Validating Sentinel Foods in the Diet Quality Questionnaire: Insights from Two Chilean Cohorts of Pregnant Women and Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Data Collection
2.3. Diet Quality Questionnaire (DQQ)
2.4. Classification and Validation of DQQ’s Sentinel Foods
2.5. Diet Quality Indicators:
2.6. Ultra-Processed Food Consumption
2.7. Anthropometric Data
2.8. Other Variables
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Food Group Classification
3.3. Frequency of Sentinel Food Group Consumption
3.4. DQQ Indicators
3.5. Correlations Between Diet Quality Scores and NOVA Classification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DQQ | Diet Quality Questionnaire |
GDR | Global Dietary Recommendations |
NCD | noncommunicable disease |
MDD-W | Minimum Dietary Diversity for Women |
DDS | Dietary Diversity Score |
UPFs | ultra-processed foods |
CIAPEC | Center for Research in Food Environments and Prevention of Nutrition-Related Chronic Diseases |
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The impact of climate change on food systems, diet quality, nutrition, and health outcomes: A narrative review. Front. Clim. 2022, 4, 941842. [Google Scholar] [CrossRef]
- Timmermans, A.J.M.; Ambuko, J.; Belik, W.; Huang, J. Food Losses and Waste in the Context of Sustainable Food Systems; HLPE Report; CFS Committee on World Food Security HLPE: Rome, Italy, 2014; Volume 8. [Google Scholar]
- Micha, R.; Coates, J.; Leclercq, C.; Charrondiere, U.R.; Mozaffarian, D. Global Dietary Surveillance: Data Gaps and Challenges. Food Nutr. Bull. 2018, 39, 175–205. [Google Scholar] [CrossRef]
- Rippin, H.L.; Hutchinson, J.; Evans, C.E.L.; Jewell, J.; Breda, J.J.; Cade, J.E. National nutrition surveys in Europe: A review on the current status in the 53 countries of the WHO European region. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef]
- Sanchez-Pimienta, T.G.; Batis, C.; Lutter, C.K.; Rivera, J.A. Sugar-Sweetened Beverages Are the Main Sources of Added Sugar Intake in the Mexican Population. J. Nutr. 2016, 146, 1888s–1896s. [Google Scholar] [CrossRef]
- Ahmed, M.; Ng, A.; L’Abbe, M.R. Nutrient intakes of Canadian adults: Results from the Canadian Community Health Survey (CCHS)–2015 Public Use Microdata File. Am. J. Clin. Nutr. 2021, 114, 1131–1140. [Google Scholar] [CrossRef]
- Johnson, A.F.; Lamontagne, N.; Bhupathiraju, S.N.; Brown, A.G.M.; Eicher-Miller, H.A.; Fulgoni, V.L.; Rehm, C.D.; Tucker, K.L.; Woteki, C.E.; Ohlhorst, S.D. Workshop summary: Building an NHANES for the future. Am. J. Clin. Nutr. 2024, 119, 1075–1081. [Google Scholar] [CrossRef]
- de Quadros, V.P.; Balcerzak, A.; Allemand, P.; de Sousa, R.F.; Bevere, T.; Arsenault, J.; Deitchler, M.; Holmes, B.A. Global Trends in the Availability of Dietary Data in Low and Middle-Income Countries. Nutrients 2022, 14, 2987. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); Center for Dietary Assessment. Global Report on the State of Dietary Data; FAO: Rome, Italy, 2022; 116p. [Google Scholar]
- González-Monroy, C.; Gómez-Gómez, I.; Olarte-Sánchez, C.M.; Motrico, E. Eating Behaviour Changes during the COVID-19 Pandemic: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2021, 18, 11130. [Google Scholar] [CrossRef]
- Frongillo, E.; Coates, J.; Verger, E.O.; Savy, M.; Martin-Prével, Y.; Neufeld, L.; Holmes, B.; Hayashi, C.; Vogliano, C.; Saha, K.; et al. Healthy Diet Metrics: A Suitability Assessment of Indicators for Global and National Monitoring Purposes; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Beal, T.; Herforth, A.; Kennedy, G.; Manners, R.; Adewopo, J.; Manguene, C.; Nhambire, R. Measuring What the World Eats: Insights from a New Approach; Harvard, T.H. Chan School of Public Health, Department of Global Health and Population: Boston, MA, USA, 2022. [Google Scholar]
