Maternal Folic Acid Supplementation, Perinatal Factors, and Pre-Adolescent Asthma: Findings from the Healthy Growth Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethical Considerations
2.3. Data Collection
2.4. Asthma Status
2.5. Maternal Folic Acid Supplementation
2.6. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGA | Appropriate for gestational age |
95% CI | 95% Confidence interval |
HGS | Healthy Growth Study |
ISAAC | International Study on Asthma and Allergy in Childhood |
IQR | Interquartile range |
LGA | Large for gestational age |
OR | Odds ratio |
SGA | Small for gestational age |
WHO | World Health Organization |
References
- Yuan, L.; Tao, J.; Wang, J.; She, W.; Zou, Y.; Li, R.; Ma, Y.; Sun, C.; Bi, S.; Wei, S.; et al. Global, regional, national burden of asthma from 1990 to 2021, with projections of incidence to 2050: A systematic analysis of the global burden of disease study 2021. eClinicalMedicine 2025, 80, 103051. [Google Scholar] [CrossRef]
- Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/2024-report/ (accessed on 23 May 2025).
- Serebrisky, D.; Wiznia, A. Pediatric Asthma: A Global Epidemic. Ann. Glob. Health 2019, 85, 6. [Google Scholar] [CrossRef]
- Plaza-González, S.; Zabala-Baños, M.d.C.; Astasio-Picado, Á.; Jurado-Palomo, J. Psychological and Sociocultural Determinants in Childhood Asthma Disease: Impact on Quality of Life. Int. J. Env. Res. Public Health 2022, 19, 2652. [Google Scholar] [CrossRef]
- Holden, K.A.; Hawcutt, D.B.; Sinha, I.P. Socioeconomic determinants of outcomes in childhood asthma. Paediatr Respir Rev. 2025, in press. [CrossRef]
- Mallol, J. Childhood asthma in developing countries. Low income aspects and related matters. Allergol. Immunopathol. 2000, 28, 283–286. [Google Scholar]
- Asher, M.I.; García-Marcos, L.; Pearce, N.E.; Strachan, D.P. Trends in worldwide asthma prevalence. Eur. Respir. J. 2020, 56, 2002094. [Google Scholar] [CrossRef]
- Karachaliou, F.; Vlachopapadopoulou, E.; Psaltopoulou, T.; Manios, Y.; Koutsouki, D.; Bogdanis, G.; Carayianni, V.; Sergentanis, T.; Hatzakis, A.; Michalacos, S. Prevalence of asthma symptoms and association with obesity, sedentary lifestyle and sociodemographic factors: Data from the Hellenic National Action Plan for the assessment, prevention and treatment of childhood obesity (MIS301205). J. Asthma 2020, 57, 55–61. [Google Scholar] [CrossRef]
- Konstantakopoulou, O.K.D.; Economou, C.; Charalambous, G. Barriers in Access to Pharmaceutical Care in Greece: The Case Study of the Out-of-Hospital Management of Patients with Acute Asthma. Front. Public Health 2018, 6, 199. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.B.; Spin, P.; Connolly, F.; Stein, M.; Cheng, T.L.; Connor, K. Asthma and Attendance in Urban Schools. Prev. Chronic Dis. 2019, 16, 190074. [Google Scholar] [CrossRef] [PubMed]
- Toyran, M.; Yagmur, I.T.; Guvenir, H.; Haci, I.A.; Bahceci, S.; Batmaz, S.B.; Topal, O.Y.; Celik, I.K.; Karaatmaca, B.; Misirlioglu, E.D.; et al. Asthma control affects school absence, achievement and quality of school life: A multicenter study. Allergol. Immunopathol. 2020, 48, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.; Ramagopal, M.; Gileles-Hillel, A.; Forno, E. Sleep disorders in children with asthma. Pediatr. Pulmonol. 2022, 57, 1851–1859. [Google Scholar] [CrossRef]
- Perry, R.; Braileanu, G.; Palmer, T.; Stevens, P. The Economic Burden of Pediatric Asthma in the United States: Literature Review of Current Evidence. Pharmacoeconomics 2019, 37, 155–167. [Google Scholar] [CrossRef]
