge, M.S. Flavonoids from duckweeds: Potential applications in the human diet. RSC Adv. 2020, 10, 44981–44988. [Google Scholar] [CrossRef]
- Gulcin, I.; Kirecci, E.; Akkemik, E.; Topal, F.; Hisar, O. Antioxidant, antibacterial, and anticandidal activities of an aquatic plant: Duckweed (Lemna minor L. Lemnaceae). Turk. J. Biol. 2010, 34, 175–188. [Google Scholar]
- Zelicha, H.; Kaplan, A.; Yaskolka Meir, A.; Tsaban, G.; Rinott, E.; Shelef, I.; Tirosh, A.; Brikner, D.; Pupkin, E.; Qi, L. The effect of Wolffia globosa Mankai, a green aquatic plant, on postprandial glycemic response: A randomized crossover controlled trial. Diabetes Care 2019, 42, 1162–1169. [Google Scholar] [CrossRef]
- Tsaban, G.; Aharon-Hananel, G.; Shalem, S.; Zelicha, H.; Yaskolka Meir, A.; Pachter, D.; Goldberg, D.T.; Kamer, O.; Alufer, L.; Stampfer, M.J. The effect of Mankai plant consumption on postprandial glycaemic response among patients with type 2 diabetes: A randomized crossover trial. Diabetes Obes. Metab. 2024, 26, 4713–4723. [Google Scholar] [CrossRef]
- Opiyo, M.A.; Muendo, P.; Mbogo, K.; Ngugi, C.C.; Charo-Karisa, H.; Orina, P.; Leschen, W.; Glencross, B.D.; Tocher, D.R. Inclusion of duckweed (Lemna minor) in the diet improves flesh omega-3 long-chain polyunsaturated fatty acid profiles but not the growth of farmed Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 2022, 292, 115442. [Google Scholar] [CrossRef]
- Kaplan, A.; Zelicha, H.; Tsaban, G.; Meir, A.Y.; Rinott, E.; Kovsan, J.; Novack, L.; Thiery, J.; Ceglarek, U.; Burkhardt, R. Protein bioavailability of Wolffia globosa duckweed, a novel aquatic plant–a randomized controlled trial. Clin. Nutr. 2019, 38, 2576–2582. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.P.; Hamdan, R.H.; Mohamed, M.; Choong, S.S.; Chan, Y.Y.; Lee, S.H. Antibacterial activity and toxicity of Duckweed, Lemna minor L. (Arales: Lemnaceae) from Malaysia. Malays. J. Microbiol. 2018, 14, 387–392. [Google Scholar] [CrossRef]
- Karamalakova, Y.; Stefanov, I.; Georgieva, E.; Nikolova, G. Pulmonary protein oxidation and oxidative stress modulation by Lemna minor L. in progressive bleomycin-induced idiopathic pulmonary fibrosis. Antioxidants 2022, 11, 523. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Margolis, L.M.; Orr, J.S. Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit. FASEB J. 2015, 29, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Timm, M.; Offringa, L.C.; Van Klinken, B.J.-W.; Slavin, J. Beyond insoluble dietary fiber: Bioactive compounds in plant foods. Nutrients 2023, 15, 4138. [Google Scholar] [CrossRef] [PubMed]
- Neufingerl, N.; Eilander, A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: A systematic review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef]
- De Beukelaar, M.F.; Zeinstra, G.G.; Mes, J.J.; Fischer, A.R. Duckweed as human food. The influence of meal context and information on duckweed acceptability of Dutch consumers. Food Qual. Prefer. 2019, 71, 76–86. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Daroch, M.; Tang, J. Positive effects of duckweed polycultures on starch and protein accumulation. Biosci. Rep. 2016, 36, e00380. [Google Scholar] [CrossRef]
