Dietary Modifications in IBS Leads to Reduced Symptoms, Weight, and Lipid Levels: Two Randomized Clinical Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Dietary Advice
2.4. Questionnaires
2.4.1. Study Questionnaire
2.4.2. Rome IV Questionnaire
2.4.3. Irritable Bowel Syndrome Severity Scoring System
2.4.4. Visual Analog Scale for Irritable Bowel Syndrome
2.5. Laboratory Analyses
2.6. Statistical Analysis
3. Results
3.1. Basal Characteristics
3.2. Food Intake
3.3. Weight and BMI
3.4. Gastrointestinal and Extraintestinal Symptoms
3.5. Laboratory Analyses
3.6. Associations Between Nutrients, Weight, Symptoms, and Lipid Levels
3.6.1. First Model
3.6.2. Second Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBS | Irritable bowel syndrome |
FODMAP | Fermentable oligo-, di-, and monosaccharides and polyols |
SSRD | Starch- and sucrose-reduced diet |
References
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [CrossRef]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome foundation global study. Gastroenterology 2021, 160, 99–114. [Google Scholar] [CrossRef]
- Zia, J.K.; Lenhart, A.; Yang, P.-L.; Heitkemper, M.M.; Baker, J.; Keefer, L.; Saps, M.; Cuff, C.; Hungria, G.; Videlock, E.J.; et al. Risk factors for abdominal pain-related disorders of gut-brain interaction in adults and children: A systematic review. Gastroenterology 2022, 163, 995–1023. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Niu, K.; Momma, H.; Kobayashi, Y.; Chujo, M.; Otomo, A.; Fukudo, S.; Nagatomi, R.; Zirlik, A. Irritable bowel syndrome is positively related to metabolic syndrome: A population-based cross-sectional study. PLoS ONE 2014, 9, e112289. [Google Scholar] [CrossRef]
- Xu, M.; Liu, D.; Tan, Y.; He, J.; Zhou, B. A mendelian randomization study on the effects of plasma lipids on irritable bowel syndrome and functional dyspepsia. Sci. Rep. 2024, 14, 78. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Song, J.; Chen, W.; Liu, K.; Liu, B.; Luo, P.; Sun, X.; He, Z.; Mao, Y.; et al. Associations of modifiable factors with risk of irritable bowel syndrome. Frontiers 2024, 11, 1362615. [Google Scholar] [CrossRef] [PubMed]
- Algera, J.; Colomier, E.; Simrén, M. The Dietary Management of Patients with Irritable Bowel Syndrome: A Narrative Review of the Existing and Emerging Evidence. Nutrients 2019, 11, 2162. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, H.; Porter, J.; Gibson, P.R.; Barrett, J.; Garg, M. Review article: Implementation of a diet low in FODMAPs for patients with irritable bowel syndrome-directions for future research. Aliment. Pharmacol. Ther. 2019, 49, 124–139. [Google Scholar] [CrossRef]
- Nybacka, S.; Törnblom, H.; Josefsson, A.; Hreinsson, J.P.; Böhn, L.; Frändemark, Å.; Weznaver, C.; Störsrud, S.; Simrén, M. A low FODMAP diet plus traditional dietary advice versus a low-carbohydrate diet versus pharmacological treatment in irritable bowel syndrome (CARIBS): A single-centre, single-blind, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2024, 9, 507–520. [Google Scholar] [CrossRef]
- Treem, W.R. Clinical aspects and treatment of congenital sucrase-isomaltase deficiency. J. Pediatr. Gastroenterol. Nutr. 2012, 55 (Suppl. S2), S7–S13. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.K.; Skotte, L.; Jørsboe, E.; Polito, R.; Stæger, F.F.; Aldiss, P.; Hanghøj, K.; Waples, R.K.; Santander, C.G.; Grarup, N.; et al. Loss of Sucrase-Isomaltase Function Increases Acetate Levels and Improves Metabolic Health in Greenlandic Cohorts. Gastroenterology 2022, 162, 1171–1182.e3. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Zheng, T.; Bonfiglio, F.; Bujanda, L.; Dlugosz, A.; Lindberg, G.; Schmidt, P.T.; Karling, P.; Ohlsson, B.; Simren, M.; et al. Increased Prevalence of Rare Sucrase-isomaltase Pathogenic Variants in Irritable Bowel Syndrome Patients. Clin. Gastroenterol. Hepatol. 2018, 16, 1673–1676. [Google Scholar] [CrossRef]