- Herforth, A.W.; Sokourenko, K.; Gonzalez, B.C.; Uyar, B.T.M.; Bulungu, A.L.S.; Vogliano, C. Adaptation of the Diet Quality Questionnaire as a Global Public Good for Use in 140 Countries. Curr. Dev. Nutr. 2025, 9, 104499. [Google Scholar] [CrossRef]
- Herforth, A.W.; Sattamini, I.F.; Olarte, D.A.; Diego-Rosell, P.; Rzepa, A. You Say Potato, I Say Vegetable; You Say Tomato, I Say Fruit: Cognitive Validity of Food Group–Based Dietary Recall Questions. Curr. Dev. Nutr. 2025, 9, 104502. [Google Scholar] [CrossRef]
- Herforth, A.W.; Ballard, T.; Rzepa, A. Development of the Diet Quality Questionnaire for Measurement of Dietary Diversity and Other Diet Quality Indicators. Curr. Dev. Nutr. 2024, 8, 103798. [Google Scholar] [CrossRef]
- Uyar, B.T.M.; Talsma, E.F.; Herforth, A.W.; Trijsburg, L.E.; Vogliano, C.; Pastori, G.; Bekele, T.H.; Huong, L.T.; Brouwer, I.D. The DQQ is a Valid Tool to Collect Population-Level Food Group Consumption Data: A Study Among Women in Ethiopia, Vietnam, and Solomon Islands. J. Nutr. 2023, 153, 340–351. [Google Scholar] [CrossRef]
- Ma, S.; Herforth, A.W.; Vogliano, C.; Zou, Z. Most Commonly-Consumed Food Items by Food Group, and by Province, in China: Implications for Diet Quality Monitoring. Nutrients 2022, 14, 1754. [Google Scholar] [CrossRef]
- Herforth, A.W.; Wiesmann, D.; Martínez-Steele, E.; Andrade, G.; Monteiro, C.A. Introducing a Suite of Low-Burden Diet Quality Indicators That Reflect Healthy Diet Patterns at Population Level. Curr. Dev. Nutr. 2020, 4, nzaa168. [Google Scholar] [CrossRef]
- Vogliano, C.; Varela, V.; Woldt, M.; Alayon, S.; Hackl, L.S.; Kennedy, G.; Pedersen, S.H.; Milner, E.M.; Yourkavitch, J. Assessing the performance of national sentinel food lists at subnational levels in six countries. Public Health Nutr. 2023, 27, e2. [Google Scholar] [CrossRef]
- Wang, H.; Herforth, A.W.; Xi, B.; Zou, Z. Validation of the Diet Quality Questionnaire in Chinese Children and Adolescents and Relationship with Pediatric Overweight and Obesity. Nutrients 2022, 14, 3551. [Google Scholar] [CrossRef]
- Verger, E.O.; Eymard-Duvernay, S.; Bahya-Batinda, D.; Hanley-Cook, G.T.; Argaw, A.; Becquey, E.; Diop, L.; Gelli, A.; Harris-Fry, H.; Kachwaha, S.; et al. Defining a Dichotomous Indicator for Population-Level Assessment of Dietary Diversity Among Pregnant Adolescent Girls and Women: A Secondary Analysis of Quantitative 24-h Recalls from Rural Settings in Bangladesh, Burkina Faso, India, and Nepal. Curr. Dev. Nutr. 2024, 8, 102053. [Google Scholar] [CrossRef]
- Ministerio de Salud, Gobierno de Chile. Ley 20.606 Sobre Composición Nutricional de los Alimentos y su Publicidad. 2012. Available online: http://www.leychile.cl/Navegar?idNorma=1041570 (accessed on 25 July 2025).
- Venegas Hargous, C.; Reyes, M.; Smith Taillie, L.; González, C.G.; Corvalán, C. Consumption of non-nutritive sweeteners by pre-schoolers of the food and environment Chilean cohort (FECHIC) before the implementation of the Chilean food labelling and advertising law. Nutr. J. 2020, 19, 69. [Google Scholar] [CrossRef]
- Mujica-Coopman, M.F.; Corvalán, C.; Flores, M.; Garmendia, M.L. The Chilean Maternal-Infant Cohort Study-II in the COVID-19 Era: A Study Protocol. Front. Public Health 2022, 10, 904668. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar]
- Mujica-Coopman, M.F.; Martínez-Arroyo, A.; Rebolledo, N.; Quintiliano-Scarpelli, D.; Reyes, M. Development and feasibility of a 24-hour recall software to characterize the Chilean diet. J. Food Compos. Anal. 2025, 144, 107660. [Google Scholar] [CrossRef]
- Ministerio de Salud, Gobierno de Chile. Encuesta Nacional de Consumo Alimentario: Anexo Tablas de Equivalencias de Medidas de Volumen y Masa de las Series Fotográficas de Alimentos y Preparaciones Chilenas. 2010. Available online: http://www.repositoriodigital.minsal.cl/handle/2015/902?show=full (accessed on 27 May 2025).
