Erythrocyte Fatty Acid Profile, Mediterranean Diet and Asthma Severity in Childhood Allergic Asthma: Preliminary Findings from a Cohort Study in Spain
Abstract
:1. Introduction
2. Methods
2.1. Participants and Study Design
2.2. Ethics Statements
2.3. Study Intervention and Data Collection
- Degree of asthma control was assessed using the CAN questionnaire (Asthma Control in Children), which asks a series of questions about asthma symptoms over the last 4 weeks, and the total score is obtained, ranging from 0 (absence of symptoms) to 36 points (maximum symptoms). A total average score equal to or greater than 8 on the CAN questionnaire is taken to indicate asthma control [35].
- Degree of adherence to inhalers, using the TAI questionnaire (Inhaler Adhesion Test), in which adherence is considered good with a score of 50 or more, intermediate with a score between 46 and 49, and poor with a score of 45 or less [36].
- Maintenance treatment indicated, in order to establish the severity of asthma according to the classification of the GINA guidelines [32], which assigns patients to one of four categories according to the therapeutic step: mild (step 1 or 2), moderate (step 3 or 4), and severe (step 5).
- Comorbidities: allergic rhinitis, food allergy, and atopic dermatitis.
- Lung function assessment with forced spirometry performed according to the American Thoracic Society guidelines [37]. The maneuver was performed in a sitting position, a disposable mouthpiece was attached to the spirometer, and a nose clip was used. The participants were instructed to inhale to total lung capacity and to exhale as hard and as fast as possible without a pause, and then a deep breath was inhaled to total lung capacity. The best of three technically acceptable tests were selected. We used the Sibelmed brand spirometer (Sibel, S.A.U, Barcelona, Spain), which provides standardized lung functions according to age, sex, and height in the reference population. The following parameters were analyzed: forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), the ratio FEV1/FVC, and forced mid-expiratory flow (FEF25–75%). The results were expressed in liters, the percentage of the theoretical value expected for people of the same age, sex, and height in a reference population, and z-score, in accordance with the 2012 Global Lung Function Initiative (GLI) [38].
2.4. Blood Collection and Erythrocyte Fatty Acid Analysis
2.5. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Comparison Between Asthmatic Children with Good and Poor Adherence to the Mediterranean Diet
3.3. Comparison Between Children with Mild Asthma Versus Children with Moderate or Severe Asthma
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asher, I.; Pearce, N. Global burden of asthma among children. Int. J. Tuberc. Lung Dis. 2014, 18, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Mickleborough, T.D.; Lindley, M.R. Omega-3 fatty acids: A potential future treatment for asthma? Expert Rev. Respir. Med. 2013, 7, 577–580. [Google Scholar] [PubMed]
- Arvaniti, F.; Priftis, K.N.; Panagiotakos, D.B. Dietary habits and asthma: A review. Allergy Asthma Proc. 2010, 31, e1–e10. [Google Scholar] [PubMed]