- Henström, M.; Diekmann, L.; Bonfiglio, F.; Hadizadeh, F.; Kuech, E.-M.; Von Köckritz-Blickwede, M.; Thingholm, L.B.; Zheng, T.; Assadi, G.; Dierks, C.; et al. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 2018, 67, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Nilholm, C.; Roth, B.; Ohlsson, B. A Dietary Intervention with Reduction of Starch and Sucrose Leads to Reduced Gastrointestinal and Extra-Intestinal Symptoms in IBS Patients. Nutrients 2019, 11, 1662. [Google Scholar] [CrossRef]
- Gayoso, L.; Garcia-Etxebarria, K.; Arzallus, T.; Montalvo, I.; Lizasoain, J.; D’aMato, M.; Etxeberria, U.; Bujanda, L. The effect of starch- and sucrose-reduced diet accompanied by nutritional and culinary recommendations on the symptoms of irritable bowel syndrome patients with diarrhoea. Ther. Adv. Gastroenterol. 2023, 16, 17562848231156682. [Google Scholar] [CrossRef]
- Roth, B.; Nseir, M.; Jeppsson, H.; D’Amato, M.; Sundquist, K.; Ohlsson, B. A starch- and sucrose-reduced diet has similar efficiency as low FODMAP in IBS. A randomized non-inferiority study. Nutrients 2024, 16, 3039. [Google Scholar] [CrossRef]
- Al-Shiblawi, N.; Cullman, K.; Roth, B.; Liljebo, T.; Störsrud, S.; Ohlsson, B. A starch- and sucrose-reduced diet leads to a more. favorable nutrient profile than low FODMAP in patients with irritable bowel syndrome. A randomized clinical trial. Hum. Nutr. Metab. 2025, 42, 200337. [Google Scholar] [CrossRef]
- Body Mass Index (BMI) (who.int). Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index (accessed on 1 December 2023).
- International Diabetes Federation: The IDF Consensus Worldwide Definition of the Metabolic Syndrome [Article Online]. Available online: https://idf.org/media/uploads/2023/05/attachments-30.pdf (accessed on 25 September 2024).
- Francis, C.Y.; Morris, J.; Whorwell, P.J. The irritable bowel severity scoring system: A simple method of monitoring irritable bowel syndrome and its progress. Aliment. Pharmacol. Ther. 1997, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Ohlsson, B. Challenges of recruitment processes to a randomized dietary trial in irritable bowel syndrome. F1000Research 2024, 13, 323. [Google Scholar] [CrossRef]
- ICD-10. Version:2019 (who.int). Available online: https://icd.who.int/browse10/2019/en (accessed on 12 May 2024).
- Choosing Your Foods. CSID Cares. Available online: https://www.csidcares.org (accessed on 12 February 2024).
- Whelan, K.; Martin, L.D.; Staudacher, H.M.; Lomer, M.C.E. The low FODMAP diet in the management of irritable bowel syndrome: An evidence-based review of FODMAP restriction, reintroduction and personalization in clinical practice. J. Hum. Nutr. Diet. 2018, 31, 239–255. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Ralph, F.S.E.; Irving, P.M.; Whelan, K.; Lomer, M.C.E. Nutrient intake, diet quality, and diet diversity in irritable bowel syndrome and the impact of the low FODMAP diet. J. Acad. Nutr. Diet. 2020, 120, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Rossi, M.; Kaminski, T.; Dimidi, E.; Ralph, F.S.E.; Wilson, B.; Martin, L.D.; Louis, P.; Lomer, M.C.; Irving, P.M.; et al. Long-term personalized low FODMAP diet improves symptoms and maintains luminal Bifidobacteria abundance in irritable bowel syndrome. Neurogastroenterol. Motil. 2022, 34, e14241. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.kostochnaring.se/aktuellt/event/kostdagarna2022/mashie-foodtech/ (accessed on 11 September 2025).