- Boulieri, A.; Hansell, A.; Blangiardo, M. Investigating trends in asthma and COPD through multiple data sources: A small area study. Spat. Spatiotemporal Epidemiol. 2016, 19, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Halterman, J.S.; Auinger, P.; Conn, K.M.; Lynch, K.; Yoos, H.L.; Szilagyi, P.G. Inadequate Therapy and Poor Symptom Control among Children with Asthma: Findings from a Multistate Sample. Ambul. Pediatr. 2007, 7, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Dubaybo, B.A. The Care of Asthma Patients in Communities with Limited Resources. Res. Rep. Trop. Med. 2021, 12, 33–38. [Google Scholar] [CrossRef]
- Barker, D.J. The developmental origins of adult disease. J. Am. Coll. Nutr. 2004, 23, 588S–595S. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.O. The early life origins of asthma and related allergic disorders. Arch. Dis. Child. 2004, 89, 97–102. [Google Scholar] [CrossRef]
- Gomez, J.L. Epigenetics in Asthma. Curr. Allergy Asthma Rep. 2019, 19, 56. [Google Scholar] [CrossRef]
- Tareke, A.A.; Melak, E.G.; Mengistu, B.K.; Hussen, J.; Molla, A. Association between maternal dietary diversity during pregnancy and birth outcomes: Evidence from a systematic review and meta-analysis. BMC Nutr. 2024, 10, 151. [Google Scholar] [CrossRef]
- Chia, A.-R.; Chen, L.-W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; Van Dam, R.M.; Chong, M.F.-F. Maternal dietary patterns and birth outcomes: A systematic review and meta-analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef]
- Chen, L.-W.; Lyons, B.; Navarro, P.; Shivappa, N.; Mehegan, J.; Murrin, C.M.; Hébert, J.R.; Kelleher, C.C.; Phillips, C.M. Maternal dietary inflammatory potential and quality are associated with offspring asthma risk over 10-year follow-up: The Lifeways Cross-Generation Cohort Study. Am. J. Clin. Nutr. 2020, 111, 440–447. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2015, 2015, CD007950. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, B.; Cao, Y.; Shao, Y.; Wu, W.; Zhou, J.; Tan, X.; Wu, X.; Kong, J.; Hu, C.; et al. Association of maternal folate intake during pregnancy with infant asthma risk. Sci. Rep. 2019, 9, 8347. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhu, J.; Wang, Z.; Wang, L.; Tan, T.; Sun, L. Relationship between maternal folic acid supplementation during pregnancy and risk of childhood asthma: Systematic review and dose-response meta-analysis. Front. Pediatr. 2022, 10, 2022. [Google Scholar] [CrossRef]
- Moschonis, G.; Tanagra, S.; Vandorou, A.; Kyriakou, A.E.; Dede, V.; Siatitsa, P.E.; Koumpitski, A.; Androutsos, O.; Grammatikaki, E.; Kantilafti, M.; et al. Social, economic and demographic correlates of overweight and obesity in primary-school children: Preliminary data from the Healthy Growth Study. Public Health Nutr. 2010, 13, 1693–1700. [Google Scholar] [CrossRef]
- Vassilopoulou, E.; Tsironis, V.; Karaglani, E.; Sarapis, K.; Vasileiadi, E.; Mavrogianni, C.; Chouliaras, G.; Manios, Y.; Moschonis, G. The Association between Disordered Eating Behavior and Body Image Biological Maturation and Levels of Adipocytokines in Preadolescent Girls: The Healthy Growth Study. Women 2021, 1, 169–180. [Google Scholar] [CrossRef]
- Hellenic National Statistical Service of Greece. 2001. Available online: https://www.statistics.gr/en/home/ (accessed on 10 October 2009).
- Asher, M.; Keil, U.; Anderson, H.; Beasley, R.; Crane, J.; Martinez, F.; Mitchell, E.; Pearce, N.; Sibbald, B.; Stewart, A. International Study of Asthma and Allergies in Childhood (ISAAC): Rationale and methods. Eur. Respir. J. 1995, 8, 483–491. [Google Scholar] [CrossRef]
- Textor, J.v.d.Z.B.; Gilthorpe, M.K.; Liskiewicz, M.; Ellison, G.T.H. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Intern. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef]