- van den Berg, L.A.; Mes, J.J.; Mensink, M.; Wanders, A.J. Protein quality of soy and the effect of processing: A quantitative review. Front. Nutr. 2022, 9, 1004754. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kinabo, J.; Uebersax, M.A. Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review. Legume Sci. 2023, 5, e156. [Google Scholar] [CrossRef]
- Sobhy, E.; Kamal, M.M.; Saad, Y.; Saleh, D.A.; Elgohary, R.; Hassan, M.S. Effect of branched-chain amino acid supplementation and exercise on quadriceps muscle quantity and quality in patients with cirrhosis as assessed by ultrasonography: A randomized controlled trial. Clin. Nutr. ESPEN 2024, 61, 108–118. [Google Scholar] [CrossRef]
- Ismaiel, A.; Bucsa, C.; Farcas, A.; Leucuta, D.-C.; Popa, S.-L.; Dumitrascu, D.L. Effects of branched-chain amino acids on parameters evaluating sarcopenia in liver cirrhosis: Systematic review and meta-analysis. Front. Nutr. 2022, 9, 749969. [Google Scholar] [CrossRef]
- Bai, G.-H.; Tsai, M.-C.; Tsai, H.-W.; Chang, C.-C.; Hou, W.-H. Effects of branched-chain amino acid-rich supplementation on EWGSOP2 criteria for sarcopenia in older adults: A systematic review and meta-analysis. Eur. J. Nutr. 2022, 61, 637–651. [Google Scholar] [CrossRef]
- Miletić, N.; Popović, B.; Mitrović, O.; Kandić, M.; Leposavić, A. Phenolic compounds and antioxidant capacity of dried and candied fruits commonly consumed in Serbia. Czech J. Food Sci. 2014, 32, 360–368. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Kasote, D.M.; Ullah, N.; Usman, K.; Alsafran, M. RuBisCO: A sustainable protein ingredient for plant-based foods. Front. Sustain. Food Syst. 2024, 8, 1389309. [Google Scholar] [CrossRef]
- Kawamata, Y.; Shibui, Y.; Takumi, A.; Seki, T.; Shimada, T.; Hashimoto, M.; Inoue, N.; Kobayashi, H.; Narita, T. Genotoxicity and repeated-dose toxicity evaluation of dried Wolffia globosa Mankai. Toxicol. Rep. 2020, 7, 1233–1241. [Google Scholar] [CrossRef]
- Zhou, H.; Vu, G.; McClements, D.J. Formulation and characterization of plant-based egg white analogs using RuBisCO protein. Food Chem. 2022, 397, 133808. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.; Huang, Q.; Cheng, L.; Gan, R.; Liu, L.; Wu, D.; Li, H.; Peng, L.; Geng, F. Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: Gel properties, structure and quantitative proteome analysis. Food Hydrocoll. 2020, 106, 105873. [Google Scholar] [CrossRef]
- Sela, I.; Yaskolka Meir, A.; Brandis, A.; Krajmalnik-Brown, R.; Zeibich, L.; Chang, D.; Dirks, B.; Tsaban, G.; Kaplan, A.; Rinott, E. Wolffia globosa–mankai plant-based protein contains bioactive vitamin B12 and is well absorbed in humans. Nutrients 2020, 12, 3067. [Google Scholar] [CrossRef] [PubMed]
- Nitzke, D.; Czermainski, J.; Rosa, C.; Coghetto, C.; Fernandes, S.A.; Carteri, R.B. Increasing dietary fiber intake for type 2 diabetes mellitus management: A systematic review. World J. Diabetes 2024, 15, 1001. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, A.E.; Greff, D.; Teutsch, B.; Gede, N.; Hegyi, P.; Horvath, E.M.; Deak, P.A.; Nyirady, P.; Acs, N.; Juhasz, R. Galactomannans are the most effective soluble dietary fibers in type 2 diabetes: A systematic review and network meta-analysis. Am. J. Clin. Nutr. 2023, 117, 266–277. [Google Scholar] [CrossRef]
- Lu, K.; Yu, T.; Cao, X.; Xia, H.; Wang, S.; Sun, G.; Chen, L.; Liao, W. Effect of viscous soluble dietary fiber on glucose and lipid metabolism in patients with type 2 diabetes mellitus: A systematic review and meta-analysis on randomized clinical trials. Front. Nutr. 2023, 10, 1253312. [Google Scholar] [CrossRef]