- Available online: www.livsmedelsverket.se (accessed on 3 April 2020).
- Palsson, O.S.; Whitehead, W.E.; van Tilburg, M.A.; Chang, L.; Chey, W.; Crowell, M.D.; Keefer, L.; Lembo, A.J.; Parkman, H.P.; Rao, S.S.; et al. Development and validation of the Rome IV diagnostic questionnaire for adults. Gastroenterology 2016, 150, 1481–1491. [Google Scholar] [CrossRef]
- Bengtsson, M.; Ohlsson, B.; Ulander, K. Development and psychometric testing of the Visual Analogue Scale for Irritable Bowel Syndrome (VAS-IBS). BMC Gastroenterol. 2007, 7, 16. [Google Scholar] [CrossRef]
- Bengtsson, M.; Persson, J.; Sjölund, K.; Ohlsson, B. Further validation of the visual analogue scale for irritable bowel syndrome after use in clinical practice. Gastroenterol. Nurs. 2013, 36, 188–198. [Google Scholar] [CrossRef]
- Laboratoriemedicin. Available online: http://www.analysportalen-labmedicin.skane.se (accessed on 12 April 2021).
- McDonald, J.H. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014. [Google Scholar]
- Schneck, A.S.; Anty, R.; Tran, A.; Hastier, A.; Ben Amor, I.; Gugenheim, J.; Iannelli, A.; Piche, T. Increased Prevalence of Irritable Bowel Syndrome in a Cohort of French Morbidly Obese Patients Candidate for Bariatric Surgery. Obes. Surg. 2016, 26, 1525–1530. [Google Scholar] [CrossRef]
- Bouchoucha, M.; Fysekidis, M.; Julia, C.; Airinei, G.; Catheline, J.-M.; Reach, G.; Benamouzig, R. Functional Gastrointestinal Disorders in Obese Patients. The Importance of the Enrollment Source. Obes. Surg. 2015, 25, 2143–2152. [Google Scholar] [CrossRef]
- Steckhan, N.; Hohmann, C.D.; Kessler, C.; Dobos, G.; Michalsen, A.; Cramer, H. Effects of different dietary approaches on inflammatory markers in patients with metabolic syndrome: A systematic review and meta-analysis. Nutrition 2016, 32, 338–348. [Google Scholar] [CrossRef]
- Navratilova, H.F.; Lanham-New, S.; Whetton, A.D.; Geifman, N. Associations of Diet with Health Outcomes in the UK Biobank: A Systematic Review. Nutrients 2024, 16, 523. [Google Scholar] [CrossRef]
- Bashashati, M.; Rezaei, N.; Bashashati, H.; Shafieyoun, A.; Daryani, N.E.; Sharkey, K.A.; Storr, M. Cytokine gene polymorphisms are associated with irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol. Motil. 2012, 24, 1102-e566. [Google Scholar] [CrossRef] [PubMed]
- Trayhurn, P.; Wood, I.S. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 2004, 92, 347–355. [Google Scholar] [CrossRef]
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 2010, 316, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, B.; Hammarstedt, A.; Andersson, C.X.; Smith, U. Inflamed adipose tissue: A culprit underlying the metabolic syndrome and atherosclerosis. Arter. Thromb. Vasc. Biol. 2007, 27, 2276–2283. [Google Scholar] [CrossRef]