- Beasley, R.; Semprini, A.; Mitchell, E.A. Risk factors for asthma: Is prevention possible? Lancet 2015, 386, 1075–1085. [Google Scholar] [CrossRef]
- Rosenquist, N.A.; Richards, M.; Ferber, J.R.; Li, D.K.; Ryu, S.Y.; Burkin, H.; Strickland, M.J.; Darrow, L.A. Prepregnancy body mass index and risk of childhood asthma. Allergy 2023, 78, 1234–1244. [Google Scholar] [CrossRef]
- Dumas, O.; Arroyo, A.C.; Faridi, M.K.; James, K.; Hsu, S.; Powe, C.; Camargo, C.A., Jr. Cohort Study of Maternal Gestational Weight Gain, Gestational Diabetes, and Childhood Asthma. Nutrients 2022, 14, 5188. [Google Scholar] [CrossRef]
- Shah, R.; Newcomb, D.C. Sex Bias in Asthma Prevalence and Pathogenesis. Front. Immunol. 2018, 9, 2018. [Google Scholar] [CrossRef]
- Leps, C.; Carson, C.; Quigley, M.A. Gestational age at birth and wheezing trajectories at 3–11 years. Arch. Dis. Child. 2018, 103, 1138–1144. [Google Scholar] [CrossRef]
- Zacharasiewicz, A. Maternal smoking in pregnancy and its influence on childhood asthma. ERJ Open Res. 2016, 2, 00042–02016. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Özuygur Ermis, S.S.; Rådinger, M.; Bossios, A.; Kankaanranta, H.; Nwaru, B. Sex Disparities in Asthma Development and Clinical Outcomes: Implications for Treatment Strategies. J. Asthma Allergy 2022, 15, 231–247. [Google Scholar] [CrossRef]
- Vink, N.M.; Postma, D.S.; Schouten, J.P.; Rosmalen, J.G.; Boezen, H.M. Gender differences in asthma development and remission during transition through puberty: The TRacking Adolescents’ Individual Lives Survey (TRAILS) study. J. Allergy Clin. Immunol. 2010, 126, 498–504.e6. [Google Scholar] [CrossRef]
- Miyake, K.; Kushima, M.; Shinohara, R.; Horiuchi, S.; Otawa, S.; Akiyama, Y.; Ooka, T.; Kojima, R.; Yokomichi, H.; Yamagata, Z.; et al. Maternal smoking status before and during pregnancy and bronchial asthma at 3 years of age: A prospective cohort study. Sci. Rep. 2023, 13, 3234. [Google Scholar] [CrossRef]
- Gambadauro, A.; Galletta, F.; Andrenacci, B.; Foti Randazzese, S.; Patria, M.F.; Manti, S. Impact of E-Cigarettes on Fetal and Neonatal Lung Development: The Influence of Oxidative Stress and Inflammation. Antioxidants 2025, 14, 262. [Google Scholar] [CrossRef]
- Hayashi, T.; Adachi, Y.; Hasegawa, K.; Morimoto, M. Less sensitivity for late airway inflammation in males than females in BALB/c mice. Scand. J. Immunol. 2003, 57, 562–567. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Harb, H.; Michel, S.; Alhamwe, B.A.; Renz, H.; Tost, J. Epigenetics and allergy: From basic mechanisms to clinical applications. Epigenomics 2017, 9, 539–571. [Google Scholar] [CrossRef]
- Acevedo, N.; Alashkar Alhamwe, B.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinás-Caballero, K.; et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021, 13, 724. [Google Scholar] [CrossRef]
- Papamichael, M.M.; Katsardis, C. Nutrient intake, epigenetics, and asthma. In Epigenetics in Human Disease, 3rd ed.; Tollefsbol, T., Ed.; Academic Press: Cambridge, MA, USA, 2024; Chapter 18; pp. 677–716. [Google Scholar]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Graham, I.M.; O’Callaghan, P. Vitamins, homocysteine and cardiovascular risk. Cardiovasc. Drugs Ther. 2002, 16, 383–389. [Google Scholar] [CrossRef]
- Whitrow, M.J.; Moore, V.M.; Rumbold, A.R.; Davies, M.J. Effect of supplemental folic acid in pregnancy on childhood asthma: A prospective birth cohort study. Am. J. Epidemiol. 2009, 170, 1486–1493. [Google Scholar] [CrossRef]
- Fainaru, O.; Shseyov, D.; Hantisteanu, S.; Groner, Y. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc. Natl. Acad. Sci. USA 2005, 102, 10598–10603. [Google Scholar] [CrossRef]
