Human Gut Microbiota Profiles Related to Mediterranean and West African Diets and Association with Blastocystis Subtypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Eligibility
2.2. Sample Collection and DNA Extraction
2.3. Blastocystis Carriage Assignment and Subtype Attribution
2.4. Analysis of Gut Microbiota Composition
2.4.1. 16S Targeted Metagenomic Sequencing
2.4.2. Bioinformatics Analyses
2.4.3. LEfSe Analysis
2.4.4. Differential Analysis of OTU Count and Microbial Co-Abundance Network via WGCNA
2.4.5. Metagenome Function Prediction
2.5. Subtypes of Blastocystis Carriage and Gut Microbiota Composition
2.6. Statistical Analysis
3. Results
3.1. Blastocystis Subtype Attribution
3.2. Gut Microbiota Composition
3.2.1. Gut Microbiota and Comparisons of Taxa Abundance
3.2.2. Analysis of Co-Abundant Microbial Genera Using WGCNA
3.3. Gut Microbiota Variation in Blastocystis Carriers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef]
- Adak, A.; Mojibur, R.K. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Gebrayel, P.; Nicco, C.; Al Khodor, S.; Bilinski, J.; Caselli, E.; Comelli, E.M.; Egert, M.; Giaroni, C.; Karpinski, T.M.; Loniewski, I.; et al. Microbiota medicine: Towards clinical revolution. J. Transl. Med. 2022, 20, 111. [Google Scholar] [CrossRef]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Chan, Y.K.; Estaki, M.; Gibson, D.L. Clinical consequences of diet-induced dysbiosis. Ann. Nutr. Metab. 2013, 63 (Suppl. S2), 28–40. [Google Scholar] [CrossRef] [PubMed]
- Moya, A.; Ferrer, M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol. 2016, 24, 402–413. [Google Scholar] [CrossRef]
- Wills-Karp, M.; Santeliz, J.; Karp, C.L. The germless theory of allergic disease: Revisiting the hygiene hypothesis. Nat. Rev. Immunol. 2001, 1, 69–75. [Google Scholar] [CrossRef]
- Weinstock, J.V.; Elliott, D.E. Helminths and the IBD hygiene hypothesis. Inflamm. Bowel Dis. 2009, 15, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Stensvold, C.R.; Jirků-Pomajbíková, K.; Wegener Parfrey, L. Are Human Intestinal Eukaryotes Beneficial or Commensals? PLoS Pathog. 2015, 11, e1005039. [Google Scholar] [CrossRef]
- Dominguez Bello, M.G.; Knight, R.; Gilbert, J.A.; Blaser, M.J. Preserving microbial diversity. Science 2018, 362, 33–34. [Google Scholar] [CrossRef]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [PubMed]
- Iebba, V.; Totino, V.; Gagliardi, A.; Santangelo, F.; Cacciotti, F.; Trancassini, M.; Mancini, C.; Cicerone, C.; Corazziari, E.; Pantanella, F.; et al. Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiol. 2016, 39, 1–12. [Google Scholar] [PubMed]
- Paulo, L.S.; Bwire, G.M.; Klipstein-Grobusch, K.; Kamuhabwa, A.; Kwesigabo, G.; Chillo, P.; Asselbergs, F.W.; Lenters, V.C. Urbanization gradient, diet, and gut microbiota in Sub-Saharan Africa: A systematic review. Front. Microbiomes 2023, 2, 1208166. [Google Scholar] [CrossRef]
- Segal, I.; Walker, A.R.; Wadee, A. Persistent low prevalence of Western digestive diseases in Africa: Confounding aetiological factors. Gut 2001, 48, 730–732. [Google Scholar] [CrossRef]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Ndemnge Aminde, L.; et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef]
- Verhaar, B.J.H.; van der Linden, E.L.; Hayfron-Benjamin, C.F.; Owusu-Dabo, E.; Darko, S.N.; Twumasi-Ankrah, S.; Henneman, P.; Beune, E.; Meeks, K.A.C.; Nieuwdorp, M.; et al. Gut microbiota shift in Ghanaian individuals along the migration axis: The RODAM-Pros cohort. Gut Microbes 2025, 17, 2471960. [Google Scholar] [CrossRef]
- Brewster, R.; Tamburini, F.B.; Asiimwe, E.; Oduaran, O.; Hazelhurst, S.; Bhatt, A.S. Surveying Gut Microbiome Research in Africans: Toward Improved Diversity and Representation. Trends Microbiol. 2019, 27, 824–835. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Maigoro, A.Y.; Muhammad, M.; Bello, B.; Useh, U.; Lee, S. Exploration of Gut Microbiome Research in Africa: A Scoping Review. J. Med. Food. 2023, 26, 616–623. [Google Scholar] [CrossRef]
- Stensvold, C.R.; Clark, C.G. Pre-empting Pandora’s Box: Blastocystis subtypes revisited. Trends Parasitol. 2020, 36, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Gentekaki, E.; Curtis, B.A.; Stairs, C.W.; Klimeš, V.; Eliáš, M.; Salas-Leiva, D.E.; Herman, E.K.; Eme, L.; Arias, M.C.; Henrissat, B.; et al. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 2017, 15, e2003769. [Google Scholar] [CrossRef] [PubMed]
