Survival and Impact on Microbial Diversity of Lacticaseibacillus paracasei DG in a Simulation of Human Intestinal Microbial Ecosystem
Abstract
1. Introduction
2. Materials and Methods
2.1. Composition of Capsule Systems
2.2. Modified In Vitro SHIME® Experiments
2.3. Simulated Stomach and Small Intestinal Digestions
2.4. Visual Assessment of Capsule Integrity
2.5. Quantification of CFU
2.6. Quantification of Viable and Non-Viable Bacterial Cells by Flow Cytometry
2.7. Short-Term Colonic Incubation Experiments
2.8. Microbial Metabolic Activity
2.9. Microbial Community Composition
2.10. Data Analysis
3. Results
3.1. Capsule Integrity and Survival of L. paracasei DG Under Fed, Fasted, and Shortened Fasted Conditions
3.2. Microbial Fermentation of Human Faecal Inoculum Following the Administration of L. paracasei DG
3.3. Quantification of L. paracasei DG Following 24 h of Colonic Incubation
3.4. Composition of the Donor Microbial Community Following L. paracasei DG Incubation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCFA | Branched-chain fatty acid |
CFU | Colony-forming units |
DUO | Duodenum |
GI | Gastrointestinal |
ILE | Ileum |
IBS | Irritable bowel syndrome |
JEJ | Jejunum |
PCR | Polymerase chain reaction |
SCFA | Short-chain fatty acid |
SHIME | Simulator of the Human Intestinal Microbial Ecosystem |
SD | Standard deviation |
Sp. | Species |
ST | Stomach |
SUDD | Symptomatic uncomplicated diverticular disease |
u_f | unclassified family |
References
- Hungin, A.P.; Mulligan, C.; Pot, B.; Whorwell, P.; Agreus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; Philippart de Foy, J.M.; Rubin, G.; et al. Systematic review: Probiotics in the management of lower gastrointestinal symptoms in clinical practice—An evidence-based international guide. Aliment. Pharmacol. Ther. 2013, 38, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Hungin, A.P.S.; Mitchell, C.R.; Whorwell, P.; Mulligan, C.; Cole, O.; Agreus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; Philippart de Foy, J.M.; et al. Systematic review: Probiotics in the management of lower gastrointestinal symptoms—An updated evidence-based international consensus. Aliment. Pharmacol. Ther. 2018, 47, 1054–1070. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Cichonska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2021, 10, 91. [Google Scholar] [CrossRef]
- Arioli, S.; Koirala, R.; Taverniti, V.; Fiore, W.; Guglielmetti, S. Quantitative recovery of viable Lactobacillus paracasei CNCM I-1572 (L. casei DG®) after gastrointestinal passage in healthy adults. Front. Microbiol. 2018, 9, 1720. [Google Scholar] [CrossRef] [PubMed]
- Radicioni, M.; Koirala, R.; Fiore, W.; Leuratti, C.; Guglielmetti, S.; Arioli, S. Survival of L. casei DG® (Lactobacillus paracasei CNCMI1572) in the gastrointestinal tract of a healthy paediatric population. Eur. J. Nutr. 2019, 58, 3161–3170. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Giorgetti, G.M.; Elisei, W. Mesalazine and/or Lactobacillus casei in preventing recurrence of symptomatic uncomplicated diverticular disease of the colon: A prospective, randomized, open-label study. J. Clin. Gastroenterol. 2006, 40, 312–316. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Giorgetti, G.M.; Elisei, W. Mesalazine and/or Lactobacillus casei in maintaining long-term remission of symptomatic uncomplicated diverticular disease of the colon. Hepatogastroenterology 2008, 55, 916–920. [Google Scholar]