- Baccarelli, A.; Rusconi, F.; Bollati, V.; Catelan, D.; Accetta, G.; Hou, L.; Barbone, F.; Bertazzi, P.A.; Biggeri, A. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma. Epigenomics 2012, 4, 91–100. [Google Scholar] [CrossRef]
- Malmhäll, C.; Alawieh, S.; Lu, Y.; Sjöstrand, M.; Bossios, A.; Eldh, M.; Rådinger, M. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 2014, 133, 1429–1438.e7. [Google Scholar] [CrossRef]
- Martinez-Nunez, R.T.; Louafi, F.; Sanchez-Elsner, T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J. Biol. Chem. 2011, 286, 1786–1794. [Google Scholar] [CrossRef]
- Mayoral, R.J.; Deho, L.; Rusca, N.; Bartonicek, N.; Saini, H.K.; Enright, A.J.; Monticelli, S. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS ONE 2011, 6, e26133. [Google Scholar] [CrossRef]
- Harb, H.; Amarasekera, M.; Ashley, S.; Tulic, M.K.; Pfefferle, P.I.; Potaczek, D.P.; Martino, D.; Kesper, D.A.; Prescott, S.L.; Renz, H. Epigenetic Regulation in Early Childhood: A Miniaturized and Validated Method to Assess Histone Acetylation. Int. Arch. Allergy Immunol. 2015, 168, 173–181. [Google Scholar] [CrossRef]
- Perveen, K.; Quach, A.; McPhee, A.; Prescott, S.L.; Barry, S.C.; Hii, C.S.; Ferrante, A. Cord Blood T Cells Expressing High and Low PKCζ Levels Develop into Cells with a Propensity to Display Th1 and Th9 Cytokine Profiles, Respectively. Int. J. Mol. Sci. 2021, 22, 4907. [Google Scholar] [CrossRef]
- Perveen, K.; Quach, A.; Stark, M.J.; Prescott, S.L.; Barry, S.C.; Hii, C.S.; Ferrante, A. Characterization of the Transient Deficiency of PKC Isozyme Levels in Immature Cord Blood T Cells and Its Connection to Anti-Allergic Cytokine Profiles of the Matured Cells. Int. J. Mol. Sci. 2021, 22, 12650. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Teixeira, L.K.; Fonseca, B.P.; Barboza, B.A.; Viola, J.P. The role of interferon-gamma on immune and allergic responses. Mem. Inst. Oswaldo Cruz 2005, 100, 137–144. [Google Scholar] [CrossRef]
- Kanno, T.; Nakano, K.; Endo, Y. Cellular metabolism in Th9, Th17, and Treg cell differentiation. Int. Immunol. 2025, dxaf032. [Google Scholar] [CrossRef] [PubMed]
- Hii, C.S.; Costabile, M.; Mayne, G.C.; Der, C.J.; Murray, A.W.; Ferrante, A. Selective deficiency in protein kinase C isoenzyme expression and inadequacy in mitogen-activated protein kinase activation in cord blood T cells. Biochem. J. 2003, 370, 497–503. [Google Scholar] [CrossRef]
- Prescott, S.L.; Irvine, J.; Dunstan, J.A.; Hii, C.; Ferrante, A. Protein kinase Czeta: A novel protective neonatal T-cell marker that can be upregulated by allergy prevention strategies. J. Allergy Clin. Immunol. 2007, 120, 200–206. [Google Scholar] [PubMed]
- D’Vaz, N.; Ma, Y.; Dunstan, J.A.; Lee-Pullen, T.F.; Hii, C.; Meldrum, S.; Zhang, G.; Metcalfe, J.; Ferrante, A.; Prescott, S.L. Neonatal protein kinase C zeta expression determines the neonatal T-Cell cytokine phenotype and predicts the development and severity of infant allergic disease. Allergy 2012, 67, 1511–1518. [Google Scholar]
- Harb, H.; Irvine, J.; Amarasekera, M.; Hii, C.S.; Kesper, D.A.; Ma, Y.; D’Vaz, N.; Renz, H.; Potaczek, D.P.; Prescott, S.L.; et al. The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil. Biosci. Rep. 2017, 37, BSR20160485. [Google Scholar] [CrossRef]
- Jiao, X.; Wang, L.; Wei, Z.; Liu, B.; Liu, X.; Yu, X. Vitamin D deficiency during pregnancy affects the function of Th1/Th2 cells and methylation of IFN-γ gene in offspring rats. Immunol. Lett. 2019, 212, 98–105. [Google Scholar]