- Venter, C.; Meyer, R.W.; Greenhawt, M.; Pali-Schöll, I.; Nwaru, B.; Roduit, C.; Untersmayr, E.; Adel-Patient, K.; Agache, I.; Agostoni, C.; et al. Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy 2022, 77, 3185–3198. [Google Scholar]
- Popkin, B.M.; Haines, P.S.; Siega-Riz, A.M. Dietary patterns and trends in the United States: The UNC-CH approach. Appetite 1999, 32, 8–14. [Google Scholar]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Devereux, G.; Seaton, A. Diet as a risk factor for atopy and asthma. J. Allergy Clin. Immunol. 2005, 115, 1109–1117. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Lagiou, P. Healthy traditional Mediterranean diet: An expression of culture, history, and lifestyle. Nutr. Rev. 1997, 55, 383–389. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar]
- Arvaniti, F.; Priftis, K.N.; Papadimitriou, A.; Papadopoulos, M.; Roma, E.; Kapsokefalou, M.; Anthracopoulos, M.B.; Panagiotakos, D.B. Adherence to the Mediterranean type of diet is associated with lower prevalence of asthma symptoms, among 10–12 years old children: The PANACEA study. Pediatr. Allergy Immunol. 2011, 22, 283–289. [Google Scholar]
- Nagel, G.; Weinmayr, G.; Kleiner, A.; Garcia-Marcos, L.; Strachan, D.P. Effect of diet on asthma and allergic sensitization in the International Study on Allergies and Asthma in Childhood (ISAAC) Phase Two. Thorax 2010, 65, 516–522. [Google Scholar] [CrossRef] [PubMed]
- De Batlle, J.; Garcia-Aymerich, J.; Barraza-Villarreal, A.; Antó, J.M.; Romieu, I. Mediterranean diet is associated with reduced asthma and rhinitis in Mexican children. Allergy 2008, 63, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Chatzi, L.; Apostolaki, G.; Bibakis, I.; Skypala, I.; Bibaki-Liakou, V.; Tzanakis, N.; Kogevinas, M.; Cullinan, P. Protective effect of fruits, vegetables and the Mediterranean diet on asthma and allergies among children in Crete. Thorax 2007, 62, 677–683. [Google Scholar] [CrossRef]
- Chatzi, L.; Torrent, M.; Romieu, I.; Garcia-Esteban, R.; Ferrer, C.; Vioque, J.; Kogevinas, M.; Sunyer, J. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax 2008, 63, 507–513. [Google Scholar] [CrossRef]
- Venter, C.; Meyer, R.W.; Nwaru, B.I.; Roduit, C.; Untersmayr, E.; Adel-Patient, K.; Agache, I.; Agostoni, C.; Akdis, C.A.; Bischoff, S.C.; et al. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy 2019, 74, 1429–1444. [Google Scholar] [CrossRef]
- Papamichael, M.M.; Itsiopoulos, C.; Susanto, N.H.; Erbas, B. Does adherence to the Mediterranean dietary pattern reduce asthma symptoms in children? A systematic review of observational studies. Public Health Nutr. 2017, 20, 2722–2734. [Google Scholar] [CrossRef]
- Garcia-Marcos, L.; Castro-Rodriguez, J.A.; Weinmayr, G.; Panagiotakos, D.B.; Priftis, K.N.; Nagel, G. Influence of Mediterranean diet on asthma in children: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2013, 24, 330–338. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Garcia-Marcos, L. What are the effects of a Mediterranean diet on allergies and asthma in children? Front. Pediatr. 2017, 5, 72. [Google Scholar] [CrossRef]