- FAO. Mixed Dishes Consumed away from Home or from Communal Plates: Standard Recipe and Portion Approaches for MDD-W Data Collection. An Annex to Minimum Dietary Diversity for Women—An Updated Guide for Measurement: From Collection to Action; FAO: Rome, Italy, 2024; 9p, Available online: https://openknowledge.fao.org/handle/20.500.14283/cc9411en (accessed on 27 June 2025).
- FAO. Minimum Dietary Diversity for Women. An Updated Guide to Measurement—From Collection to Action; FAO: Rome, Italy, 2021; 176p. [Google Scholar]
- Global Diet Quality Project. Diet Quality Questionnaire (DQQ) Indicator Guide. 2022. Available online: https://www.dietquality.org/indicators/definitions (accessed on 20 March 2025).
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Onis, M.; Onyango, A.W.; Borghi, E. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Araya, C.; Corvalán, C.; Cediel, G.; Taillie, L.S.; Reyes, M. Ultra-Processed Food Consumption Among Chilean Preschoolers Is Associated With Diets Promoting Non-communicable Diseases. Front. Nutr. 2021, 8, 601526. [Google Scholar]
- Rebolledo, N.; Reyes, M.; Corvalán, C.; Popkin, B.M.; Smith Taillie, L. Dietary Intake by Food Source and Eating Location in Low- and Middle-Income Chilean Preschool Children and Adolescents from Southeast Santiago. Nutrients 2019, 11, 1695. [Google Scholar] [CrossRef]
- Rebolledo, N.; Reyes, M.; Popkin, B.M.; Adair, L.; Avery, C.L.; Corvalán, C.; Ng, S.W.; Taillie, L.S. Changes in nonnutritive sweetener intake in a cohort of preschoolers after the implementation of Chile’s Law of Food Labelling and Advertising. Pediatr. Obes. 2022, 17, e12895. [Google Scholar]
- Global Diet Quality Project. “DQQ Results Dataset 2021–2024.”. Harvard Dataverse. 2024. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KY3W8A (accessed on 15 July 2025).
- Ministerio de Salud, Gobierno de Chile. Encuesta Nacional de Consumo Alimentario: Informe Final; Universidad de Chile: Santiago, Chile, 2011; p. 329. Available online: http://web.minsal.cl/sites/default/files/ENCA-INFORME_FINAL.pdf (accessed on 25 May 2025).
- Maggiolo, C.F.; Rojas, D.E.; Osiac, L.R.; Villegas Ríos, R.; Ortega Guzmán, A.; Espinoza, P.G. Obesogenic urban food environments in Santiago, Chile: Perceptions from a cross-sectional study of two socioeconomically distinct neighborhoods. Health Place 2025, 94, 103493. [Google Scholar] [CrossRef]
- Corvalán, C.; Garmendia, M.L.; Jones-Smith, J.; Lutter, C.K.; Miranda, J.J.; Pedraza, L.S.; Popkin, B.M.; Ramirez-Zea, M.; Salvo, D.; Stein, A.D. Nutrition status of children in Latin America. Obes. Rev. 2017, 18 (Suppl. 2), 7–18. [Google Scholar] [CrossRef]