- Cho, H.J.; Sheen, Y.H.; Kang, M.J.; Lee, S.H.; Lee, S.Y.; Yoon, J.; Jung, S.; Lee, S.H.; Kim, Y.H.; Yang, S.I.; et al. Prenatal 25-hydroxyvitamin D deficiency affects development of atopic dermatitis via DNA methylation. J. Allergy Clin. Immunol. 2019, 143, 1215–1218. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Farley, T.K.; Richoz, N.; Yao, C.; Shih, H.Y.; Petermann, F.; Zhang, Y.; Sun, H.W.; Hayes, E.; Mikami, Y.; et al. Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity 2019, 50, 106–120.e110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, C.; Yang, A.; Zhang, R.; Gong, J.; Mo, F. Is preterm birth associated with asthma among children from birth to 17 years old? -A study based on 2011-2012 US National Survey of Children’s Health. Ital. J. Pediatr. 2018, 44, 151. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Chen, O. What is the impact of birth weight corrected for gestational age on later onset asthma: A meta-analysis. Allergy Asthma Clin. Immunol. 2022, 18, 1. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, M.; Dai, S.; Wang, Y.; Yao, J.; Shentu, H.; Huang, J.; Yu, C.; Zhang, H.; Wang, T.; et al. Association of cesarean section with asthma in children/adolescents: A systematic review and meta-analysis based on cohort studies. BMC Pediatr. 2023, 23, 571. [Google Scholar] [CrossRef]
- Neuman, Å.; Hohmann, C.; Orsini, N.; Pershagen, G.; Eller, E.; Kjaer, H.F.; Gehring, U.; Granell, R.; Henderson, J.; Heinrich, J.; et al. Maternal smoking in pregnancy and asthma in preschool children: A pooled analysis of eight birth cohorts. Am. J. Respir. Crit. Care Med. 2012, 186, 1037–1043. [Google Scholar] [CrossRef]
- Bianco-Miotto, T.; Craig, J.M.; Gasser, Y.P.; van Dijk, S.J.; Ozanne, S.E. Epigenetics and DOHaD: From basics to birth and beyond. J. Dev. Orig. Health Dis. 2017, 8, 513–519. [Google Scholar] [CrossRef]
- Mallol, J.; Crane, J.; von Mutius, E.; Odhiambo, J.; Keil, U.; Stewart, A. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A global synthesis. Allergo Immunopathol. 2013, 41, 73–85. [Google Scholar] [CrossRef]
- Ellwood, P.; Asher, M.I.; García-Marcos, L.; Williams, H.; Keil, U.; Robertson, C.; Nagel, G. Do fast foods cause asthma, rhinoconjunctivitis and eczema? Global findings from the International Study of Asthma and Allergies in Childhood (ISAAC) phase three. Thorax 2013, 68, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Villanueva, C.M.; Font-Ribera, L.; Martinez, D.; Basagaña, X.; Belmonte, J.; Vrijheid, M.; Gražulevičienė, R.; Kogevinas, M.; Nieuwenhuijsen, M.J. Risks and Benefits of Green Spaces for Children: A Cross-Sectional Study of Associations with Sedentary Behavior, Obesity, Asthma, and Allergy. Env. Health Perspect. 2014, 122, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Abate, B.B.; Kumsa, H.; Kibret, G.A.; Wodaynew, T.; Habtie, T.E.; Kassa, M.; Munie, M.A.; Temesgen, D.; Tilahun, B.D.; Merchaw, A.; et al. Preconception Folic Acid and Multivitamin Supplementation for the Prevention of Neural Tube Defect: An Umbrella Review of Systematic Review and Meta-analysis. Neuroepidemiology 2024, 9, 412–425. [Google Scholar]
- Adgent, M.A.; Vereen, S.; McCullough, A.; Jones, S.H.; Torstenson, E.; Velez Edwards, D.R.; Hartmann, K.E.; Carroll, K.N. Periconceptional folic acid supplementation and child asthma: A Right from the Start follow-up study. J. Matern. Fetal Neonatal Med. 2022, 35, 10232–10238. [Google Scholar] [CrossRef]
- Parr, C.L.; Magnus, M.C.; Karlstad, Ø.; Haugen, M.; Refsum, H.; Ueland, P.M.; McCann, A.; Nafstad, P.; Håberg, S.E.; Nystad, W.; et al. Maternal Folate Intake during Pregnancy and Childhood Asthma in a Population-based Cohort. Am. J. Respir. Crit. Care Med. 2017, 195, 221–228. [Google Scholar] [CrossRef]