- Szekely, A.; Nseir, M.; Roth, B.; Ohlsson, B. Leptin and PAI-1 levels are decreased after a dietary intervention in patients with irritable bowel syndrome. Int. J. Mol. Sci. 2025, 26, 4607. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.M.; Linhares, B.S.; Dias Novaes, R.; Freitas, M.B.; Sarandy, M.M.; Gonçalves, R.V. Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS ONE. 2020, 15, e0233364. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Z.; Liu, S.; Zhang, Q.; Zhang, S.; Zhu, S. Ultra-Processed Food Consumption and Long-Term Risk of Irritable Bowel Syndrome: A Large-Scale Prospective Cohort Study. Clin. Gastroenterol. Hepatol. 2024, 22, 1497–1507.e5. [Google Scholar] [CrossRef] [PubMed]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008, 359, 229–241, Erratum in N. Engl. J. Med. 2009, 361, 2681. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Sharp, S.J.; Du, H.; van der A, D.L.; Halkjaer, J.; Schulze, M.B.; Tjønneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; et al. Dietary fat intake and subsequent weight change in adults: Results from the European Prospective Investigation into Cancer and Nutrition cohorts. Am. J. Clin. Nutr. 2009, 90, 1632–1641. [Google Scholar] [CrossRef][Green Version]
- Hashimoto, Y.; Fukuda, T.; Oyabu, C.; Tanaka, M.; Asano, M.; Yamazaki, M.; Fukui, M. Impact of low-carbohydrate diet on body composition: Meta-analysis of randomized controlled studies. Obes. Rev. 2016, 17, 499–509. [Google Scholar] [CrossRef]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 2020, 369, m696, Erratum in BMJ 2020, 370, m3095. [Google Scholar] [CrossRef]
- van Zuuren, E.J.; Fedorowicz, Z.; Kuijpers, T.; Pijl, H. Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: A systematic review including GRADE assessments. Am. J. Clin. Nutr. 2018, 108, 300–331. [Google Scholar] [CrossRef]
- Nehme, P.A.; Marot, L.P.; Nogueira, L.F.R.; Marqueze, E.C.; Crispim, C.A.; Moreno, C.R.C. A Nutritional Counseling Program Prevents an Increase in Workers’ Dietary Intake and Body Weight During the COVID-19 Pandemic. Front. Physiol. 2021, 12, 703862. [Google Scholar] [CrossRef] [PubMed]
Parameters | SSRD n = 157 | Low FODMAP n = 78 | Control n = 25 | p-Value |
---|---|---|---|---|
Age (year) | 45 (34–56) | 43 (34–56) | 35 (29–50) | 0.441 |
Gender (female) (n,%) | 122 (77.7) | 68 (87.2) | 22 (88.0) | 0.172 |
Disease duration (year) Missing | 18 (8–28) 11 | 20 (10–33) 3 | 11 (10–20) 6 | 0.448 |
Education (n,%) Missing | 2 | 0 | 0 | 0.633 |
Primary school | 8 (5.1) | 2 (2.6) | 2 (8.0) | |
