Genetic Susceptibility and Genetic Variant-Diet Interactions in Diabetic Retinopathy: A Cross-Sectional Case–Control Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Participants and Sample Size Calculation
2.3. Demographic and Biochemical Characteristics
2.4. Diagnosis of Diabetic Retinopathy
2.5. Assessment of Nutrient Intake and Diet Characteristics
2.6. Genotyping and Quality Control
2.7. Selection of SNPs for Diabetic Retinopathy Association by GWAS
2.8. PRS Construction with SNP-SNP Interaction and Validation
2.9. Multi-Marker Analysis of GenoMic Annotation (MAGMA) and Pathway Analysis
2.10. Sensitivity Analysis Based on Diabetic Duration
2.11. Statistical Analyses
3. Results
3.1. Characteristics of the DM-DR Group
3.2. Association Between Metabolic Syndrome and DM-DR Group
3.3. Selection of Genetic Variants Associated with DM-DR and Generation of PRS
3.4. PRS Association with DM-DR
3.5. Sensitive Analysis: Robustness of PRS Associations
3.6. Tissue-Specific Expression Analysis of DM-DR-Associated Variants
3.7. MAGMA Gene-Set Analysis
3.8. Gene–Lifestyle Interaction in DM-DR Association
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyssenko, V.; Vaag, A. Genetics of diabetes-associated microvascular complications. Diabetologia 2023, 66, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Wei, J.C.-C.; Shih, Y.-H.; Hsu, C.-C.; Hwu, C.-M. Impact of individual microvascular disease on the risks of macrovascular complications in type 2 diabetes: A nationwide population-based cohort study. Cardiovasc. Diabetol. 2023, 22, 109. [Google Scholar] [CrossRef]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T.K.S.; de Clerck, E.; Polivka, J.; Potuznik, P.; Stetkarova, I.; et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef]
- Liu, C.; Chen, G.; Bentley, A.R.; Doumatey, A.; Zhou, J.; Adeyemo, A.; Yang, J.; Rotimi, C. Genome-wide association study for proliferative diabetic retinopathy in Africans. npj Genom. Med. 2019, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Tabasumma, N.; Snigdha, N.N.; Siam, N.H.; Panduru, R.V.N.R.S.; Azam, S.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Diabetic Retinopathy: An Overview on Mechanisms. Pathophysiol. Pharmacother. 2022, 3, 159–175. [Google Scholar]
- Nguyen, D.D.; Luo, L.-J.; Yang, C.-J.; Lai, J.-Y. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS Nano 2023, 17, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lando, L.; Skowronska-Krawczyk, D.; Chao, D.L. Genetics of Diabetic Retinopathy. Curr. Diab. Rep. 2019, 19, 67. [Google Scholar] [CrossRef]
- Diedisheim, M.; Carcarino, E.; Vandiedonck, C.; Roussel, R.; Gautier, J.F.; Venteclef, N. Regulation of inflammation in diabetes: From genetics to epigenomics evidence. Mol. Metab. 2020, 41, 101041. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wu, Z.; Liang, X.; Xie, M.; Xie, J.; Li, H.; Wang, X.; Jiang, F. Diabetic retinopathy risk in patients with unhealthy lifestyle: A Mendelian randomization study. Front. Endocrinol. 2023, 13, 1087965. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Chen, Y.; Yang, W.; Gao, X.; Han, X.; Ji, L. The association of smoking and risk of diabetic retinopathy in patients with type 1 and type 2 diabetes: A meta-analysis. Endocrine 2018, 62, 299–306. [Google Scholar] [CrossRef]