- Domínguez, M.; Vega-Hernández, M.C.; Cabrera, T.C.; Arriba-Méndez, S.; Pellegrini-Belinchón, F.J. Mediterranean diet in the Castilian plains: Dietary patterns and childhood asthma in 6–7-year-old children from the province of Salamanca. Allergol. Immunopathol. 2022, 50, 91–99. [Google Scholar] [CrossRef]
- Koumpagioti, D.; Boutopoulou, B.; Moriki, D.; Priftis, K.N.; Douros, K. Does adherence to the Mediterranean diet have a protective effect against asthma and allergies in children? A systematic review. Nutrients 2022, 14, 1618. [Google Scholar] [CrossRef]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [PubMed]
- Brannan, J.D.; Bood, J.; Alkhabaz, A.; Balgoma, D.; Otis, J.; Delin, I.; Dahlén, B.; Wheelock, C.E.; Nair, P.; Dahlén, S.-E.; et al. The effect of omega-3 fatty acids on bronchial hyperresponsiveness, sputum eosinophilia, and mast cell mediators in asthma. Chest 2015, 147, 397–405. [Google Scholar] [PubMed]
- Denisenko, Y.K.; Novgorodtseva, T.P.; Zhukova, N.V.; Antonuk, M.V.; Lobanova, E.G.; Kalinina, E.P. Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases. Biomed. Khim. 2016, 62, 341–347. [Google Scholar] [PubMed]
- Hansen, S.; Strøm, M.; Maslova, E.; Dahl, R.; Hoffmann, H.J.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Granström, C.; Halldorsson, T.I.; et al. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. J. Allergy Clin. Immunol. 2017, 139, 104–111. [Google Scholar]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015, 1851, 469–484. [Google Scholar]
- Wang, Y.; Liu, L. Immunological factors, important players in the development of asthma. BMC Immunol. 2024, 25, 50. [Google Scholar]
- Liu, G.; Ye, H.; Cheng, Q.; Zhao, J.; Ma, C.; Jie, H. The association of polyunsaturated fatty acids and asthma: A cross-sectional study. J. Health Popul. Nutr. 2023, 42, 91. [Google Scholar]
- Zhang, X.; Han, Y.; Tian, Q.; Du, L.; Chen, L.; Zhang, Y.; Guo, X.; Li, X. The association between n-3 polyunsaturated fatty acid intakes and asthma in US children and adolescents: A cross-sectional study from NHANES. Pediatr. Allergy Immunol. 2023, 34, e14024. [Google Scholar]
- Papamichael, M.M.; Katsardis, C.; Lambert, K.; Tsoukalas, D.; Koutsilieris, M.; Erbas, B.; Itsiopoulos, C. Efficacy of a Mediterranean diet supplemented with fatty fish in ameliorating inflammation in paediatric asthma: A randomised controlled trial. J. Hum. Nutr. Diet. 2019, 32, 185–197. [Google Scholar] [CrossRef]
- Papamichael, M.M.; Shrestha, S.K.; Itsiopoulos, C.; Erbas, B. The role of fish intake on asthma in children: A meta-analysis of observational studies. Pediatr. Allergy Immunol. 2018, 29, 350–360. [Google Scholar]
- GINA. Global Strategy for Asthma Management and Prevention. 2022. Available online: www.ginasthma.org (accessed on 22 September 2024).
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean diet quality index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar]
- Pérez-Yarza, E.G.; Badía, X.; Badiola, C.; Cobos, N.; Garde, J.; Ibero, M.; Villa, J.; CAN Investigator Group. Development and validation of a questionnaire to assess asthma control in pediatrics. Pediatr. Pulmonol. 2009, 44, 54–63. [Google Scholar] [PubMed]