- Avci, U.; Peña, M.J.; O’Neill, M.A. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Planta 2018, 247, 953–971. [Google Scholar] [CrossRef]
- Aguilera-Morales, M.E.; Canales-Martínez, M.M.; Ávila-González, E.; Flores-Ortíz, C.M. Nutrients and bioactive compounds of the Lemna gibba and Ulva lactuca as possible ingredients to functional foods. Lat. Am. J. Aquat. Res. 2018, 46, 709–716. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Tsai, T.-H.; Kao, Y.-H.; Hwang, K.-C.; Tseng, T.-Y.; Chou, P. Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2008, 27, 363–370. [Google Scholar] [CrossRef]
- Macena, M.d.L.; Nunes, L.F.d.S.; da Silva, A.F.; Pureza, I.R.O.M.; Praxedes, D.R.S.; Santos, J.C.d.F.; Bueno, N.B. Effects of dietary polyphenols in the glycemic, renal, inflammatory, and oxidative stress biomarkers in diabetic nephropathy: A systematic review with meta-analysis of randomized controlled trials. Nutr. Rev. 2022, 80, 2237–2259. [Google Scholar] [CrossRef]
- Törrönen, R.; Sarkkinen, E.; Niskanen, T.; Tapola, N.; Kilpi, K.; Niskanen, L. Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br. J. Nutr. 2012, 107, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.W.; Petocz, P.; McMillan-Price, J.; Flood, V.M.; Prvan, T.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, glycemic load, and chronic disease risk—A meta-analysis of observational studies. Am. J. Clin. Nutr. 2008, 87, 627–637. [Google Scholar] [CrossRef]
- Ouyang, J.; Cai, Y.; Song, Y.; Gao, Z.; Bai, R.; Wang, A. Potential benefits of selenium supplementation in reducing insulin resistance in patients with cardiometabolic diseases: A systematic review and meta-analysis. Nutrients 2022, 14, 4933. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Regmi, A.; Hu, S.Q.; Gou, L.; Chen, L.-L. Low-glycemic index diets as an intervention for diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 110, 891–902. [Google Scholar] [CrossRef]
- Diotallevi, C.; Gaudioso, G.; Fava, F.; Angeli, A.; Lotti, C.; Vrhovsek, U.; Rinott, E.; Shai, I.; Gobbetti, M.; Tuohy, K. Measuring the effect of Mankai® (Wolffia globosa) on the gut microbiota and its metabolic output using an in vitro colon model. J. Funct. Foods 2021, 84, 104597. [Google Scholar] [CrossRef]
- Patted, P.G.; Masareddy, R.S.; Patil, A.S.; Kanabargi, R.R.; Bhat, C.T. Omega-3 fatty acids: A comprehensive scientific review of their sources, functions and health benefits. Future J. Pharm. Sci. 2024, 10, 94. [Google Scholar] [CrossRef]
- Welty, F.K. Omega-3 fatty acids and cognitive function. Curr. Opin. Lipidol. 2023, 34, 12–21. [Google Scholar] [CrossRef]
- Harris, W.S. The Omega-6: Omega-3 ratio: A critical appraisal and possible successor. Prostagland. Leukot. Essent. Fat. Acids 2018, 132, 34–40. [Google Scholar] [CrossRef]
- Shakiba, E.; Pasdar, Y.; Asoudeh, F.; Najafi, F.; Saber, A.; Shakiba, M.H.; Bagheri, A. The relationship of dietary omega-3 fatty acid and omega-6 to omega-3 ratio intake and likelihood of type 2 diabetes in a cross-sectional study. BMC Endocr. Disord. 2024, 24, 259. [Google Scholar] [CrossRef]
- Goswami, R.K.; Sharma, J.; Shrivastav, A.K.; Kumar, G.; Glencross, B.D.; Tocher, D.R.; Chakrabarti, R. Effect of Lemna minor supplemented diets on growth, digestive physiology and expression of fatty acids biosynthesis genes of Cyprinus carpio. Sci. Rep. 2022, 12, 3711. [Google Scholar] [CrossRef]