- Cremon, C.; Guglielmetti, S.; Gargari, G.; Taverniti, V.; Castellazzi, A.M.; Valsecchi, C.; Tagliacarne, C.; Fiore, W.; Bellini, M.; Bertani, L.; et al. Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial. United Eur. Gastroenterol. J. 2018, 6, 604–613. [Google Scholar] [CrossRef]
- D’Inca, R.; Barollo, M.; Scarpa, M.; Grillo, A.R.; Brun, P.; Vettorato, M.G.; Castagliuolo, I.; Sturniolo, G.C. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig. Dis. Sci. 2011, 56, 1178–1187. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Giorgetti, G.M.; Modeo, M.E. Effect of Lactobacillus casei supplementation on the effectiveness and tolerability of a new second-line 10-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection. Med. Sci. Monit. 2004, 10, CR662-666. [Google Scholar]
- Gargari, G.; Mantegazza, G.; Cremon, C.; Taverniti, V.; Valenza, A.; Barbaro, M.R.; Marasco, G.; Duncan, R.; Fiore, W.; Ferrari, R.; et al. Collinsella aerofaciens as a predictive marker of response to probiotic treatment in non-constipated irritable bowel syndrome. Gut Microbes 2024, 16, 2298246. [Google Scholar] [CrossRef] [PubMed]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A comprehensive review of probiotics and human health-current prospective and applications. Front. Microbiol. 2024, 15, 1487641. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Lu, Y.; Xie, J.; Fei, Y.; Zheng, G.; Wang, Z.; Liu, J.; Lv, L.; Ling, Z.; Berglund, B.; et al. Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front. Cell Infect. Microbiol. 2021, 11, 609722. [Google Scholar] [CrossRef]
- Albertini, B.; Vitali, B.; Passerini, N.; Cruciani, F.; Di Sabatino, M.; Rodriguez, L.; Brigidi, P. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. Eur. J. Pharm. Sci. 2010, 40, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.; Taverniti, V.; Milani, C.; Fiore, W.; Laureati, M.; De Noni, I.; Stuknyte, M.; Chouaia, B.; Riso, P.; Guglielmetti, S. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J. Nutr. 2014, 144, 1787–1796. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, X.; Wang, D.; Yao, Q.; Ma, G.L.; Fan, X. Simulator of the Human Intestinal Microbial Ecosystem (SHIME®): Current developments, applications, and future prospects. Pharmaceuticals 2024, 17, 1639. [Google Scholar] [CrossRef]
- Park, J.C.; Im, S.H. Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med. 2020, 52, 1383–1396. [Google Scholar] [CrossRef]
- Molly, K.; Vande Woestyne, M.; Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef]
- Marzorati, M.; Calatayud, M.; Rotsaert, C.; Van Mele, M.; Duysburgh, C.; Durkee, S.; White, T.; Fowler, K.; Jannin, V.; Bellamine, A. Comparison of protection and release behavior of different capsule polymer combinations based on L. acidophilus survivability and function and caffeine release. Int. J. Pharm. 2021, 607, 120977. [Google Scholar] [CrossRef]