- Plaza, V.; Fernández-Rodríguez, C.; Melero, C.; Cosío, B.G.; Entrenas, L.M.; de Llano, L.P.; Gutiérrez-Pereyra, F.; Tarragona, E.; Palomino, R.; López-Viña, A.; et al. Validation of the ’Test of the Adherence to Inhalers’ (TAI) for asthma and COPD patients. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 142–152. [Google Scholar]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of spirometry 2019 update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar]
- Lepage, G.; Yesair, D.W.; Ronco, N.; Champagne, J.; Bureau, N.; Chemtob, S.; Bérubé, D.; Roy, C.C. Effect of an organized lipid matrix on lipid absorption and clinical outcomes in patients with cystic fibrosis. J. Pediatr. 2002, 141, 178–185. [Google Scholar]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar]
- Malaeb, D.; Hallit, S.; Sacre, H.; Malaeb, B.; Hallit, R.; Salameh, P. Diet and asthma in Lebanese schoolchildren: A cross-sectional study. Pediatr. Pulmonol. 2019, 54, 688–697. [Google Scholar]
- Rice, J.L.; Romero, K.M.; Galvez Davila, R.M.; Meza, C.T.; Bilderback, A.; Williams, D.L.; Breysse, P.N.; Bose, S.; Checkley, W.; Hansel, N.N.; et al. Association Between Adherence to the Mediterranean Diet and Asthma in Peruvian Children. Lung 2015, 193, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, C.; Garden, F.; Xuan, W.; Mihrshahi, S.; Leeder, S.R.; Oddy, W.; Webb, K.; Marks, G.B. Omega-3 and omega-6 fatty acid exposure from early life does not affect atopy and asthma at age 5 years. J. Allergy Clin. Immunol. 2007, 119, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Talaei, M.; Sdona, E.; Calder, P.C.; Jones, L.R.; Emmett, P.M.; Granell, R.; Bergström, A.; Melén, E.; Shaheen, S.O. Intake of n-3 polyunsaturated fatty acids in childhood, FADS genotype and incident asthma. Eur. Respir. J. 2021, 58, 3. [Google Scholar] [CrossRef] [PubMed]
- Calatayud-Sáez, F.M.; Calatayud Moscoso Del Prado, B.; Gallego Fernández-Pacheco, J.G.; González-Martín, C.; Alguacil Merino, L.F. Mediterranean diet and childhood asthma. Allergol. Immunopathol. 2016, 44, 99–105. [Google Scholar]
- Reyes-Angel, J.; Kaviany, P.; Rastogi, D.; Forno, E. Obesity-related asthma in children and adolescents. Lancet Child Adolesc. Health 2022, 6, 713–724. [Google Scholar]
- López-García, E.; Bretón-Lesmes, I.; Díaz-Perales, A.; Moreno-Arribas, V.; Portillo-Baquedano, M.P.; Rivas-Velasco, A. Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition (AESAN) on sustainable dietary and physical activity recommendations for the Spanish population. Food Risk Assess Eur. 2023, 1, 0005E. [Google Scholar]
- Amazouz, H.; Roda, C.; Beydon, N.; Lezmi, G.; Bourgoin-Heck, M.; Just, J.; Momas, I.; Rancière, F. Mediterranean diet and lung function, sensitization, and asthma at school age: The PARIS cohort. Pediatr. Allergy Immunol. 2021, 32, 1437–1444. [Google Scholar]
- Romieu, I.; Barraza-Villarreal, A.; Escamilla-Núñez, C.; Texcalac-Sangrador, J.L.; Hernandez-Cadena, L.; Díaz-Sánchez, D.; De Batlle, J.; Del Rio-Navarro, B.E. Dietary intake, lung function and airway inflammation in Mexico city school children exposed to air pollutants. Respir. Res. 2009, 10, 122. [Google Scholar] [CrossRef]
- Sun, Q.; Ma, J.; Campos, H.; Hankinson, S.E.; Hu, F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am. J. Clin. Nutr. 2007, 1, 74–81. [Google Scholar]
Asthmatics (n = 55) | Controls (n = 40) | p-Value | |
---|---|---|---|
Age (years) | 10.96 (3.04) | 10.92 (2.98) | 0.23 |