- Bryl, A.; Mrugacz, M.; Falkowski, M.; Zorena, K. The Effect of Diet and Lifestyle on the Course of Diabetic Retinopathy-A Review of the Literature. Nutrients 2022, 14, 1252. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Lee, C. Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource (KARE) study. Hum. Mutat. 2012, 33, 655–659. [Google Scholar] [CrossRef]
- Park, S.; Ahn, J.; Lee, B.K. Self-rated Subjective Health Status Is Strongly Associated with Sociodemographic Factors, Lifestyle, Nutrient Intakes, and Biochemical Indices, but Not Smoking Status: KNHANES 2007–2012. J. Korean Med. Sci. 2015, 30, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Daily, J.W.; Park, S. Interaction of BDNF rs6265 variants and energy and protein intake in the risk for glucose intolerance and type 2 diabetes in middle-aged adults. Nutrition 2017, 33, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Hur, H.J.; Yang, H.J.; Kim, M.J.; Lee, K.H.; Kim, M.S.; Park, S. Association of Polygenic Variants with Type 2 Diabetes Risk and Their Interaction with Lifestyles in Asians. Nutrients 2022, 14, 3222. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Zhang, X.; Lee, N.R.; Jin, H.S. TRPV1 Gene Polymorphisms Are Associated with Type 2 Diabetes by Their Interaction with Fat Consumption in the Korean Genome Epidemiology Study. J. Nutr. Nutr. 2016, 9, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Spence, C.; Yang, W.J.; Ma, G.X. The IDF Definition Is Better Suited for Screening Metabolic Syndrome and Estimating Risks of Diabetes in Asian American Adults: Evidence from NHANES 2011–2016. J. Clin. Med. 2020, 9, 3871. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Kang, S.M.; Kang, J.H.; Kang, S.Y.; Kim, K.K.; Kim, K.B.; Kim, B.; Kim, S.J.; Kim, Y.H.; Kim, J.H.; et al. 2020 Korean Society for the Study of Obesity Guidelines for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2021, 30, 81–92. [Google Scholar] [CrossRef]
- Brigell, M.G.; Chiang, B.; Maa, A.Y.; Davis, C.Q. Enhancing Risk Assessment in Patients with Diabetic Retinopathy by Combining Measures of Retinal Function and Structure. Transl. Vis. Sci. Technol. 2020, 9, 40. [Google Scholar] [CrossRef]
- Park, S.; Kang, S. Association between Polygenetic Risk Scores of Low Immunity and Interactions between These Scores and Moderate Fat Intake in a Large Cohort. Nutrients 2021, 13, 2849. [Google Scholar] [CrossRef]
- Rabbee, N.; Speed, T.P. A genotype calling algorithm for Affymetrix SNP arrays. Bioinformatics 2006, 22, 7–12. [Google Scholar] [CrossRef]
- Uma Jyothi, K.; Reddy, B.M. Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India. Meta Gene 2015, 5, 9–20. [Google Scholar] [CrossRef]
- Lou, X.-Y.; Chen, G.-B.; Yan, L.; Ma, J.Z.; Zhu, J.; Elston, R.C.; Li, M.D. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am. J. Hum. Genet. 2007, 80, 1125–1137. [Google Scholar] [CrossRef]
- Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef] [PubMed]
- Association, A.D. Implications of the Diabetes Control and Complications Trial. Diabetes Care 2002, 25, s25–s27. [Google Scholar] [CrossRef][Green Version]
- Zhang, M.; Wu, J.; Wang, Y.; Wu, J.; Hu, W.; Jia, H.; Sun, X. Associations between blood pressure levels and diabetic retinopathy in patients with diabetes mellitus: A population-based study. Heliyon 2023, 9, e16830. [Google Scholar] [CrossRef]
- Jeong, I.S.; Kang, C.M. Prevalence and Risk Factors of Diabetic Retinopathy in Diabetes People using Korean National Health and Nutrition Examination Survey VII. Korean Acad. Community Health Nurs. 2022, 33, 408–417. [Google Scholar] [CrossRef]