- Clark, N.M.; Dodge, J.A.; Thomas, L.J.; Andridge, R.R.; Awad, D.; Paton, J.Y. Asthma in 10- to 13-year-olds: Challenges at a time of transition. Clin. Pediatr. 2010, 49, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, M.; Bokor, B.R. Tanner Stages. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- IOM. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy: Washington, DC, USA, 1998. [Google Scholar]
- Wang, X.; Cheng, Z. Cross-Sectional Studies: Strengths, Weaknesses, and Recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef] [PubMed]
- Kuphanga, D. Questionnaires in Research: Their Role, Advantages, and Main Aspects. ActionAid Int. 2024. preprint. [Google Scholar] [CrossRef]
- Katsardis, C.V.; Alexandraki, S.; Paraskakis, E. Spirometry in children 6-16 years old. In Paediatric Pulmonary Function Testing Indications and Interpretation; Katsardis, C., Koumbourlis, A., Anthracopoulos, M., Paraskakis, E., Eds.; NOVA Biomedical: New York, NY, USA, 2015; Chapter 2; pp. 15–42. [Google Scholar]
- Weiss, S.T.; Mirzakhani, H.; Carey, V.J.; O’Connor, G.T.; Zeiger, R.S.; Bacharier, L.B.; Stokes, J.; Litonjua, A.A. Prenatal vitamin D supplementation to prevent childhood asthma: 15-year results from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). J. Allergy Clin. Immunol. 2024, 153, 378–388. [Google Scholar] [CrossRef]
- van Meel, E.R.; Mensink-Bout, S.M.; den Dekker, H.T.; Ahluwalia, T.S.; Annesi-Maesano, I.; Arshad, S.H.; Baïz, N.; Barros, H.; von Berg, A.; Bisgaard, H.; et al. Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: A meta-analysis of 150 000 European children. Eur. Respir. J. 2022, 60, 2102395. [Google Scholar] [CrossRef]
- Azizpour, Y.; Delpisheh, A.; Montazeri, Z.; Sayehmiri, K.; Darabi, B. Effect of childhood BMI on asthma: A systematic review and meta-analysis of case-control studies. BMC Pediatr. 2018, 18, 143. [Google Scholar] [CrossRef]
- Marenholz, I.; Esparza-Gordillo, J.; Rüschendorf, F.; Bauerfeind, A.; Strachan, D.P.; Spycher, B.D.; Baurecht, H.; Margaritte-Jeannin, P.; Sääf, A.; Kerkhof, M.; et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat. Commun. 2015, 6, 8804. [Google Scholar] [CrossRef]
Characteristics | Pre-Adolescent Asthma | |||
---|---|---|---|---|
No n (%) | Yes n (%) | p-Value | ||
Demographic | ||||
Age (years), n (Mean ± SD) | 1876 (11.2 ± 0.7) | 450 (11.1 ± 0.6) | 0.040 b | |
Child’s Sex, n (%) | Males | 892 (47.4) | 263 (58.3) | <0.001 a |
Females | 989 (52.6) | 188 (41.7) | ||
Socioeconomic Level of School (SEL), n (%) | Lower | 498 (26.5) | 106 (23.6) | 0.017 a |
Medium | 638 (34.0) | 133 (29.6) | ||
Higher | 743 (39.5) | 211 (46.8) | ||
Mothers educational level, n (%) | Primary | 127 (7.4) | 24 (5.9) | 0.47 a |
Secondary | 845 (49.3) | 211 (51.6) | ||
Tertiary | 742 (43.3) | 174 (42.5) | ||
Maternal age (years) [Median, (min, max) IQR] | [40 (26, 58) IQR: 32] | [40 (28, 58) IQR: 30] | 0.002 c | |
Environmental | ||||
Neighborhood has park areas for exercise, n (%) | Agree | 694 (46.6) | 175 (48.1) | 0.60 a |
Disagree | 797 (53.5) | 189 (51.9) | ||
Neighborhood has too much traffic, n (%) | Agree | 1062 (68.9) | 236 (64.5) | 0.042 a |
Disagree | 456 (31.1) | 130 (35.5) | ||
Perinatal | ||||
Maternal pre-pregnancy weight, n (%) | UW/NW | 1525 (81.1) | 375 (83.1) | 0.345 a |
OW/OB | 356 (18.9) | 76 (16.8) | ||
Gestational diabetes, n (%) | Yes | 41 (2.2) | 17 (3.8) | 0.047 a |
No/I don’t know | 1836 (97.8) | 428 (96.2) | ||
Mode of delivery, n (%) | Normal Birth | 1366 (72.6) | 299 (66.3) | 0.008 a |
Cesarean | 515 (27.4) | 152 (33.7) | ||
Gestational age, n (%) | <37 weeks | 339 (18.0) | 99 (21.9) | 0.05 a |
≥37 weeks | 1542 (82.0) | 352 (78.1) | ||
Weight categories for gestational age, n (%) | AGA | 1528 (81.2) | 347 (76.9) | 0.12 a |
SGA | 219 (11.6) | 65 (14.4) | ||
LGA | 134 (7.1) | 39 (6.7) | ||