Secondary school | 28 (17.8) | 13 (16.7) | 5 (20.0) | |
Education after secondary school | 40 (25.5) | 17 (21.8) | 3 (12.0) | |
Examination at university | 79 (50.3) | 45 (57.7) | 15 (60.0) | |
Occupation (n,%) Missing | 3 | 0 | 0 | 0.133 |
Working full time | 93 (59.2) | 45 (57.7) | 8 (32.0) | |
Working 99–51% | 15 (9.6) | 9 (11.5) | 4 (16.0) | |
Working 50% | 5 (3.2) | 1 (1.3) | 2 (8.0) | |
Studying | 11 (7.0) | 10 (12.8) | 4 (16.0) | |
Sick leave | 7 (4.5) | 2 (2.6) | 1 (4.0) | |
Unemployment | 5 (3.2) | 2 (2.6) | 1 (4.0) | |
Retirement | 18 (11.5) | 8 (10.3) | 4 (16.0) | |
Other | ||||
Marital status (n,%) Missing | 2 | 0 | 0 | 0.029 |
Living alone | 46 (29.3) | 14 (17.9) | 11 (44.0) | |
Living together | 103 (65.6) | 55 (70.5) | 14 (56.0) | |
Other | 6 (3.8) | 8 (10.3) | ||
Smoking (n,%) Missing | 3 | 0 | 0 | 0.023 |
Never | 84 (53.5) | 42 (53.8) | 12 (48.0) | |
Former | 56 (35.7) | 28 (35.9) | 7 (28.0) | |
Present un regular | 3 (1.9) | 6 (7.7) | 4 (16.0) | |
Present regular | 11 (7.0) | 1 (1.3) | 2 (8.0) | |
Alcohol intake for 1 week (standard glass) (n,%) Missing | 2 | 1 | 0 | 0.922 |
<1 | 66 (42.0) | 33 (42.3) | 14 (56.0) | |
1–4 | 59 (37.6) | 29 (37.2) | 9 (36.0) | |
5–9 | 23 (14.6) | 13 (16.7) | 2 (8.0) | |
10–14 | 4 (2.5) | 2 (2.6) | 0 | |
≥15 | 3 (1.9) | 0 | 0 | |
Physical activity for 1 week (n,%) Missing | 2 | 1 | 0 | 0.834 |
No time | 19 (12.1) | 8 (10.3) | 2 (8.0) | |
<30 min | 30 (19.1) | 14 (17.9) | 5 (20.0) | |
30–60 min | 28 (17.8) | 14 (17.9) | 4 (16.0) | |
60–90 min | 16 (10.2) | 16 (20.5) | 4 (16.0) | |
90–120 min | 20 (12.7) | 8 (10.3) | 2 (8.0) | |
>120 min | 42 (26.8) | 17 (21.8) | 8 (32.0) |
SSRD n = 157 | Low FODMAP n = 78 | Control n = 25 | p-Value * | ||||
---|---|---|---|---|---|---|---|
Parameters | Median (IQR) | p-Value | Median (IQR) | p-Value | Median (IQR) | p-Value | |
Energy (kcal) | |||||||
Baseline | 1759 (1446–2108) | 1800 (1475–2027) | 1387 (1202–2027) | 0.183 | |||
4 weeks | 1498 (1152–1911) | <0.001 | 1664 (1303–2049) | 0.024 | 1640 (1216–2168) | 0.424 | 0.346 |
Carbohydrates (g) | |||||||
Baseline | 182 (145–218) | 178 (144–212) | 177 (112–207) | 0.833 | |||
4 weeks | 86 (66–118) | <0.001 | 152 (114–184) | <0.001 | 182 (89–224) | 0.235 | <0.001 |
Protein (g) | |||||||
Baseline | 72 (54–82) | 66 (52–80) | 59 (46–71) | 0.066 | |||
4 weeks | 80 (59–97) | <0.001 | 68 (51–81) | 0.471 | 65 (53–81) | 0.571 | 0.193 |
Fat (g) | |||||||
Baseline | 70 (54–93) | 73 (54–93) | 61 (46–72) | 0.058 | |||
4 weeks | 81 (60–107) | 0.013 | 76 (52–93) | 0.308 | 69 (46–96) | 0.566 | 0.072 |
Saturated (g) | |||||||
Baseline | 26 (18–35) | 29 (21–35) | 20 (17–31) | 0.179 | |||