- Mackie, A.; Rigby, N. InfoGest Consensus Method. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Switzerland, 2015; Chapter 2; pp. 13–22. [Google Scholar] [CrossRef]
- Riethorst, D.; Mols, R.; Duchateau, G.; Tack, J.; Brouwers, J.; Augustijns, P. Characterization of human duodenal fluids in fasted and fed state conditions. J. Pharm. Sci. 2016, 105, 673–681. [Google Scholar] [CrossRef]
- Mudie, D.M.; Amidon, G.L.; Amidon, G.E. Physiological parameters for oral delivery and in vitro testing. Mol. Pharm. 2010, 7, 1388–1405. [Google Scholar] [CrossRef]
- Hasan, N.A.; Young, B.A.; Minard-Smith, A.T.; Saeed, K.; Li, H.; Heizer, E.M.; McMillan, N.J.; Isom, R.; Abdullah, A.S.; Bornman, D.M.; et al. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE 2014, 9, e97699. [Google Scholar] [CrossRef]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gibbons, S.M.; Larsen, P.; Shogan, B.D.; Weiss, S.; et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Bretto, E.; D’Amico, F.; Fiore, W.; Tursi, A.; Danese, S. Lactobacillus paracasei CNCM I 1572: A promising candidate for management of colonic diverticular disease. J. Clin. Med. 2022, 11, 1916. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Tsolis, R.M.; Baumler, A.J. The microbiome and gut homeostasis. Science 2022, 377, eabp9960. [Google Scholar] [CrossRef]
- Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335. [Google Scholar] [CrossRef]
- Mutuyemungu, E.; Singh, M.; Liu, S.; Rose, D.J. Intestinal gas production by the gut microbiota: A review. J. Funct. Foods 2023, 100, 105367. [Google Scholar] [CrossRef]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.H. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 2022, 13, 1103836. [Google Scholar] [CrossRef]
- Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 2021, 13, 1968257. [Google Scholar] [CrossRef]
- Kaźmierczak-Siedlecka, K.; Marano, L.; Merola, E.; Roviello, F.; Połom, K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front. Cell Infect. Microbiol. 2022, 12, 1023806. [Google Scholar] [CrossRef] [PubMed]
- Moens, F.; Verce, M.; De Vuyst, L. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int. J. Food Microbiol. 2017, 241, 225–236. [Google Scholar] [CrossRef]
- Sivieri, K.; Morales, M.L.; Adorno, M.A.; Sakamoto, I.K.; Saad, S.M.; Rossi, E.A. Lactobacillus acidophilus CRL 1014 improved “gut health” in the SHIME reactor. BMC Gastroenterol. 2013, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Narrowe, A.B.; Firrman, J.A.; Mahalak, K.K.; Bobokalonov, J.T.; Lemons, J.M.S.; Bittinger, K.; Daniel, S.; Tanes, C.; Mattei, L.; et al. Lacticaseibacillus rhamnosus strain GG (LGG) regulate gut microbial metabolites, an in vitro study using three mature human gut microbial cultures in a Simulator of Human Intestinal Microbial Ecosystem (SHIME). Foods 2023, 12, 2105. [Google Scholar] [CrossRef]