Gender (male) | 37 (67.27) | 23 (57.50) | 0.45 |
Body mass index (BMI, kg/m2) | 18.64 (10.91) | 18.9 (7.50) | 0.45 |
BMI percentile ≥ 85 | 22 (40.00) | 12 (30.00) | 0.31 |
Extracurricular sports | 39 (70.90) | 23 (57.50) | 0.26 |
KIDMED score ≥ 8 | 23 (41.80) | 23 (57.50) | 0.034 |
Eat oily fish ≥ 2 days/week | 9 (16.36) | 8 (20.00) | 0.85 |
Breastfeeding | 47 (85.45) | 30 (75.00) | 0.23 |
Smoking cohabitants | 20 (36.36) | 14 (35.00) | 0.99 |
Mother with secondary or university education | 47 (85.45) | 36 (90.00) | 0.18 |
Father with secondary or university education | 39 (70.90) | 30 (75.00) | 0.89 |
SFAs | 45.80 (1.06) | 45.48 (0.836) | 0.16 |
MUFAs | 20.17 (1.45) | 19.91 (1.44) | 0.48 |
n-6 PUFAs | 29.21 (1.43) | 29.35 (1.46) | 0.66 |
n-3 PUFAs | 4.82 (0.77) | 5.25 (0.94) | 0.019 |
EPA | 0.22 (0.08) | 0.27 (0.17) | 0.29 |
DHA | 3.50 (0.68) | 3.84 (0.75) | 0.029 |
Omega-3 Index | 3.73 (0.73) | 4.12 (0.86) | 0.026 |
n-6/n-3 PUFA ratio | 6.24 (1.12) | 5.78 (1.19) | 0.036 |
AA/DHA ratio | 4.02 (0.85) | 3.63 (0.91) | 0.039 |
KIDMED ≥ 8 (n = 23) | KIDMED < 8 (n = 32) | p-Value | |
---|---|---|---|
Age (years) | 9.96 (2.40) | 10.31 (2.81) | 0.58 |
Gender (male) | 18 (78.26) | 19 (59.37) | 0.24 |
Body mass index (BMI, kg/m2) | 18.49 (4.12) | 21.83 (7.00) | 0.030 |
BMI percentile ≥ 85 | 7 (30.43) | 15 (46.87) | 0.22 |
Atopic dermatitis | 10 (43.47) | 16 (50.00) | 0.78 |
Allergic rhinitis | 20 (86.95) | 27 (84.37) | 0.99 |
Food allergy | 5 (21.73) | 10 (31.25) | 0.60 |
Moderate-to-severe asthma | 9 (39.13) | 22 (68.75) | 0.041 |
CAN score | 1.74 (2.34) | 4.66 (6.23) | 0.09 |
TAI score ≤ 45 | 0 (0.00) | 7 (21.87) | 0.08 |
Mother with secondary or university education | 22 (95.65) | 25 (78.12) | 0.12 |
Father with secondary or university education | 19 (82.60) | 20 (62.50) | 0.36 |
Eat oily fish ≥ 2 days/week | 8 (34.78) | 1 (3.12) | 0.005 |
FVC | |||
% | 98.14 (12.96) | 98.75 (13.41) | 0.18 |
Liters | 2.57 (0.85) | 2.58 (0.88) | 0.39 |
z-score | 0.045 (0.65) | 0.85 (0.656) | 0.17 |
FEV1 | |||
% | 93.66 (14.16) | 98.15 (13.41) | 0.43 |
Liters | 4.24 (14.65) | 4.05 (13.93) | 0.47 |
z-score | 0.99 (0.75) | 0.95 (0.74) | 0.75 |
FEF25–75% | |||
% | 78.43 (23.35) | 80.02 (23.65) | 0.73 |
Liters | 2.00 (0.71) | 2.04 (0.70) | 0.56 |
z-score | 1.78 (4.04) | 1.71 (3.85) | 0.81 |
FEV1/FVC (%) | 86.80 (9.86) | 87.07 (9.69) | 0.17 |
SFAs | 45.67 (0.87) | 45.89 (1.18) | 0.61 |
MUFAs | 20.12 (1.37) | 20.21 (1.52) | 0.36 |
n-6 PUFAs | 29.56 (1.40) | 28.95 (1.42) | 0.15 |
n-3 PUFAs | 5.09 (0.73) | 4.63 (0.76) | 0.033 |
EPA | 0.23 (0.10) | 0.21 (0.06) | 0.66 |
DHA | 3.76 (0.61) | 3.32 (0.66) | 0.015 |
Omega-3 Index | 3.99 (0.69) | 3.53 (0.71) | 0.022 |
n-6/n-3 PUFA ratio | 5.95 (1.01) | 6.44 (1.16) | 0.13 |
AA/DHA ratio | 3.77 (0.82) | 4.19 (0.84) | 0.08 |
Mild Asthma (n = 24) | Moderate or Severe Asthma (n = 31) | p-Value | |
---|---|---|---|
Age (years) | 10.72 (3.07) | 10.72 (3.07) | 0.37 |
Gender (male) | 17 (70.83) | 20 (65) | 0.37 |
Body mass index (BMI, kg/m2) | 20.31 (6.22) | 20.28 (6.34) | 0.09 |
BMI percentile ≥ 85 | 6 (25.00) | 16 (51.61) | 0.046 |
KIDMED score ≥ 8 | 14 (58.33) | 9 (29) | 0.035 |
Eat oily fish ≥ 2 days/week | 4 (16.66) | 5 (16) | 0.95 |