- Kumar, J.; Malaviya, P.; Kowluru, R.A. Mitochondrial Genome-Encoded Long Noncoding RNA Cytochrome B (LncCytB) and Mitochondrial Ribonucleases in Diabetic Retinopathy. Biomedicines 2024, 12, 1637. [Google Scholar] [CrossRef]
- Rizza, A.N.; Lenin, N.; Ramaswamy, Y.; Sundaramoorthy, D.K.; Raman, R.; Mathavan, S. Meta-analysis of genes and genetic variants implicated in Type II diabetes mellitus, diabetic retinopathy, and diabetic nephropathy. Hum. Gene 2025, 43, 201362. [Google Scholar] [CrossRef]
- Jiménez-Loygorri, J.I.; Benítez-Fernández, R.; Viedma-Poyatos, Á.; Zapata-Muñoz, J.; Villarejo-Zori, B.; Gómez-Sintes, R.; Boya, P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog. Retin. Eye Res. 2023, 96, 101205. [Google Scholar] [CrossRef]
- Tian, L.; Chen, C.-J.; Song, Y.-N.; Xu, K.; Li, N.-E.; Zhang, X.-H.; Xie, Y.; Jin, Z.-B.; Li, Y. Comprehensive genetic analysis reveals the mutational landscape of ABCA4-associated retinal dystrophy in a Chinese cohort. Gene 2024, 891, 147832. [Google Scholar] [CrossRef]
- Xu, T.; Molday, L.L.; Molday, R.S. Retinal-phospholipid Schiff-base conjugates and their interaction with ABCA4, the ABC transporter associated with Stargardt disease. J. Biol. Chem. 2023, 299, 104614. [Google Scholar] [CrossRef] [PubMed]
- Sai, D.L.; Lee, J.; Nguyen, D.L.; Kim, Y.P. Tailoring photosensitive ROS for advanced photodynamic therapy. Exp. Mol. Med. 2021, 53, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Biasella, F.; Plössl, K.; Baird, P.N.; Weber, B.H.F. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front. Immunol. 2023, 14, 1147037. [Google Scholar] [CrossRef]
- Giebel, S.J.; Menicucci, G.; McGuire, P.G.; Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab. Investig. 2005, 85, 597–607. [Google Scholar] [CrossRef]
- Li, G.; Gao, J.; Ding, P.; Gao, Y. The role of endothelial cell–pericyte interactions in vascularization and diseases. J. Adv. Res. 2025, 67, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Robles-Osorio, M.L.; Sabath, E. Tight junction disruption and the pathogenesis of the chronic complications of diabetes mellitus: A narrative review. World J. Diabetes 2023, 14, 1013–1026. [Google Scholar] [CrossRef]
- Hua, K.F.; Wang, S.H.; Dong, W.C.; Lin, C.Y.; Ho, C.L.; Wu, T.H. High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-α/δ and NF-κB. Inflamm. Res. 2012, 61, 1107–1116. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Unterman, T.G.; Shankar, S. FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol. Cell Biochem. 2010, 337, 201–212. [Google Scholar] [CrossRef]
- Zhou, Y.; Xuan, Y.; Liu, Y.; Zheng, J.; Jiang, X.; Zhang, Y.; Zhao, J.; Liu, Y.; An, M. Transcription factor FOXP1 mediates vascular endothelial dysfunction in diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 3857–3867. [Google Scholar] [CrossRef] [PubMed]
- Buth, J.E.; Dyevich, C.E.; Rubin, A.; Wang, C.; Gao, L.; Marks, T.; Harrison, M.R.; Kong, J.H.; Ross, M.E.; Novitch, B.G.; et al. Foxp1 suppresses cortical angiogenesis and attenuates HIF-1alpha signaling to promote neural progenitor cell maintenance. EMBO Rep. 2024, 25, 2202–2219. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim. Biophys. Acta 2015, 1852, 2474–2483. [Google Scholar] [CrossRef]
- Witkovsky, P. Dopamine and retinal function. Doc. Ophthalmol. 2004, 108, 17–40. [Google Scholar] [CrossRef]