- Doğan, S.Y.; Atasagun, S.; Ergönül, M.B. Determination of chemical content of Lemna minor L. by GC-MS and investigation of antioxidant activity. Commun. Fac. Sci. Univ. Ank. Ser. C Biol. 2022, 31, 53–64. [Google Scholar] [CrossRef]
- Edelman, M.; Appenroth, K.-J.; Sree, K.S.; Oyama, T. Ethnobotanical history: Duckweeds in different civilizations. Plants 2022, 11, 2124. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Lemna minor: Traditional uses, chemical constituents and pharmacological effects-A review. IOSR J. Pharm. 2019, 9, 6–11. [Google Scholar]
- Zhang, P.-Y.; Xu, X.; Li, X. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar]
- Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef]
- Heo, S.-J.; Yoon, W.-J.; Kim, K.-N.; Oh, C.; Choi, Y.-U.; Yoon, K.-T.; Kang, D.-H.; Qian, Z.-J.; Choi, I.-W.; Jung, W.-K. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Chem. Toxicol. 2012, 50, 3336–3342. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Kong, Z.-L.; Kao, N.-J.; Hu, J.-Y.; Wu, C.-S. Fucoxanthin-rich brown algae extract decreases inflammation and attenuates colitis-associated colon cancer in mice. J. Food Nutr. Res 2016, 4, 137–147. [Google Scholar]
- Cardoso, C.C.; Miraldi, E.; Ceccarini, M.; Naureen, Z.; Baini, G.; Manara, E.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Paolacci, S. Study of the effects of Lemna minor extracts on human immune cell populations. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 43–48. [Google Scholar]
- Ajit, D.; Simonyi, A.; Li, R.; Chen, Z.; Hannink, M.; Fritsche, K.L.; Mossine, V.V.; Smith, R.E.; Dobbs, T.K.; Luo, R. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochem. Int. 2016, 97, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Yiyit Doğan, S. Antimicrobial properties of lyophilized Lemna minor L. extract obtained by microwave extraction. Int. J. Sci. Eng. Manag. 2024, 11, 37–40. [Google Scholar]
- Popov, S.V.; Ovodova, R.G.; Ovodov, Y.S. Effect of lemnan, pectin from Lemna minor L., and its fragments on inflammatory reaction. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 20, 403–407. [Google Scholar] [CrossRef]
- Oluwafemi, F.A.; Abdelbaki, R.; Lai, J.C.-Y.; Mora-Almanza, J.G.; Afolayan, E.M. A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges. Life Sci. Space Res. 2021, 28, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.J.; Beauchamp, J.D.; Briand, L.; Heer, M.; Hummel, T.; Margot, C.; McGrane, S.; Pieters, S.; Pittia, P.; Spence, C. Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts? Compr. Rev. Food Sci. Food Saf. 2020, 19, 3439–3475. [Google Scholar] [CrossRef]
- Saranya, S.; Lincy, L.L.; Thamanna, L.; Dhayanithi, S.; Chellapandi, P. Wolffia: A Sustainable Aquatic Crop for Future Food Systems and Space Agriculture. Trends Food Sci. Technol. 2025, 161, 105069. [Google Scholar] [CrossRef]
- Kotowska, U.; Piekutin, J.; Polińska, W.; Kotowski, A. Removal of contaminants of emerging concern by Wolffia arrhiza and Lemna minor depending on the process conditions, pollutants concentration, and matrix type. Sci. Rep. 2024, 14, 15898. [Google Scholar] [CrossRef]
- Block, W.; Lewis Smith, R.; Kennedy, A. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol. Rev. 2009, 84, 449–484. [Google Scholar] [CrossRef]