- Goya-Jorge, E.; Gonza, I.; Bondue, P.; Druart, G.; Al-Chihab, M.; Boutaleb, S.; Douny, C.; Taminiau, B.; Daube, G.; Scippo, M.L.; et al. Unveiling the influence of a probiotic combination of Heyndrickxia coagulans and Lacticaseibacillus casei on healthy human gut microbiota using the TripleSHIME® system. Microbiol. Res. 2024, 285, 127778. [Google Scholar] [CrossRef]
- De Oliveira, F.L.; Salgaço, M.K.; de Oliveira, M.T.; Mesa, V.; Sartoratto, A.; Peregrino, A.M.; Ramos, W.S.; Sivieri, K. Exploring the potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as promising psychobiotics using SHIME. Nutrients 2023, 15, 1521. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, K.A.; Boobis, A.R.; Chiodini, A.; Edwards, C.A.; Franck, A.; Kleerebezem, M.; Nauta, A.; Raes, J.; van Tol, E.A.; Tuohy, K.M. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 2015, 28, 42–66. [Google Scholar] [CrossRef]
Fed | Fasted | Short Fasted | ||||
Blank | L. paracasei DG | Blank | L. paracasei DG | Blank | L. paracasei DG | |
0 h | 25.7 | 26.2 | 24.7 | 24.3 | 26.6 | 26.8 |
24 h | 6.0 | 7.2 | 18.6 | 16.4 | 14.7 | 14.4 |
Phylum | Family | Species | 0 h | |||||
Fed | Fasted | Shortened Fasted | ||||||
Blank (%) | L. paracasei DG (%) | Blank (%) | L. paracasei DG (%) | Blank (%) | L. paracasei DG (%) | |||
Actinobacteria | Bifidobacteriaceae | Bifidobacterium adolescentis | 11.5 | 11.7 | 11.9 | 11.9 | 9.8 | 9.6 |
Bifidobacterium longum | 1.3 | 1.2 | 1.3 | 1.2 | 1.1 | 1.0 | ||
Bifidobacterium sp. 12_1_47BFAA | 1.5 | 1.4 | 1.4 | 0.9 | 1.3 | 0.9 | ||
Coriobacteriaceae | Collinsella aerofaciens | 2.4 | 2.4 | 2.8 | 2.7 | 2.1 | 2.1 | |
Collinsella sp. 4_8_47FAA | 2.6 | 2.6 | 3.1 | 3.0 | 2.3 | 2.3 | ||
Senegalimassilia anaerobia | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | ||
Bacteroidetes | Bacteroidaceae | Bacteroides coprocola | 5.9 | 6.1 | 6.9 | 7.2 | 8.0 | 7.4 |
Bacteroides dorei | 1.4 | 1.4 | 1.5 | 1.6 | 2.0 | 1.5 | ||
Bacteroides thetaiotaomicron | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | ||
Bacteroides vulgatus | 4.1 | 4.0 | 4.3 | 4.6 | 4.6 | 4.5 | ||
Bacteroides sp. 3_1_40A | 2.4 | 3.6 | 1.4 | 2.8 | 4.2 | 2.6 | ||
Bacteroides sp. 4_3_47FAA | 1.3 | 0.0 | 2.5 | 1.5 | 0.0 | 1.5 | ||
Rikenellaceae | Alistipes putredinis | 5.0 | 4.5 | 5.0 | 5.0 | 4.8 | 5.0 | |
Firmicutes | Acidaminococcaceae | Phascolarctobacterium succinatutens | 2.4 | 2.1 | 2.2 | 1.9 | 2.0 | 2.0 |
Bacillaceae | Bacillus clausii | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Clostridiaceae | Clostridium sp. L2-50 | 4.3 | 4.2 | 4.0 | 3.4 | 4.2 | 4.2 | |
Lachnospiraceae | Blautia wexlerae | 1.9 | 1.8 | 1.9 | 1.7 | 2.0 | 2.0 | |
Dorea longicatena | 1.2 | 1.1 | 0.9 | 0.8 | 1.1 | 1.0 | ||
Agathobacter rectalis | 3.8 | 3.4 | 3.5 | 3.1 | 3.9 | 4.0 | ||
Lactobacillaceae | Lactobacillus paracasei | 0.0 | 4.4 | 0.0 | 4.3 | 0.0 | 4.8 | |
Ruminococcaceae | Faecalibacterium prausnitzii | 5.8 | 5.2 | 5.6 | 5.3 | 4.7 | 4.8 | |
Ruminococcus bromii | 6.0 | 5.2 | 5.9 | 5.5 | 6.1 | 5.4 | ||
Ruminococcus sp. 5_1_39BFAA | 2.2 | 2.1 | 2.2 | 2.0 | 2.4 | 2.3 | ||
Proteobacteria | Enterobacteriaceae | Escherichia coli | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 |