Exclusive breastfeeding, n (%) | Not Exclusive | 1724 (91.6) | 418 (92.7) | 0.47 a |
Exclusive | 157 (8.4) | 33 (7.3) | ||
Maternal folic acid intake during pregnancy | ||||
Trimester 1, n (%) | No | 1594 (84.7) | 365 (81.1) | 0.059 a |
Yes | 287 (15.3) | 85 (18.9) | ||
Trimester 2, n (%) | No | 1487 (79.1) | 337 (74.9) | 0.054 a |
Yes | 394 (20.9) | 113 (25.1) | ||
Trimester 3, n (%) | No | 1513 (80.4) | 344 (76.4) | 0.059 a |
Yes | 368 (19.6) | 106 (23.6) | ||
Mother smoking during pregnancy, n (%) | No | 1578 (83.9) | 381 (84.5) | 0.76 a |
Yes | 303 (16.1) | 70 (15.5) | ||
Passive smoking during pregnancy, n (%) | No | 1408 (74.9) | 317 (70.3) | 0.047 a |
Yes | 473 (25.1) | 134 (29.7) |
Maternal Folic Acid Intake (Yes) | Pre-Adolescent Asthma | |||||
---|---|---|---|---|---|---|
n | cOR (95% CI), p-Value | n | aOR (95% CI), Padj * | |||
1st Trimester | 372 | 1.29 (0.99, 1.69), 0.059 | 322 | 1.32 (0.99, 1.76), 0.063 | ||
2nd Trimester | 507 | 1.27 (0.99, 1.61), 0.055 | 445 | 1.30 (0.99, 1.68), 0.051 | ||
3rd Trimester | 474 | 1.27 (0.99, 1.62), 0.059 | 411 | 1.34 (1.03, 1.75), 0.030 | ||
Stratified analysis by child’s sex | ||||||
cOR (95% CI), p-Value | aOR (95% CI), Padj * | |||||
Strata | n | Male | Female | Male | Female | |
1st Trimester | 2066 | 1.42 (1.00, 2.01), 0.050 | 1.11 (0.73, 1.70), 0.62 | 1.57 (1.07, 2.29), 0.018 | 1.00 (0.62, 1.61), 0.99 | |
2nd Trimester | 2066 | 1.36 (0.99, 1.86), 0.053 | 1.09 (0.74, 1.59), 0.67 | 1.50 (1.07, 2.11), 0.018 | 1.01 (0.66, 1.54), 0.96 | |
3rd Trimester | 2066 | 1.29 (0.93, 1.77), 0.12 | 1.18 (0.80, 1.73), 0.41 | 1.36 (0.96, 1.93) 0.09 | 1.27 (0.84, 1.93), 0.26 |
Pre-Adolescent Asthma | |||||||
---|---|---|---|---|---|---|---|
cOR (95% CI), p-Value | aOR (95% CI), Padj * | ||||||
By Gestational Age | |||||||
Maternal Folic Acid Intake (Yes) | n | Gestational Age < 37 Weeks | Gestational Age ≥ 37 Weeks | Gestational Age < 37 Weeks | Gestational Age ≥ 37 Weeks | ||
1st Trimester | 2066 | 1.25 (0.69, 2.27), 0.45 | 1.31 (0.97,1.76), 0.08 | 1.46 (0.77, 2.77), 0.25 | 1.29 (0.94, 1,80), 0.12 | ||
2nd Trimester | 2066 | 1.12 (0.65, 1.92), 0.69 | 1.31 (1.00, 1.71), 0.048 | 1.25 (0.69, 2.25), 0.45 | 1.33 (0.99, 1.77), 0.058 | ||
3rd Trimester | 2066 | 1.44 (0.83, 2.47), 0.19 | 1.24 (0.94,1.63), 0.13 | 1.82 (1.01, 3.27), 0.046 | 1.28 (0.95, 1.73), 0.11 | ||
By Weight for Age | |||||||
cOR (95% CI), p-Value | aOR (95% CI), Padj * | ||||||
Maternal Folic Acid Intake (Yes) | n | Weight for Age = AGA | Weight for Age = SGA | Weight for Age = LGA | Weight for Age = AGA | Weight for Age = SGA | Weight for Age = LGA |
1st Trimester | 2066 | 1.39 (1.03, 1.88), 0.029 | 0.87 (0.40, 185), 0.71 | 1.21 (0.44, 3.30), 0.71 | 1.41 (1.02, 1.95), 0.036 | 1.02 (0.45, 2.34), 0.96 | 0.85 (0.24, 2.99), 0.80 |
2nd Trimester | 2066 | 1.24 (0.94, 1.63), 0.12 | 1.14 (0.61, 2.13), 0.68 | 1.81 (0.77, 4.27), 0.17 | 1.24 (0.92, 1.68), 0.15 | 1.41 (0.72, 2.76), 0.32 | 1.84 (0.65, 5.20), 0.25 |
3rd Trimester | 2066 | 1.20 (0.90, 1.59), 0.21 | 1.36 (0.73, 2.53), 0.33 | 1.72 (0.74, 4.03), 0.21 | 1.24 (0.92, 1.69), 0.16 | 1.76 (0.90, 3.42), 0.09 | 1.37 (0.47, 3.95), 0.56 |
Pre-Adolescent Asthma | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
cOR (95% CI), p-Value | aOR (95% CI), Padj * | |||||||||
Maternal Smoking | ||||||||||
Maternal Folic Acid Intake (Yes) | n | Maternal Smoking = No | Maternal Smoking = Yes | Maternal Smoking = No | Maternal Smoking = Yes | |||||
1st Trimester | 2066 | 1.31 (0.97, 1.75), 0.073 | 1.23 (0.64, 2.39), 0.53 | 1.37 (1.00, 1.88), 0.050 | 1.12 (0.52, 2.40), 0.77 | |||||
2nd Trimester | 2066 | 1.35 (1.04, 1.75), 0.025 | 0.92 (0.51, 1.69), 0.80 | 1.44 (1.08, 1.91), 0.012 | 0.80 (0.40, 1.57), 0.51 | |||||