- Moberg, F.; Rönnbäck, P. Ecosystem services of the tropical seascape: Interactions, substitutions and restoration. Ocean Coast. Manag. 2003, 46, 27–46. [Google Scholar] [CrossRef]
- López-Landavery, E.A.; Carpizo-Ituarte, E.J.; Pérez-Carrasco, L.; Díaz, F.; Lafarga-De la Cruz, F.; García-Esquivel, Z.; Hernández-Ayón, J.M.; Galindo-Sánchez, C.E. Acidification stress effect on umbonate veliger larval development in Panopea globosa. Mar. Pollut. Bull. 2021, 163, 111945. [Google Scholar] [CrossRef] [PubMed]
- Datta, S. Ecology of plant populations II. Reproduction. In Ecology and Management of Aquatic Vegetation in the Indian Subcontinent; Springer: Berlin/Heidelberg, Germany, 1990; pp. 107–125. [Google Scholar]
- Çelekli, A.; Zariç, Ö.E. Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis. Life Sci. Space Res. 2024, 41, 181–190. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; López-Pozo, M.; Polutchko, S.K.; Fourounjian, P.; Stewart, J.J.; Zenir, M.C.; Adams III, W.W. Growth and nutritional quality of Lemnaceae viewed comparatively in an ecological and evolutionary context. Plants 2022, 11, 145. [Google Scholar] [CrossRef]
- Park, H.; Park, J.H.; Lee, Y.; Woo, D.U.; Jeon, H.H.; Sung, Y.W.; Shim, S.; Kim, S.H.; Lee, K.O.; Kim, J.-Y. Genome of the world’s smallest flowering plant, Wolffia australiana, helps explain its specialized physiology and unique morphology. Commun. Biol. 2021, 4, 900. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Kumar, G.; Debbarma, S.; Mutum, D.; Debnath, S.; Yadav, N.K. Live duckweed-based circular aquaculture for climate resilience and carbon footprint reduction of fed aquaculture. In Outlook of Climate Change and Fish Nutrition; Springer: Berlin/Heidelberg, Germany, 2023; pp. 337–351. [Google Scholar]
- Vegh, R.; Sipiczki, G.; Csoka, M.; Mednyanszky, Z.; Bujna, E.; Takacs, K. Chemical Characterization, In Vitro Analysis of Functional Properties, and Volatile Profiling of Sixteen Nutraceuticals Marketed as “Superfood”. Appl. Sci. 2024, 14, 11069. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- Olsen, M.L.; Olsen, K.; Jensen, P.E. Consumer acceptance of microalgae as a novel food-Where are we now? And how to get further. Physiol. Plant. 2024, 176, e14337. [Google Scholar] [CrossRef]
- Matos, Â.P.; Novelli, E.; Tribuzi, G. Use of algae as food ingredient: Sensory acceptance and commercial products. Front. Food Sci. Technol. 2022, 2, 989801. [Google Scholar] [CrossRef]
- On-Nom, N.; Promdang, P.; Inthachat, W.; Kanoongon, P.; Sahasakul, Y.; Chupeerach, C.; Suttisansanee, U.; Temviriyanukul, P. Wolffia globosa-based nutritious snack formulation with high protein and dietary fiber contents. Foods 2023, 12, 2647. [Google Scholar] [CrossRef]
- Rocchetti, G.; Rebecchi, A.; Zhang, L.; Dallolio, M.; Del Buono, D.; Freschi, G.; Lucini, L. The effect of common duckweed (Lemna minor L.) extract on the shelf-life of beef burgers stored in modified atmosphere packs: A metabolomics approach. Food Chem. X 2023, 20, 101013. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Recent advances toward the application of non-thermal technologies in food processing: An insight on the bioaccessibility of health-related constituents in plant-based products. Foods 2021, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Ertop, M.H.; Bektaş, M. Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Health 2018, 4, 159–165. [Google Scholar] [CrossRef]