- Melo, G. Fruitful changes? Exploring household fruit purchase decisions following comprehensive food policy regulations in Chile. Appetite 2024, 198, 107354. [Google Scholar] [CrossRef]
- Diop, L.; Gelli, A.; Huybregts, L.; Arsenault, J.E.; Bliznashka, L.; Boy, E.; Deitchler, M.; Lachat, C.; Moursi, M.; Ochoa-Avilés, A.M.; et al. The Minimum Dietary Diversity for Women Indicator Can Be Extended to Children and Adolescents aged 4–15 Years as a Proxy Population Indicator for Good Micronutrient Adequacy of Diets in Low- and Middle-Income Countries. Curr. Dev. Nutr. 2025, 9, 104508. [Google Scholar] [CrossRef] [PubMed]
- Hanley-Cook, G.T.; Hoogerwerf, S.; Parraguez, J.P.; Gie, S.M.; Holmes, B.A. Minimum Dietary Diversity for Adolescents: Multicountry Analysis to Define Food Group Thresholds Predicting Micronutrient Adequacy among Girls and Boys Aged 10–19 Years. Curr. Dev. Nutr. 2024, 8, 102097. [Google Scholar] [CrossRef] [PubMed]
- Arimond, M.; Wiesmann, D.; Ramírez, S.R.; Levy, T.S.; Ma, S.; Zou, Z.; Herforth, A.; Beal, T. Food Group Diversity and Nutrient Adequacy: Dietary Diversity as a Proxy for Micronutrient Adequacy for Different Age and Sex Groups in Mexico and China; Global Alliance for Improved Nutrition (GAIN): Geneva, Switzerland, 2021; p. 10. [Google Scholar]
- Gómez, G.; Monge-Rojas, R.; Vargas-Quesada, R.; Previdelli, A.N.; Quesada, D.; Kovalskys, I.; Herrera-Cuenca, M.; Cortes, L.Y.; García, M.C.Y.; Liria-Domínguez, R.; et al. Exploring the FAO Minimum Dietary Diversity Indicator as a Suitable Proxy of Micronutrient Adequacy in Men and Women Across Reproductive and Non-reproductive Ages in 8 Latin American Countries. Food Nutr. Bull. 2024, 45 (Suppl. 2), S55–S65. [Google Scholar] [CrossRef]
- World Health Organization; Food Agriculture Organization of the United Nations; United Nations Children’s Fund. Guidance for Monitoring Healthy Diets Globally; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalán, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Khandpur, N.; Neri, D.; Touvier, M.; Huybrechts, I.; Millett, C.; Vamos, E.P. Association Between Childhood Consumption of Ultraprocessed Food and Adiposity Trajectories in the Avon Longitudinal Study of Parents and Children Birth Cohort. JAMA Pediatr. 2021, 175, e211573. [Google Scholar] [CrossRef]
- National Cancer Institute. Dietary Assessment Primer. 2019. Available online: https://dietassessmentprimer.cancer.gov/learn/misreporting.html (accessed on 25 July 2025).
Pregnant Women | Children | |
---|---|---|
Total (n = 1418) | Total (n = 799) | |
Age, y a | 29.1 (6.6) | 6.2 (0.53) |
Female, % (n) | 100 (1418) | 51.3 (410) |
Weight, (kg) a,d | 74.6 (16.13) | 25.5 (5.41) |
Height, (cm) a,d | 158.9 (5.84) | 120.1 (5.88) |