3rd Trimester | 2066 | 1.36 (1.03, 1.77), 0.027 | 0.91 (0.48, 1.70), 0.76 | 1.52 (1.14, 2.02), 0.005 | 0.80 (0.40, 1.61), 0.53 | |||||
School Economic Level | ||||||||||
cOR (95% CI), p-Value | aOR (95% CI), Padj * | |||||||||
Maternal Folic Acid Intake (Yes) | n | SEL = Low | SEL = Medium | SEL = High | SEL = Low | SEL = Medium | SEL = High | |||
1st Trimester | 2066 | 1.84 (1.05, 3.21), 0.034 | 1.02 (0.61, 1.70), 0.95 | 1.23 (0.84, 1.80), 0.29 | 1.94 (1.07, 3.55), 0.030 | 1.03 (0.59, 1.81), 0.92 | 1.26 (0.83, 1.93), 0.27 | |||
2nd Trimester | 2066 | 1.68 (1.03, 2.77), 0.039 | 1.10 (0.70, 1.72), 0.69 | 1.17 (0.83, 1.66), 0.37 | 1.87 (1.10, 3.19), 0.021 | 1.11 (0.68, 1.83),0.67 | 1.17 (0.80, 1.71), 0.42 | |||
3rd Trimester | 2066 | 1.73 (1.04, 2.85), 0.034 | 1.01 (0.64, 1.61), 0.95 | 1.22 (0.86, 1.75), 0.27 | 2.02 (1.17, 3.49), 0.011 | 1.10 (0.66, 1.82), 0.72 | 1.29 (0.88, 1.91), 0.19 | |||
Neighborhood Parks | ||||||||||
Maternal Folic Acid Intake (Yes) | n | Neighborhood Parks = Agree | Neighborhood Parks = Disagree | Neighborhood Parks = Agree | Neighborhood Parks = Disagree | |||||
cOR (95% CI), p-Value | aOR (95% CI), Padj * | |||||||||
1st Trimester | 1664 | 1.15 (0.75, 1.77), 0.511 | 1.61 (1.08, 2.40), 0.020 | 1.21 (0.76, 1.93), 0.413 | 1.60 (1.04, 2.49), 0.034 | |||||
2nd Trimester | 1664 | 1.41 (0.97, 2.05), 0.069 | 1.18 (0.82, 1.72), 0.369 | 1.41 (0.94, 2.12), 0.098 | 1.24 (0.84, 1.85), 0.282 | |||||
3rd Trimester | 1664 | 1.52 (1.04, 2.23), 0.031 | 1.09 (0.74, 1.59), 0.673 | 1.52 (1.00, 2.30), 0.047 | 1.18 (0.78, 1.79), 0.422 | |||||
Neighborhood Traffic | ||||||||||
Maternal Folic Acid Intake (Yes) | n | Neighborhood Traffic = Agree | Neighborhood Traffic = Disagree | Neighborhood Traffic = Agree | Neighborhood Traffic = Disagree | |||||
cOR (95% CI), p-Value | aOR (95% CI), Padj * | |||||||||
1st Trimester | 1694 | 1.28 (0.89, 1.84), 0.187 | 1.57 (0.96, 2.56), 0.073 | 1.32 (0.89, 1.98), 0.172 | 1.55 (0.92, 2.63), 0.103 | |||||
2nd Trimester | 1694 | 1.31 (0.95, 1.81), 0.103 | 1.63 (1.05, 2.52), 0.029 | 1.39 (0.97, 1.98), 0.069 | 1.52 (0.95, 2.45), 0.081 | |||||
3rd Trimester | 1694 | 1.28 (0.92, 1.79), 0.143 | 1.74 (1.11, 2.72), 0.016 | 1.37 (0.96, 1.97), 0.086 | 1.73 (1.07, 2.82), 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaglani, E.; Papamichael, M.M.; Argyropoulou, M.; Vitoratou, D.-I.; Anastasiou, C.; Batra, M.; Bekele, Y.; Erbas, B.; Manios, Y.; Moschonis, G. Maternal Folic Acid Supplementation, Perinatal Factors, and Pre-Adolescent Asthma: Findings from the Healthy Growth Study. Nutrients 2025, 17, 2989. https://doi.org/10.3390/nu17182989
Karaglani E, Papamichael MM, Argyropoulou M, Vitoratou D-I, Anastasiou C, Batra M, Bekele Y, Erbas B, Manios Y, Moschonis G. Maternal Folic Acid Supplementation, Perinatal Factors, and Pre-Adolescent Asthma: Findings from the Healthy Growth Study. Nutrients. 2025; 17(18):2989. https://doi.org/10.3390/nu17182989
Chicago/Turabian StyleKaraglani, Eva, Maria Michelle Papamichael, Matzourana Argyropoulou, Dimitra-Irinna Vitoratou, Costas Anastasiou, Mehak Batra, Yibeltal Bekele, Bircan Erbas, Yannis Manios, and George Moschonis. 2025. "Maternal Folic Acid Supplementation, Perinatal Factors, and Pre-Adolescent Asthma: Findings from the Healthy Growth Study" Nutrients 17, no. 18: 2989. https://doi.org/10.3390/nu17182989
APA StyleKaraglani, E., Papamichael, M. M., Argyropoulou, M., Vitoratou, D.-I., Anastasiou, C., Batra, M., Bekele, Y., Erbas, B., Manios, Y., & Moschonis, G. (2025). Maternal Folic Acid Supplementation, Perinatal Factors, and Pre-Adolescent Asthma: Findings from the Healthy Growth Study. Nutrients, 17(18), 2989. https://doi.org/10.3390/nu17182989