4 weeks | 25 (18–35) | 0.427 | 25 (18–32) | 0.067 | 25 (14–39) | 0.925 | 0.198 |
Mono-unsat (g) | |||||||
Baseline | 29 (20–37) | 29 (21–40) | 22 (17–30) | 0.043 | |||
4 weeks | 32 (22–43) | 0.022 | 30 (21–41) | 0.629 | 25 (16–35) | 0.696 | 0.201 |
Poly-unsat (g) | |||||||
Baseline | 11 (7–14) | 11 (8–15) | 8 (6–10) | 0.018 | |||
4 weeks | 13 (9–19) | <0.001 | 11 (7–15) | 0.736 | 9 (7–12) | 0.058 | 0.031 |
Fiber (g) | |||||||
Baseline | 18 (13–24) | 18 (15–22) | 16 (12–22) | 0.674 | |||
4 weeks | 17 (12–22) | 0.040 | 15 (11–20) | 0.001 | 15 (11–22) | 0.793 | 0.307 |
Starch (g) | |||||||
Baseline | 58 (35–83) | 46 (35–65) | 71 (43–90) | 0.009 | |||
4 weeks | 17 (4–38) | <0.001 | 42 (30–63) | 0.768 | 82 (37–101) | 0.849 | <0.001 |
Sucrose (g) | |||||||
Baseline | 24 (13–38) | 26 (15–41) | 20 (13–43) | 0.429 | |||
4 weeks | 6 (3–10) | <0.001 | 18 (12–36) | 0.027 | 19 (5–36) | 0.144 | <0.001 |
Weight (kg) | BMI (kg/m2) | |
---|---|---|
Baseline | ||
Energy (kcal) | Rs = 0.171, p = 0.007, q = 0.028 | Rs = 0.116, p = 0.065, q = 0.201 |
Carbohydrates (g) | Rs = 0.148, p = 0.018, q = 0.042 | Rs = 0.109, p = 0.086, q = 0.201 |
Protein (g) | Rs = 0.135, p = 0.032, q = 0.056 | Rs = 0.045, p = 0.481, q = 0.561 |
Fat (g) | Rs = 0.167, p = 0.008, q = 0.028 | Rs = 0.128, p = 0.042, q = 0.201 |
Fiber (g) | Rs = 0.005, p = 0.937, q = 0.937 | Rs = (−0.032), p = 0.618, q = 0.618 |
Starch (g) | Rs = 0.018, p = 0.782, q = 0.937 | Rs = (−0.065), p = 0.306, q = 0.444 |
Sucrose (g) | Rs = 0.007, p = 0.917, q = 0.937 | Rs = 0.063, p = 0.317, q = 0.444 |
Differences (∆) | ∆ Weight (kg) | ∆ BMI (kg/m2) |
Energy (kcal) | Rs = 0.170, p = 0.011, q = 0.026 | Rs = 0.182, p = 0.006, q = 0.014 |
Carbohydrates (g) | Rs = 0.254, p < 0.001, q = 0.004 | Rs = 0.262, p < 0.001, q = 0.004 |
Protein (g) | Rs = 0.086, p = 0.198, q = 0.277 | Rs = 0.090, p = 0.179, q = 0.251 |
Fat (g) | Rs = 0.044, p = 0.515, q = 0.601 | Rs = 0.051, p = 0.452, q = 0.527 |
Fiber (g) | Rs = (−0.026), p = 0.694, q = 0.694 | Rs = (−0.023), p = 0.727, q = 0.727 |
Starch (g) | Rs = 0.224, p < 0.001, q = 0.004 | Rs = 0.231, p < 0.001, q = 0.004 |
Sucrose (g) | Rs = 0.155, p = 0.020, q = 0.035 | Rs = 0.160, p = 0.016, q = 0.028 |
SSRD n = 157 | Low FODMAP n = 78 | Control n = 25 | p-Value * | ||||
---|---|---|---|---|---|---|---|
Parameters | Median (IQR) | p-Value | Median (IQR) | p-Value | Median (IQR) | p-Value | |
Abdominal Pain 5 (1–13) | |||||||
Baseline | 49 (34–64) | 50 (32–65) | 49 (27–62) | 0.936 | |||
4 weeks | 19 (4–37) | <0.001 | 13 (0–27) | <0.001 | 50 (32–63) | 0.650 | <0.001 |
Diarrhea 3 (0–10) | |||||||
Baseline | 54 (19–74) | 37 (4–74) | 47 (5–70) | 0.250 | |||
4 weeks | 15 (2–34) | <0.001 | 8 (0–24) | <0.001 | 24 (1–49) | 0.300 | 0.067 |