- McLaughlin, T.; Medina, A.; Perkins, J.; Yera, M.; Wang, J.J.; Zhang, S.X. Cellular stress signaling and the unfolded protein response in retinal degeneration: Mechanisms and therapeutic implications. Mol. Neurodegener. 2022, 17, 25. [Google Scholar] [CrossRef]
- Ptito, M.; Bleau, M.; Bouskila, J. The Retina: A Window into the Brain. Cells 2021, 10, 3269. [Google Scholar] [CrossRef] [PubMed]
- Hammes, H.-P. Diabetic retinopathy: Hyperglycaemia, oxidative stress and beyond. Diabetologia 2018, 61, 29–38. [Google Scholar] [CrossRef]
- Martini, D.; Del Bo, C.; Tassotti, M.; Riso, P.; Del Rio, D.; Brighenti, F.; Porrini, M. Coffee Consumption and Oxidative Stress: A Review of Human Intervention Studies. Molecules 2016, 21, 979. [Google Scholar] [CrossRef]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Rubio-Zarapuz, A.; Belinchón-deMiguel, P.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024, 13, 1940. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S231–S243. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.H.; Wang, P.W.; Ruiz, C.Q. Panretinal Photocoagulation for Diabetic Retinopathy in the RIDE and RISE Trials: Not “1 and Done”. Ophthalmology 2021, 128, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Arabi, A.; Tadayoni, R.; Ahmadieh, H.; Shahraki, T.; Nikkhah, H. Update on Management of Non-proliferative Diabetic Retinopathy without Diabetic Macular Edema; Is There a Paradigm Shift? J. Ophthalmic Vis. Res. 2022, 17, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Reyes, M.A.; Quiroz-Gonzalez, E.A.; Quiroz-Gonzalez, M.A.; Lima-Gómez, V. Determining the Superiority of Vitrectomy vs Aflibercept for Treating Dense Diabetic Vitreous Hemorrhage: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Clin. Ophthalmol. 2023, 17, 2359–2370. [Google Scholar] [CrossRef]
- Pei, X.; Huang, D.; Li, Z. Genetic insights and emerging therapeutics in diabetic retinopathy: From molecular pathways to personalized medicine. Front. Genet. 2024, 15, 1416924. [Google Scholar] [CrossRef]
- Prasad, M.; Agrón, E.; Vitale, S.; Arunachalam, T.; Duic, C.; Siddig, F.; Dimopoulos, I.; Lu, A.; Chew, E.Y. Diabetic Retinopathy Incidence, Progression, and Health-Related Quality of Life From the ACCORD Trial. Am. J. Ophthalmol. 2025, 279, 174–181. [Google Scholar] [CrossRef]






| ND (n = 51,309) | DM-NR (n = 4873) | DM-DR (n = 165) | p Value | |
|---|---|---|---|---|
| Age (year) | 53.5 ± 0.03 b | 57.4 ± 0.11 a | 58.2 ± 0.61 a | <0.001 |
| Gender (Male, N, %) | 16,881 (32.9) | 2426 (49.8) | 94 (57.0) | <0.001 |
| Residence area (city, N, %) | 19,705 (59.2) | 2813 (57.7) | 98 (59.4) | 0.0521 |
| Education (N, %) Middle school High school College+ | 6550 (18.8) 25,664 (73.7) 2598 (7.5) | 1016 (26.7) 2571 (67.5) 220 (5.78) | 50 (30.2) 106 (64.2) 9 (5.4) | <0.001 |
| Height (cm) | 160.7 ± 0.02 b | 160.7 ± 0.08 b | 162.0 ± 0.41 a | 0.0036 |
| BMI (kg/m2) | 23.8 ± 0.01 b | 25.1 ± 0.05 a | 25.5 ± 0.32 a | <0.001 |
| Diabetic duration (years) | 0 ± 0 c | 4.23 ± 0.07 b | 17.2 ± 0.30 a | <0.001 |
| Former smoking (N, %) | 2225 (4.61) | 300 (6.16) | 20 (12.1) | <0.001 |
| Current smoking (N, %) | 1619 (3.36) | 219 (4.49) | 13 (7.8) | |
| Alcohol (N, %) | 2237 (4.36) | 390 (8.0) | 50 (30.3) | <0.001 |
| Coffee (cup/day) | 1.23 ± 0.005 b | 1.04 ± 0.018 c | 1.80 ± 0.114 a | <0.001 |