Atopic dermatitis | 9 (37.50) | 47 (55) | 0.26 |
Allergic rhinitis | 22 (91.66) | 25 (81) | 0.47 |
Food allergy | 5 (20.83) | 10 (32) | 0.48 |
Smoking cohabitants | 7 (29.16) | 13 (41.93) | 0.49 |
CAN score | 1.54 (2.24) | 4.90 (6.25) | 0.045 |
TAI score ≤ 45 | 1 (4) | 6 (19) | 0.87 |
Extracurricular sports | 22 (92) | 17 (55) | 0.007 |
Mother with secondary or university education | 24 (90) | 23 (74) | 0.035 |
Father with secondary or university education | 21 (88) | 18 (58) | 0.035 |
FVC | |||
% | 98.90 (13.48) | 98.05 (13.15) | 0.42 |
Liters | 2.53 (0.84) | 2.59 (0.87) | 0.11 |
z-score | 0.85 (13.48) | 0.85 (13.15) | 0.64 |
FEV1 | |||
% | 94.52 (14.52) | 93.50 (13.98) | 0.81 |
Liters | 4.25 (14.22) | 4.17 (14.35) | 0.11 |
z-score | 0.97(0.75) | 0.93 (0.72) | 0.82 |
FEF25–75% | |||
% | 79.39 (23.32) | 79.11 (23.73) | 0.75 |
Liters | 1.98 (0.66) | 2.02 (0.70) | 0.19 |
z-score | 1.78 (4.09) | 1.73 (3.96) | 0.79 |
FEV1/FVC (%) | 87.37 (9.86) | 86.49 (9.69) | 0.28 |
SFAs | 45.70 (0.82) | 45.88 (1.22) | 0.75 |
MUFAs | 20.09 (1.24) | 20.23 (1.60) | 0.39 |
n-6 PUFAs | 29.12 (1.38) | 29.28 (1.48) | 0.50 |
n-3 PUFAs | 5.10 (0.84) | 4.61 (0.66) | 0.036 |
EPA | 0.24 (0.10) | 0.20 (0.07) | 0.15 |
DHA | 3.76 (0.70) | 3.31 (0.51) | 0.014 |
Omega-3 Index | 4.00 (0.77) | 3.52 (0.63) | 0.026 |
n-6/n-3 PUFA ratio | 5.91 (1.20) | 6.49 (1.00) | 0.06 |
AA/DHA ratio | 3.78 (0.92) | 4.20 (0.76) | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayats-Vidal, R.; Albiciuc, I.-A.; Bruch-Molist, C.; Cuartero-Gorjón, A.; Cordobilla, B.; Pedrosa-Domínguez, M.; Susanna-Calero, M.; García-González, M.; Valdesoiro-Navarrete, L.; Larramona-Carrera, H.; et al. Erythrocyte Fatty Acid Profile, Mediterranean Diet and Asthma Severity in Childhood Allergic Asthma: Preliminary Findings from a Cohort Study in Spain. Nutrients 2025, 17, 1161. https://doi.org/10.3390/nu17071161
Ayats-Vidal R, Albiciuc I-A, Bruch-Molist C, Cuartero-Gorjón A, Cordobilla B, Pedrosa-Domínguez M, Susanna-Calero M, García-González M, Valdesoiro-Navarrete L, Larramona-Carrera H, et al. Erythrocyte Fatty Acid Profile, Mediterranean Diet and Asthma Severity in Childhood Allergic Asthma: Preliminary Findings from a Cohort Study in Spain. Nutrients. 2025; 17(7):1161. https://doi.org/10.3390/nu17071161
Chicago/Turabian StyleAyats-Vidal, Roser, Isabela-Adelina Albiciuc, Carlota Bruch-Molist, Anna Cuartero-Gorjón, Begoña Cordobilla, Marina Pedrosa-Domínguez, Marta Susanna-Calero, Miguel García-González, Laura Valdesoiro-Navarrete, Helena Larramona-Carrera, and et al. 2025. "Erythrocyte Fatty Acid Profile, Mediterranean Diet and Asthma Severity in Childhood Allergic Asthma: Preliminary Findings from a Cohort Study in Spain" Nutrients 17, no. 7: 1161. https://doi.org/10.3390/nu17071161
APA StyleAyats-Vidal, R., Albiciuc, I.-A., Bruch-Molist, C., Cuartero-Gorjón, A., Cordobilla, B., Pedrosa-Domínguez, M., Susanna-Calero, M., García-González, M., Valdesoiro-Navarrete, L., Larramona-Carrera, H., Asensio-de la Cruz, O., Castro-Marrero, J., & Domingo, J. C. (2025). Erythrocyte Fatty Acid Profile, Mediterranean Diet and Asthma Severity in Childhood Allergic Asthma: Preliminary Findings from a Cohort Study in Spain. Nutrients, 17(7), 1161. https://doi.org/10.3390/nu17071161