Constipation 6 (2–16) | |||||||
Baseline | 50 (2–72) | 54 (10–76) | 54 (30–69) | 0.581 | |||
4 weeks | 16 (1–40) | <0.001 | 21 (0–55) | <0.001 | 28 (1–68) | 0.045 | 0.749 |
Bloating and flatulence 10 (2–23) | |||||||
Baseline | 75 (58–86) | 73 (54–86) | 78 (68–89) | 0.406 | |||
4 weeks | 26 (11–54) | <0.001 | 19 (8–50) | <0.001 | 69 (56–80) | 0.001 | <0.001 |
Vomiting and nausea 2 (0–4) | |||||||
Baseline | 12 (2–34) | 13 (1–36) | 29 (6–50) | 0.210 | |||
4 weeks | 3 (0–16) | <0.001 | 0 (0–11) | <0.001 | 12 (2–56) | 0.112 | 0.742 |
Intestinal symptoms’ influence on daily life 2 (0–14) | |||||||
Baseline | 73 (55–85) | 70 (54–84) | 68 (53–78) | 0.718 | |||
4 weeks | 30 (14–62) | <0.001 | 22 (10–50) | <0.001 | 65 (51–82) | 0.732 | <0.001 |
Psychological well-being 5 (2–15) | |||||||
Baseline | 46 (18–66) | 45 (16–59) | 47 (24–71) | 0.396 | |||
4 weeks | 24 (9–51) | <0.001 | 18 (2–34) | <0.001 | 48 (32–60) | 0.732 | <0.032 |
Total IBS-SSS | |||||||
Baseline | 302 (239–352) | 300 (238–360) | 310 (247–351) | 0.944 | |||
4 weeks | 135 (78–233) | <0.001 | 116 (63–176) | <0.001 | 300 (233–331) | 0.248 | <0.001 |
SSRD n = 157 | Low FODMAP n = 78 | Control n = 25 | p-Value * | ||||
---|---|---|---|---|---|---|---|
Parameters | Median (IQR) | p-Value | Median (IQR) | p-Value | Median (IQR) | p-Value | |
Difficulties eating a meal | |||||||
Baseline | 11 (2–29) | 6 (0–22) | 9 (1–26) | 0.315 | |||
4 weeks | 2 (0–13) | <0.001 | 0 (0–9) | <0.001 | 6 (1–20) | 0.071 | 0.544 |
Headache | |||||||
Baseline | 29 (7–66) | 27 (9–58) | 31 (15–48) | 0.934 | |||
4 weeks | 15 (4–35) | <0.001 | 12 (0–35) | <0.001 | 25 (8–35) | 0.845 | 0.061 |
Back pain | |||||||
Baseline | 29 (6–68) | 28 (4–65) | 45 (19–66) | 0.419 | |||
4 weeks | 10 (0–34) | <0.001 | 4 (0–35) | <0.001 | 32 (5–55) | 0.249 | 0.395 |
Fatigue | |||||||
Baseline | 60 (33–84) | 74 (48–84) | 67 (39–91) | 0.386 | |||
4 weeks | 36 (17–67) | <0.001 | 37 (14–60) | <0.001 | 65 (41–83) | 0.794 | 0.002 |
Belching/excess wind | |||||||
Baseline | 71 (48–85) | 75 (52–87) | 67 (20–84) | 0.430 | |||
4 weeks | 22 (8–42) | <0.001 | 21 (8–45) | <0.001 | 59 (27–78) | 0.246 | <0.001 |
Reflux | |||||||
Baseline | 19 (5–51) | 20 (2–60) | 17 (2–78) | 0.979 | |||
4 weeks | 4 (0–20) | <0.001 | 3 (0–26) | <0.001 | 8 (1–50) | 0.061 | 0.132 |
Urinary urgency | |||||||
Baseline | 28 (4–70) | 22 (4–64) | 20 (3–56) | 0.603 | |||
4 weeks | 10 (0–35) | <0.001 | 3 (0–22) | <0.001 | 16 (1–43) | 0.131 | 0.091 |
Leg pain | |||||||
Baseline | 2 (0–15) | 0 (0–18) | 3 (0–16) | 0.489 | |||
4 weeks | 1 (0–11) | <0.001 | 0 (0–5) | <0.001 | 4 (1–12) | 0.924 | 0.282 |
Muscle/joint pain | |||||||