| Exercise (<30 min 30–60 min >60 min) | 29,297 (57.1) 13,186 (25.7) 8825 (17.2) | 2500 (51.3) 1301 (26.7) 1072 (22.0) | 17 (10.3) 147 (89.1) 1 (0.61) | <0.001 |
| Fruit intake (<0.5 servings/day) 0.5–2.5 servings/day >2.5 servings/day | 17,137 (33.4) 21,498 (41.9) 12,673 (24.7) | 1959 (40.2) 1983 (40.7) 931 (19.1) | 48 (29.1) 42 (25.5) 75 (45.5) | <0.001 |
| Fast foods (No 2–3 times/week 1/day) | 41,201 (80.3) 9543 (18.6) 575 (1.12) | 3864 (79.3) 940 (19.3) 67 (1.36) | 113 (68.5) 37 (22.4) 15 (9.09) | <0.001 |
| Eating duration (<10 min 10–20 min 20–60 min) | 20,164 (39.3) 26,527 (51.7) 4628 (9.02) | 1964 (40.3) 2461 (50.5) 502 (9.23) | 58 (35.2) 74 (44.9) 33 (20.0) | <0.001 |
| No Adjustment | Adjusted for Covariates 1 | |||
|---|---|---|---|---|
| ND vs. DM-DR 2 | DM-NR vs. DM-DR 3 | ND vs. DM-DR 2 | DM-NR vs. DM-DR 3 | |
| Height (cm) | 1.132(0.734–1.746) | 1.500 (0.964–2.335) | 1.408(0.687–2.884) 1 | 1.574 (0.767–3.228) 2 |
| MetS (N, %) | 8.901(5.904–13.42) | 0.879 (0.582–1.328) | 28.39 (13.80–58.39) | 1.292 (0.686–2.435) |
| BMI (kg/m2) | 1.130 (0.817–1.563) | 0.587 (0.423–0.816) | 2.104 (0.560–7.912) | 1.386 (0.875–2.197) |
| Total cholesterol (mg/dL) | 0.117 (0.043–0.316) | 0.161 (0.060–0.436) | 0.181 (0.066–2.498) | 1.347 (0.427–4.244) |
| HDL (mg/dL) | 5.063 (3.666–6.992) | 3.173 (2.287–4.402) | 25.68 (6.347–103.9) | 3.342 (2.090–5.346) |
| LDL (mg/dL) | 0.207 (0.077–0.559) | 0.305 (0.112–0.826) | 0.390 (0.142–1.070) | 0.803 (0.288–2.242) |
| eGFR (mL/min/1.73 m2) | 2.523 (2.231–2.853) | 0.993 (0.963–1.024) | 1.705 (1.490–1.950) | 0.994 (0.973–1.016) |
| TG (mg/dL) | 0.860 (0.592–1.250) | 0.460 (0.315–0.671) | 1.461 (0.324–6.593) | 0.888 (0.533–1.480) |
| SBP (mmHg) | 5.419 (3.863–7.603) | 3.090 (2.194–4.353) | 15.61 (3.708–65.75) | 4.349 (2.727–6.938) |
| DBP (mmHg) | 1.637 (1.052–2.545) | 1.397 (0.891–2.191) | 9.115 (1.570–52.93) | 5.698 (2.731–11.89) |
| Hypertension (N, %) | 1.756 (1.129–2.732) | 1.456 (0.928–2.284) | 10.09 (1.735–58.65) | 5.910 (2.815–12.41) |
| a CHR | b SNP | Base Pair | c A1 | d A2 | e OR (95% CI) | f p Value | Gene Names | Location | g MAF | h HWE |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | rs573262 | 18656738 | G | A | 2.23 (1.66–3.01) | 1.23 × 10−7 | IGSF21 | Intron | 0.101 | 0.554 |
| 1 | rs17110929 | 94510807 | T | A | 7.91 (5.71–10.9) | 1.05 × 10−35 | ABCA4 | Intron | 0.046 | 0.637 |
| 3 | rs557869288 | 71316275 | T | A | 0.02 (0.003–0.14) | 4.53 × 10−7 | FOXP1 | Nmd transcript | 0.119 | 0.175 |
| 6 | rs9274247 | 32631295 | A | G | 0.28 (0.21–0.38) | 1.50 × 10−15 | HLA-DQB1 | Nmd transcript | 0.404 | 0.626 |
| 7 | rs1533933 | 140715025 | G | C | 2.94 (2.22–3.89) | 4.51 × 10−14 | MRPS33 | 5 prime UTR | 0.099 | 0.394 |
| 11 | rs4936270 | 113318408 | T | C | 3.26 (2.52–4.22) | 2.20 × 10−19 | DRD2 | 5 prime UTR | 0.188 | 0.005 |
| 15 | rs72712070 | 27132987 | G | A | 2.78 (2.03–3.80) | 1.47 × 10−10 | GABRA5 | Intron | 0.083 | 0.767 |
| 16 | rs2576531 | 55482887 | A | T | 4.32 (3.25–5.74) | 6.43 × 10−24 | MMP2-AS1 | Intron | 0.105 | 0.896 |
| 16 | rs733616 | 5511363 | C | G | 3.81 (3.05–4.75) | 3.31 × 10−32 | RBFOX1 | Intron | 0.253 | 0.103 |
| 17 | rs56899958 | 3424113 | G | A | 6.11 (3.95–9.46) | 4.62 × 10−16 | TRPV3 | Nmd transcript | 0.025 | 0.148 |
| Graph 95. | N Genes | Beta | Beta STD | 95% CI for Beta | p Value | p Value, Bonferroni Correction |
|---|---|---|---|---|---|---|