Sutterellaceae | Sutterella wadsworthensis | 0.9 | 0.8 | 0.5 | 0.6 | 0.8 | 0.8 | |
24 h | ||||||||
Actinobacteria | Bifidobacteriaceae | Bifidobacterium adolescentis | 38.8 | 35.3 | 19.5 | 21.6 | 23.2 | 23.7 |
Bifidobacterium longum | 2.9 | 2.8 | 2.0 | 2.5 | 2.4 | 2.5 | ||
Bifidobacterium sp. 12_1_47BFAA | 3.3 | 3.3 | 1.5 | 2.8 | 2.7 | 2.9 | ||
Coriobacteriaceae | Collinsella aerofaciens | 1.0 | 1.0 | 2.7 | 2.3 | 1.6 | 1.3 | |
Collinsella sp. 4_8_47FAA | 1.2 | 1.2 | 3.0 | 2.6 | 1.8 | 1.5 | ||
Senegalimassilia anaerobia | 2.7 | 2.2 | 3.6 | 3.2 | 3.3 | 2.8 | ||
Bacteroidetes | Bacteroidaceae | Bacteroides coprocola | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 |
Bacteroides dorei | 1.0 | 1.0 | 1.6 | 1.4 | 1.7 | 1.6 | ||
Bacteroides thetaiotaomicron | 1.5 | 1.3 | 2.8 | 2.4 | 2.2 | 1.8 | ||
Bacteroides vulgatus | 2.4 | 2.3 | 3.0 | 3.5 | 3.4 | 3.6 | ||
Bacteroides sp. 3_1_40A | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
Bacteroides sp. 4_3_47FAA | 2.2 | 2.1 | 2.8 | 3.1 | 3.1 | 3.3 | ||
Rikenellaceae | Alistipes putredinis | 0.7 | 0.6 | 1.2 | 1.2 | 1.4 | 1.6 | |
Firmicutes | Acidaminococcaceae | Phascolarctobacterium succinatutens | 0.8 | 0.7 | 1.2 | 1.0 | 1.4 | 1.2 |
Bacillaceae | Bacillus clausii | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Clostridiaceae | Clostridium sp. L2-50 | 0.4 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | |
Lachnospiraceae | Blautia wexlerae | 1.6 | 1.3 | 1.9 | 1.2 | 2.5 | 1.4 | |
Dorea longicatena | 0.7 | 1.0 | 2.8 | 2.7 | 1.0 | 0.9 | ||
Agathobacter rectalis | 0.6 | 0.8 | 1.9 | 1.6 | 1.2 | 1.5 | ||
Lactobacillaceae | Lactobacillus paracasei | 0.0 | 3.7 | 0.0 | 3.6 | 0.0 | 4.5 | |
Ruminococcaceae | Faecalibacterium prausnitzii | 0.8 | 1.0 | 1.4 | 1.3 | 1.9 | 1.8 | |
Ruminococcus bromii | 1.6 | 1.7 | 3.0 | 2.3 | 3.2 | 2.6 | ||
Ruminococcus sp. 5_1_39BFAA | 1.9 | 1.6 | 2.3 | 1.5 | 3.0 | 1.7 | ||
Proteobacteria | Enterobacteriaceae | Escherichia coli | 10.4 | 7.7 | 5.0 | 3.9 | 6.0 | 4.5 |
Sutterellaceae | Sutterella wadsworthensis | 1.6 | 1.9 | 3.0 | 2.4 | 1.0 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duysburgh, C.; Fiore, W.; Marzorati, M. Survival and Impact on Microbial Diversity of Lacticaseibacillus paracasei DG in a Simulation of Human Intestinal Microbial Ecosystem. Nutrients 2025, 17, 2952. https://doi.org/10.3390/nu17182952
Duysburgh C, Fiore W, Marzorati M. Survival and Impact on Microbial Diversity of Lacticaseibacillus paracasei DG in a Simulation of Human Intestinal Microbial Ecosystem. Nutrients. 2025; 17(18):2952. https://doi.org/10.3390/nu17182952
Chicago/Turabian StyleDuysburgh, Cindy, Walter Fiore, and Massimo Marzorati. 2025. "Survival and Impact on Microbial Diversity of Lacticaseibacillus paracasei DG in a Simulation of Human Intestinal Microbial Ecosystem" Nutrients 17, no. 18: 2952. https://doi.org/10.3390/nu17182952
APA StyleDuysburgh, C., Fiore, W., & Marzorati, M. (2025). Survival and Impact on Microbial Diversity of Lacticaseibacillus paracasei DG in a Simulation of Human Intestinal Microbial Ecosystem. Nutrients, 17(18), 2952. https://doi.org/10.3390/nu17182952