BMI, (kg/m2) a,b,d | 29.5 (6.11) | 17.6 (2.71) |
Weight status | ||
Underweight, % (n) | 0.7 (9) | 4.0 (32) |
Normal weight, % (n) | 27.7 (328) | 45.7 (365) |
Overweight, % (n) | 34.6 (478) | 28.8 (230) |
Obesity, % (n) | 41.0 (567) | 21.5 (172) |
Schooling (y) c | ||
≤12 years, % (n) | 68.3 (968) | 59.1 (472) |
>12 years, % (n) | 31.7 (450) | 40.9 (327) |
Season | ||
Autumn, % (n) | 26.5 (376) | 67.1 (536) |
Winter, % (n) | 17.9 (254) | 18.3 (146) |
Spring, % (n) | 20.2 (287) | 0.1 (1) |
Summer, % (n) | 35.3 (501) | 14.5 (116) |
24HR day | ||
Weekend (yes), % (n) | 15.6 (221) | 14.4 (115) |
Total dietary energy (kcal/day) a | 1604 (618.59) | 1412 (418.57) |
NOVA food classification system,%kcal a | ||
Group 1 a | 37.9 (16.34) | 31.9 (17.1) |
Group 2 a | 8.9 (7.12) | 7.8 (8.78) |
Group 3 a | 18.9 (13.82) | 11.9 (10.60) |
Group 4 a | 34.4 (19.41) | 48.4 (19.27) |
Sentinel Food | Pregnant Women | Children | ||||
---|---|---|---|---|---|---|
n b | % | Ranking | n b | % | Ranking | |
Staple foods made from grains (Group 1) | ||||||
White bread | 1900 | 61.1 | 1 | 947 | 57.2 | 1 |
Pasta | 397 | 12.8 | 3 | 290 | 17.5 | 3 |
Rice | 653 | 21.0 | 2 | 365 | 22.1 | 2 |
Others | 160 | 5.1 | - | 53 | 3.2 | - |
Whole grain (Group 2) | ||||||
Oats | 104 | 15.9 | 3 | 20 | 12.4 | 3 |
Corn | 311 | 47.6 | 1 | 91 | 56.2 | 1 |
Wheat berries | 18 | 2.8 | 4 | 4 | 2.5 | 4 |
Whole grain bread | 199 | 30.4 | 2 | 32 | 19.8 | 2 |
Quinoa | 3 | 0.5 | 5 | 1 | 0.6 | 5 |
Others | 19 | 2.9 | - | 14 | 8.6 | |
White root/tubers (Group 3) | ||||||
Potato | 583 | 98.9 | 1 | 363 | 100 | 1 |
Others | 6 | 1.1 | - | 0 | 0 | - |
Legumes (Group 4) | ||||||
Beans | 111 | 29.7 | 2 | 55 | 35 | 1 |
Chickpeas | 14 | 3.7 | 4 | 6 | 3.9 | 4 |
Lentils | 80 | 21.4 | 3 | 49 | 32 | 2 |
Peas | 115 | 30.8 | 1 | 33 | 21.6 | 3 |
Soy meat | 9 | 2.4 | 5 | 0 | 0 | 5 |
Hummus | 3 | 0.8 | 6 | 0 | 0 | 6 |
Others | 42 | 11.2 | - | 10 | 6.5 | - |
Vitamin A-rich orange vegetables (Group 5) | ||||||
Carrots | 756 | 67.1 | 1 | 150 | 56.2 | 1 |
Zapallo squash | 282 | 25 | 2 | 117 | 43.8 | 2 |
Red peppers | 89 | 7.9 | 3 | 0 | 0 | 3 |
Dark green leafy vegetables (Group 6) | ||||||
Broccoli | 62 | 43.4 | 1 | 13 | 50 | 1 |
Chard | 30 | 21 | 2 | 9 | 34.6 | 2 |
Spinach | 45 | 31.5 | 3 | 3 | 11.5 | 3 |
Others | 6 | 4.2 | - | 1 | 3.9 | - |
Other vegetables (Group 7) | ||||||
Tomatoes | 762 | 37.6 | 1 | 241 | 44.1 | 1 |
Lettuce | 488 | 24.1 | 2 | 145 | 26.5 | 2 |
Cucumber | 81 | 4 | 5 | 31 | 5.7 | 4 |
Green beans | 208 | 10.3 | 3 | 30 | 5.5 | 5 |
Cabbage | 125 | 6.2 | 4 | 37 | 6.8 | 3 |
Cauliflower | 38 | 1.9 | 10 | 6 | 1.1 | 8 |
Zucchini | 66 | 3.3 | 7 | 12 | 2.2 | 7 |
Beet | 54 | 2.7 | 8 | 6 | 1.1 | 9 |