Baseline | 34 (6–66) | 30 (4–72) | 21 (9–70) | 0.934 | |||
4 weeks | 18 (2–44) | <0.001 | 12 (0–39) | <0.001 | 49 (9–75) | 0.753 | 0.037 |
Total extraintestinal IBS-SSS | |||||||
Baseline | 174 (119–232) | 172 (120–242) | 197 (106–257) | 0.948 | |||
4 weeks | 96 (39–160) | <0.001 | 77 (44–136) | <0.001 | 169 (107–208) | 0.231 | <0.001 |
SSRD 2018 n = 80 | SSRD 2022 n = 77 | Low FODMAP n = 78 | Control n = 25 | p- Value * | |||||
Lipids | Median (IQR) | p | Median (IQR) | p | Median (IQR) | p | Median (IQR) | p | |
Cholesterol (3.3–6.9 mmol/L) Missing baseline, 4 weeks | 1, 11 | 2, 7 | 1, 6 | 0, 2 | |||||
Baseline | 4.60 (4.00–5.20) | 5.00 (4.40–5.60) | 4.70 (4.35–5.85) | 4.80 (4.10–5.70) | 0.079 | ||||
4 weeks | 4.70 (4.25–5.20) | 0.856 | 4.80 (4.00–5.40) | 0.007 | 4.90 (4.20–5.48) | 0.003 | 4.80 (4.00–5.80) | 0.805 | 0.066 |
HDL (1.0–2.7 mmol/L) Missing baseline, 4 weeks | 1, 11 | 2, 7 | 1, 6 | 0, 2 | |||||
Baseline | 1.40 (1.20–1.60) | 1.50 (1.20–1.80) | 1.60 (1.25–1.80) | 1.40 (1.20–1.70) | 0.002 | ||||
4 weeks | 1.40 (1.20–1.60) | 0.393 | 1.45 (1.20–1.90) | 0.185 | 1.60 (1.32–1.80) | 0.446 | 1.40 (1.20–1.70) | 0.013 | 0.080 |
LDL (1.4–4.7 mmol/L) Missing baseline, 4 weeks | 1, 11 | 2, 7 | 1, 6 | 0, 2 | |||||
Baseline | 2.40 (1.80–2.80) | 3.20 (2.70–3.80) | 3.10 (2.70–3.80) | 2.70 (1.90–3.45) | <0.001 | ||||
4 weeks | 2.40 (1.90–2.70) | 0.395 | 3.05 (2.38–3.72) | 0.004 | 3.05 (2.60–3.60) | 0.036 | 2.20 (1.90–3.20) | 0.365 | 0.063 |
Non-HDL (1.9–5.1 mmol/L) Missing baseline, 4 weeks | 1, 11 | 6, 7 | 5, 6 | 0, 2 | |||||
Baseline | 3.10 (2.70–3.80) | 3.40 (2.80–4.00) | 3.30 (2.85–4.10) | 3.20 (2.70–4.30) | 0.638 | ||||
4 weeks | 3.40 (2.75–3.60) | 0.848 | 3.30 (2.60–3.80) | 0.015 | 3.20 (2.72–3.88) | 0.002 | 3.20 (2.60–4.30) | 0.340 | 0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roth, B.; Ohlsson, B. Dietary Modifications in IBS Leads to Reduced Symptoms, Weight, and Lipid Levels: Two Randomized Clinical Trials. Nutrients 2025, 17, 2966. https://doi.org/10.3390/nu17182966
Roth B, Ohlsson B. Dietary Modifications in IBS Leads to Reduced Symptoms, Weight, and Lipid Levels: Two Randomized Clinical Trials. Nutrients. 2025; 17(18):2966. https://doi.org/10.3390/nu17182966
Chicago/Turabian StyleRoth, Bodil, and Bodil Ohlsson. 2025. "Dietary Modifications in IBS Leads to Reduced Symptoms, Weight, and Lipid Levels: Two Randomized Clinical Trials" Nutrients 17, no. 18: 2966. https://doi.org/10.3390/nu17182966
APA StyleRoth, B., & Ohlsson, B. (2025). Dietary Modifications in IBS Leads to Reduced Symptoms, Weight, and Lipid Levels: Two Randomized Clinical Trials. Nutrients, 17(18), 2966. https://doi.org/10.3390/nu17182966