| GO: CC—GID complex | 4 | 2.48 | 0.0512 | (1.75–3.21) | 1.82 × 10−11 | 3.01 × 10−7 |
| Reactome—smooth muscle contraction | 24 | 0.827 | 0.0417 | (0.56–1.09) | 5.30 × 10−10 | 8.77 × 10−6 |
| GO: BP—hard palate development | 4 | 1.8 | 0.0372 | (1.15–2.45) | 3.10 × 10−8 | 5.10 × 10−4 |
| Reactome—SEMA4D induced cell migration and growth cone collapse | 12 | 0.9 | 0.0321 | (0.57–1.23) | 6.53 × 10−8 | 1.08 × 10−3 |
| GO: MF—Ferric iron binding | 2 | 2.54 | 0.0371 | (1.58–3.5) | 1.07 × 10−7 | 1.77 × 10−3 |
| Roylance—Breast cancer 16q copy number down | 14 | 0.969 | 0.0374 | (0.6–1.34) | 1.58 × 10−7 | 2.62 × 10−3 |
| Reactome—Rho GTPases activate CIT | 8 | 1.01 | 0.0294 | (0.61–1.41) | 2.99 × 10−7 | 4.95 × 10−3 |
| Reactome—SEMA4D in semaphorin signaling | 15 | 0.72 | 0.0287 | (0.43–1.01) | 6.75 × 10−7 | 0.0111 |
| GO: CC—Chromosome telomeric repeat region | 7 | 0.971 | 0.0265 | (0.58–1.37) | 7.45 × 10−7 | 0.0123 |
| GO: BP—Negative regulation of synaptic vesicle exocytosis | 2 | 1.98 | 0.0288 | (1.17–2.79) | 9.42 × 10−7 | 0.0156 |
| Yih response to arsenite c3 | 10 | 0.863 | 0.0283 | (0.51–1.22) | 9.62 × 10−7 | 0.0159 |
| GO: BP—Mitotic G1/S transition checkpoint signaling | 11 | 0.98 | 0.0335 | (0.58–1.38) | 9.81 × 10−7 | 0.0162 |
| Reactome—Rho GTPases activate ROKs | 9 | 0.979 | 0.0303 | (0.56–1.39) | 1.90 × 10−6 | 0.0315 |
| GO: BP—Bone trabecula morphogenesis | 8 | 1.13 | 0.0328 | (0.65–1.61) | 2.49 × 10−6 | 0.0411 |
| GO: BP—Neuron neuron synaptic transmission | 5 | 1.48 | 0.034 | (0.85–2.11) | 2.50 × 10−6 | 0.0412 |
| Low-PRS (n = 3880) | Medium-PRS (n = 1038) | High-PRS (n = 192) | p-Value for the Interaction of PRS and Lifestyles 1 | |
|---|---|---|---|---|
| Low fruit High fruit | 1 1 | 9.823 (4.146–23.27) 8.693 (5.200–14.53) | 81.32 (32.09–206.1) 47.03 (25.80–85.73) | 0.0023 |
| Low fast foods High fast foods | 1 1 | 17.65 (2.180–143.0) 9.021 (5.311 15.32) | 95.27 (4.280–193.4) 55.65 (30.80–100.6) | <0.0001 |
| Low coffee High coffee | 1 1 | 8.580 (4.844–15.20) 8.606 (4.270–17.33) | 55.38 (29.50–104.0) 34.24 (14.63–80.14) | <0.0001 |
| Low alcohol High alcohol | 1 1 | 8.176 (4.933–13.55) 7.356 (3.106–17.42) | 45.71 (26.19–79.79) 40.43 (12.77–128.0) | <0.0001 |
| Low eating duration High eating duration | 1 1 | 10.27 (5.090–20.70) 7.484 (4.328–12.94) | 35.27 (15.44–80.60) 56.14 (30.65–102.8) | <0.0001 |
| Low exercise High exercise | 1 1 | 6.893 (1.967 24.15) 9.262 (5.757–14.90) | 32.03 (8.275–124.0) 55.77 (31.68–98.18) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kang, S.; Jee, D. Genetic Susceptibility and Genetic Variant-Diet Interactions in Diabetic Retinopathy: A Cross-Sectional Case–Control Study. Nutrients 2025, 17, 2983. https://doi.org/10.3390/nu17182983
Park S, Kang S, Jee D. Genetic Susceptibility and Genetic Variant-Diet Interactions in Diabetic Retinopathy: A Cross-Sectional Case–Control Study. Nutrients. 2025; 17(18):2983. https://doi.org/10.3390/nu17182983
Chicago/Turabian StylePark, Sunmin, Suna Kang, and Donghyun Jee. 2025. "Genetic Susceptibility and Genetic Variant-Diet Interactions in Diabetic Retinopathy: A Cross-Sectional Case–Control Study" Nutrients 17, no. 18: 2983. https://doi.org/10.3390/nu17182983
APA StylePark, S., Kang, S., & Jee, D. (2025). Genetic Susceptibility and Genetic Variant-Diet Interactions in Diabetic Retinopathy: A Cross-Sectional Case–Control Study. Nutrients, 17(18), 2983. https://doi.org/10.3390/nu17182983