Celery | 72 | 3.6 | 6 | 26 | 4.8 | 6 |
Artichoke | 6 | 0.3 | 12 | 4 | 0.7 | 10 |
Asparagus | 7 | 0.3 | 11 | 1 | 0.2 | 11 |
Mushrooms | 52 | 2.6 | 9 | 1 | 0.2 | 12 |
Others | 70 | 3.5 | - | 7 | 1.3 | - |
Vitamin A-rich fruits (Group 8) | ||||||
Cantaloupe | 11 | 36.7 | 2 | 1 | 33.3 | 2 |
Apricots | 4 | 13.3 | 3 | 0 | 0 | 3 |
Mango | 14 | 46.7 | 1 | 2 | 66.7 | 1 |
Loquat | 0 | 0 | 4 | 0 | 0 | 4 |
Others | 1 | 3.3 | - | 0 | 0 | - |
Citrus (Group 9) | ||||||
Orange | 92 | 57.9 | 1 | 55 | 60.4 | 1 |
Mandarin | 66 | 41.5 | 2 | 36 | 39.6 | 2 |
Others | 1 | 0.6 | - | 0 | 0 | - |
Other fruits (Group 10) | ||||||
Banana | 285 | 15.7 | 3 | 118 | 20.2 | 2 |
Apple | 288 | 15.9 | 2 | 140 | 23.9 | 1 |
Pear | 67 | 3.7 | 7 | 30 | 5.1 | 6 |
Peaches | 244 | 13.5 | 4 | 42 | 7.2 | 5 |
Plums | 17 | 0.9 | 11 | 2 | 0.3 | 11 |
Kiwi | 23 | 1.3 | 10 | 5 | 0.9 | 9 |
Watermelon | 67 | 3.7 | 8 | 9 | 1.5 | 8 |
Avocado | 427 | 23.6 | 1 | 111 | 18.9 | 3 |
Grapes | 100 | 5.5 | 5 | 53 | 9.1 | 4 |
Cherries | 24 | 1.3 | 9 | 0 | 0 | 13 |
Strawberries | 92 | 5.1 | 6 | 21 | 3.6 | 7 |
Raspberries | 5 | 0.3 | 13 | 2 | 0.3 | 10 |
Blackberries | 0 | 0 | 14 | 1 | 0.2 | 12 |
Blueberries | 12 | 0.7 | 12 | 0 | 0 | 14 |
Others | 161 | 8.9 | - | 51 | 8.7 | - |
Grain-based sweets (Group 11) | ||||||
Cookies | 266 | 40.2 | 1 | 371 | 56.1 | 1 |
Cakes | 133 | 20.1 | 2 | 50 | 7.6 | 3 |
Quick sweet breads | 129 | 19.5 | 3 | 106 | 16 | 2 |
Chilean pastries | 53 | 8 | 4 | 34 | 5.1 | 5 |
Churros | 5 | 0.8 | 8 | 2 | 0.3 | 8 |
Calzones rotos | 10 | 1.5 | 6 | 11 | 1.7 | 6 |
Donuts | 10 | 1.5 | 7 | 3 | 0.5 | 7 |
Cereal bars c | 27 | 4.1 | 5 | 77 | 11.7 | 4 |
Others | 29 | 4.4 | - | 7 | 1.1 | - |
Other sweets (Group 12) | ||||||
Candy | 21 | 3 | 6 | 18 | 4.2 | 5 |
Chewy candies | 60 | 8.6 | 4 | 30 | 6.9 | 4 |
Chocolates | 169 | 24.3 | 2 | 78 | 18.1 | 3 |
Ice cream or popsicle | 185 | 26.6 | 1 | 166 | 38.6 | 1 |
Manjar | 53 | 7.6 | 5 | 12 | 2.8 | 6 |
Jellies and milk-based dessert c | 165 | 24.4 | 3 | 102 | 23.9 | 2 |
Others | 42 | 6.0 | - | 24 | 5.6 | - |
Eggs (Group 13) | ||||||
Eggs | 447 | 100 | 1 | 219 | 100 | 1 |
Cheese (Group 14) | ||||||
Hard cheese | 495 | 75.9 | 1 | 146 | 92.4 | 1 |
Fresh cheese | 157 | 24.1 | 2 | 12 | 7.6 | 2 |
Yogurt (Group 15) | ||||||
Yogurt | 481 | 94.5 | 1 | 465 | 98.1 | 1 |
Cultured milk | 28 | 5.5 | 2 | 9 | 1.9 | 2 |
Processed meats (Group 16) | ||||||
Ham | 472 | 60.5 | 1 | 158 | 50.5 | 1 |
Bologna | 21 | 2.7 | 6 | 5 | 1.6 | 5 |
Hot dogs | 128 | 16.4 | 2 | 119 | 38 | 2 |
Chorizo sausage | 7 | 0.9 | 7 | 5 | 1.6 | 6 |
Longaniza sausage | 33 | 4.2 | 5 | 11 | 3.5 | 3 |
Salami | 35 | 4.5 | 4 | 10 | 3.2 | 4 |
Bacon | 5 | 0.6 | 8 | 0 | 0 | 8 |