- Qiaoqiao, Y.; Bingying, H.; Bohan, Y.; Hanggui, L.; Jiaming, Z. Effects of giant duckweed DW2602 as feed supplement on the growth of tilapia fingerlings. J. Trop. Biol. 2023, 14, 451–457. [Google Scholar]
- Van Dyke, J.; Sutton, D. Digestion of duckweed (Lemna spp.) by the grass carp (Ctenopharyngodon idella). J. Fish Biol. 1977, 11, 273–278. [Google Scholar] [CrossRef]
Heavy Metals | General Safety Limits |
---|---|
lead | <0.3 mg/kg |
arsenic (inorganic) | <0.10 mg/kg |
cadmium | <0.2 mg/kg |
chromium | <1 mg/kg |
mercury | <0.10 mg/kg |
copper | <0.8 mg/kg |
molybdenum | <0.3 mg/kg |
zinc | <5 mg/kg |
boron | <5 mg/kg |
manganese | <6 mg/kg |
cyanotoxins | microcystins: 0.006 μg/g fresh weight |
Barrier | Description of Problem | Countermeasure Strategy |
---|---|---|
Green color and general appearance | Reminds me of algae, a pond, “something dirty” | Esthetic packaging, attractive branding (does not require the use of additional colorants, contains a natural colorant). In the future, ‘green protein’ or ‘superfood’ could be potentially authorized, provided that the necessary studies are conducted and confirmation is obtained from the relevant authorities |
Unfamiliarity with product | Lack of trust, no cultural references | Educational campaigns, marketing based on health and environmental values |
Taste and aroma | Bitter or grassy aftertaste | Fermentation, seasoning, combining with vegetables or known culinary ingredients |
Context of meal | Not suitable for desserts and sweet dishes | Use in salads, soups, burgers—as added vegetable |
Negative associations of “duckweed” | Reminds me of ducks, a pond, “weeds” | Using alternative names: “water lentils”, “green protein”, “Lemna blend” |
Food neophobia | Fear of novelty, reluctance to experiment | Tastings, social media campaigns, presence in well-known brands |
Safety and cleanliness concerns | Fear of water pollution, toxins | Information on controlled crops, quality certificates, purity tests |
Lack of presence in Western cuisine | Lack of cultural familiarity with product | References to Asian cuisine (e.g., “Khai-nam”), incorporation into well-known fusion dishes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zięć, G.; Michalski, O.; Konieczna-Molenda, A.; Dera, T.; Tkaczewska, J. Nutritional Value, Health Properties, Safety Considerations, and Consumer Acceptance of Lemnoideae as Human Food. Nutrients 2025, 17, 3026. https://doi.org/10.3390/nu17183026
Zięć G, Michalski O, Konieczna-Molenda A, Dera T, Tkaczewska J. Nutritional Value, Health Properties, Safety Considerations, and Consumer Acceptance of Lemnoideae as Human Food. Nutrients. 2025; 17(18):3026. https://doi.org/10.3390/nu17183026
Chicago/Turabian StyleZięć, Gabriela, Oskar Michalski, Anna Konieczna-Molenda, Tomasz Dera, and Joanna Tkaczewska. 2025. "Nutritional Value, Health Properties, Safety Considerations, and Consumer Acceptance of Lemnoideae as Human Food" Nutrients 17, no. 18: 3026. https://doi.org/10.3390/nu17183026
APA StyleZięć, G., Michalski, O., Konieczna-Molenda, A., Dera, T., & Tkaczewska, J. (2025). Nutritional Value, Health Properties, Safety Considerations, and Consumer Acceptance of Lemnoideae as Human Food. Nutrients, 17(18), 3026. https://doi.org/10.3390/nu17183026