Patés c | 77 | 9.9 | 3 | 5 | 1.6 | 7 |
Others | 2 | 0.3 | - | 0 | 0 | - |
Unprocessed red meat (ruminant) (Group 17) | ||||||
Beef | 598 | 92.1 | 1 | 277 | 90.8 | 1 |
Beef liver | 6 | 0.9 | 2 | 0 | 0 | 2 |
Lamb | 0 | 0 | 3 | 0 | 0 | 3 |
Goat | 0 | 0 | 4 | 0 | 0 | 4 |
Others | 45 | 6.9 | - | 28 | 9.2 | - |
Unprocessed red meat (non-ruminant) (Group 18) | ||||||
Pork | 96 | 100 | 1 | 34 | 100 | 1 |
Poultry (Group 19) | ||||||
Chicken | 448 | 97.2 | 1 | 233 | 93.9 | 1 |
Turkey | 13 | 2.8 | 2 | 15 | 6.1 | 2 |
Fish and seafood (Group 20) | ||||||
Fish | 62 | 32.9 | 1 | 25 | 34.2 | 1 |
Jurel | 21 | 11.2 | 4 | 24 | 32.3 | 2 |
Tuna | 54 | 28.7 | 2 | 23 | 31.5 | 3 |
Sardines | 2 | 1.1 | 5 | 1 | 1.4 | 4 |
Seafood | 49 | 26.1 | 3 | 0 | 0 | 5 |
Nuts and seeds (Group 21) | ||||||
Peanuts | 34 | 32.1 | 1 | 14 | 53.9 | 1 |
Peanut butter | 6 | 5.7 | 4 | 1 | 3.9 | 4 |
Almonds | 34 | 32.1 | 2 | 3 | 11.5 | 3 |
Walnuts | 26 | 24.5 | 3 | 7 | 26.9 | 2 |
Chilean hazelnut | 1 | 0.9 | 5 | 0 | 0 | 5 |
Chilean pine nuts | 0 | 0 | 7 | 0 | 0 | 6 |
Chestnuts | 1 | 0.9 | 6 | 0 | 0 | 7 |
Others | 4 | 3.8 | - | 1 | 3.9 | - |
Packaged ultra-processed salty snacks (Group 22) | ||||||
Potato chips | 50 | 27.9 | 2 | 68 | 41 | 1 |
Ramitas | 11 | 6.2 | 3 | 17 | 10.2 | 4 |
Cheetos | 5 | 2.8 | 6 | 1 | 0.6 | 6 |
Doritos | 7 | 3.9 | 5 | 15 | 9 | 5 |
Suflés | 11 | 6.2 | 4 | 21 | 12.7 | 3 |
Saltine crackers c | 95 | 53.1 | 1 | 44 | 26.5 | 2 |
Instant noodles (Group 23) | ||||||
Instant soup | 21 | 81 | 1 | 4 | 40 | 2 |
Instant noodles | 5 | 19 | 2 | 6 | 60 | 1 |
Deep fried foods (Group 24) | ||||||
Potato fries | 124 | 43.4 | 1 | 75 | 37.7 | 1 |
Sopaipilla | 21 | 7.3 | 4 | 42 | 21.1 | 2 |
Fried empanadas | 26 | 9.1 | 3 | 20 | 10.1 | 4 |
Spring rolls | 8 | 2.8 | 7 | 4 | 2.0 | 7 |
Wontons | 0 | 0 | 8 | 1 | 0.5 | 8 |
Chicken nuggets | 21 | 7.3 | 5 | 27 | 13.6 | 3 |
Fried fish | 44 | 15.4 | 2 | 17 | 8.5 | 5 |
Fried chicken c | 21 | 7.3 | 6 | 7 | 3.5 | 6 |
Others | 21 | 7.3 | - | 6 | 3 | - |
Fluid milk (Group 25) | ||||||
Milk | 871 | 67.7 | 1 | 733 | 70.2 | 1 |
Powdered milk | 414 | 32.3 | 2 | 311 | 29.8 | 2 |
Sweet tea/coffee/milk drinks (Group 26) | ||||||
Coffee with sugar | 69 | 7.1 | 2 | 2 | 0.2 | 3 |
Tea with sugar | 472 | 48.4 | 1 | 141 | 15.9 | 1 |
Herbal tea with sugar | 11 | 1.1 | 3 | 3 | 0.3 | 2 |
Mate tea with sugar | 0 | 0 | 4 | 0 | 0 | 4 |
Flavored milk c | 423 | 43.4 | - | 742 | 83.6 | - |
Fruit juice (Group 27) | ||||||
Fruit juice | 242 | 16.8 | 4 | 53 | 4.6 | 4 |
Packaged juice | 268 | 18.6 | 3 | 488 | 42.3 | 1 |
Fruit drinks | 619 | 43 | 1 | 487 | 42.2 | 2 |
Others | 36 | 2.5 | 5 | 126 | 10.9 | 3 |
Soft drinks (Group 28) | ||||||
Soft drinks such as Coca-Cola, Fanta, or Sprite | 684 | 98.7 | 1 | 445 | 99.1 | 1 |
Energy drinks such as Red Bull | 1 | 0.1 | 4 | 0 | 0 | 3 |
Sports drinks such as Gatorade | 8 | 1.2 | 3 | 4 | 0.9 | 2 |
Fast food (Group 29) | ||||||
McDonald’s | 25 | 26.6 | 1 | 21 | 38.2 | 1 |
Burger King | 10 | 10.6 | 2 | 0 | 0 | 5 |
KFC | 9 | 9.6 | 3 | 6 | 10.9 | 2 |
Doggi’s | 6 | 6.4 | 4 | 2 | 3.6 | 4 |
Pizza Hut | 5 | 5.3 | 5 | 5 | 9.1 | 3 |
Others | 39 | 41.5 | - | 21 | 38.2 | - |
Indicator | Pregnant Women n = 1418 | Children n = 799 |
---|---|---|
GDR a | 9.3 (2.20) | 8.1 (2.05) |
NCD-Protect a | 2.5 (1.34) | 1.7 (1.30) |
NCD-Risk a | 2.3 (1.55) | 2.6 (1.48) |
MDD-W, % (n) | 65.2 (925) | 45.4 (363) |
DDS a | 5.0 (1.31) | 4.4 (1.34) |
Zero vegetable or fruit consumption, % (n) | 7.3 (104) | 23.0 (184) |
Protective Food Consumption, % (n) | 36.7 (520) | 22.6 (181) |
More than one sugary food or beverage, % (n) | 60.2 (853) | 73.7 (589) |
More than one salty ultra-processed food, % (n) | 9.7 (138) | 13.2 (106) |
Indicator | Pregnant Women | Children | ||||
---|---|---|---|---|---|---|
% kcal NOVA Group 1 | % kcal NOVA Group 4 | % Total Dietary Energy Intake | % kcal NOVA Group 1 | % kcal NOVA Group 4 | % Total Dietary Energy Intake | |
GDR | 0.3852 * | −0.307 * | −0.2438 * | 0.3679 * | −0.387 * | −0.1101 * |
NCD-Protect | 0.2707 * | −0.1281 * | 0.0364 | 0.2872 * | −0.2359 * | 0.1425 * |
NCD-Risk | −0.3236 * | 0.3342 * | 0.3872 * | −0.2649 * | 0.3279 * | 0.2915 * |
DDS | 0.2646 * | −0.1496 * | 0.1355 * | 0.3178 * | −0.2431 * | 0.1898 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Arroyo, A.; Barisione, G.; Vizcarra, M.; Rebolledo, N.; Garmendia, M.L. Validating Sentinel Foods in the Diet Quality Questionnaire: Insights from Two Chilean Cohorts of Pregnant Women and Children. Nutrients 2025, 17, 2980. https://doi.org/10.3390/nu17182980
Martínez-Arroyo A, Barisione G, Vizcarra M, Rebolledo N, Garmendia ML. Validating Sentinel Foods in the Diet Quality Questionnaire: Insights from Two Chilean Cohorts of Pregnant Women and Children. Nutrients. 2025; 17(18):2980. https://doi.org/10.3390/nu17182980
Chicago/Turabian StyleMartínez-Arroyo, Angela, Giannella Barisione, Marcela Vizcarra, Natalia Rebolledo, and María Luisa Garmendia. 2025. "Validating Sentinel Foods in the Diet Quality Questionnaire: Insights from Two Chilean Cohorts of Pregnant Women and Children" Nutrients 17, no. 18: 2980. https://doi.org/10.3390/nu17182980
APA StyleMartínez-Arroyo, A., Barisione, G., Vizcarra, M., Rebolledo, N., & Garmendia, M. L. (2025). Validating Sentinel Foods in the Diet Quality Questionnaire: Insights from Two Chilean Cohorts of Pregnant Women and Children. Nutrients, 17(18), 2980. https://doi.org/10.3390/nu17182980