- Piperni, E.; Nguyen, L.H.; Manghi, P.; Kim, H.; Pasolli, E.; Andreu-Sánchez, S.; Arrè, A.; Bermingham, K.M.; Blanco-Míguez, A.; Manara, S.; et al. Intestinal Blastocystis is linked to healthier diets and more favorable cardiometabolic outcomes in 56,989 individuals from 32 countries. Cell 2024, 187, 4554–4570.e18. [Google Scholar] [CrossRef]
- Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol. 2020, 11, 571731. [Google Scholar] [CrossRef]
- Chakaroun, R.M.; Olsson, L.M.; Bäckhed, F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat. Rev. Cardiol. 2023, 20, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Tan, K.S.W. From parasite to partner: Unravelling the multifaceted role of Blastocystis in human health and disease. Lancet Microbe 2025, 6, 101155. [Google Scholar] [CrossRef]
- Di Cristanziano, V.; Farowski, F.; Berrilli, F.; Santoro, M.; Di Cave, D.; Glé, C.; Daeumer, M.; Thielen, A.; Wirtz, M.; Kaiser, R.; et al. Analysis of Human Gut Microbiota Composition Associated to the Presence of Commensal and Pathogen Microorganisms in Côte d’Ivoire. Microorganisms 2021, 9, 1763. [Google Scholar] [CrossRef]
- Antonetti, L.; Berrilli, F.; Di Cristanziano, V.; Farowski, F.; Daeumer, M.; Eberhardt, K.A.; Santoro, M.; Federici, M.; D’Alfonso, R. Investigation of gut microbiota composition in humans carrying Blastocystis subtypes 1 and 2 and Entamoeba hartmanni. Gut Pathog. 2024, 16, 72. [Google Scholar] [CrossRef]
- Belkessa, S.; Pasolli, E.; Medrouh, B.; Berg, R.P.K.D.; Andersen, L.O’.; Nielsen, H.V.; Stensvold, C.R. Structure analysis of human gut microbiota associated with single-celled gut protists using Next-Generation Sequencing of 16S and 18S rRNA genes. Comput. Struct. Biotechnol. J. 2025, 27, 2955–2967. [Google Scholar] [CrossRef]
- Souppart, L.; Sanciu, G.; Cian, A.; Wawrzyniak, I.; Delbac, F.; Capron, M.; Dei-Cas, E.; Boorom, K.; Delhaes, L.; Viscogliosi, E. Molecular epidemiology of human Blastocystis isolates in France. Parasitol. Res. 2009, 105, 413–421. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Bertrand, T.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using Microbiome Analyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Mobeen, F.; Sharma, V.; Tulika, P. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation 2018, 14, 560–573. [Google Scholar] [CrossRef]
- Sisti, D.; Pazienza, V.; Piccini, F.; Citterio, B.; Baffone, W.; Donati Zeppa, S.; Biavasco, F.; Prospero, E.; De Luca, A.; Artico, M.; et al. A proposal for the reference intervals of the Italian microbiota “scaffold” in healthy adults. Sci. Rep. 2022, 12, 3952. [Google Scholar] [CrossRef]
- Gorvitovskaia, A.; Holmes, S.P.; Huse, S.M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 2016, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Sengor, B.; Sokhnab, C.; Ruimyc, R.; Lagiera, J.C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018, 7–8, 1–9. [Google Scholar] [CrossRef]
- Brooks, A.W.; Priya, S.; Blekhman, R.; Bordenstein, S.R. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 2018, 16, e2006842. [Google Scholar] [CrossRef] [PubMed]
- Faust, K.; Sathirapongsasuti, J.F.; Izard, J.; Segata, N.; Gevers, D.; Raes, J.; Huttenhower, C. Microbial Co-Occurrence Relationships in the Human Microbiome. PLoS Comput. Biol. 2012, 8, e1002606. [Google Scholar] [CrossRef] [PubMed]
- Šik Novak, K.; Bogataj Jontez, N.; Petelin, A.; Hladnik, M.; Baruca Arbeiter, A.; Bandelj, D.; Pražnikar, J.; Kenig, S.; Mohorko, N.; Jenko Pražnikar, Z. Could gut microbiota composition be a useful indicator of a long-term dietary pattern? Nutrients 2023, 15, 2196. [Google Scholar] [CrossRef]
- De Filippo, C.; Di Paola, M.; Ramazzotti, M.; Albanese, D.; Pieraccini, G.; Banci, E.; Miglietta, F.; Cavalieri, D.; Lionetti, P. Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Front. Microbiol. 2017, 8, 1979. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Biagi, E.; Rampelli, S.; Fiori, J.; Soverini, M.; Audu, H.J.; Cristino, S.; Caporali, L.; Schnorr, S.L.; Carelli, V.; et al. Infant and Adult Gut Microbiome and Metabolome in Rural Bassa and Urban Settlers from Nigeria. Cell Rep. 2018, 23, 3056–3067. [Google Scholar] [CrossRef] [PubMed]
- Kemp, K.M.; Orihuela, C.A.; Morrow, C.D.; Judd, S.E.; Evans, R.R.; Mrug, S. Associations between dietary habits, socio-demographics and gut microbial composition in adolescents. Br. J. Nutr. 2024, 131, 809–820. [Google Scholar] [CrossRef]
- Mills, S.; Stanton, C.; Lane, J.A.; Smith, G.J.; Ross, R.P. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients 2019, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef]
- Nieves-Ramírez, M.E.; Partida-Rodríguez, O.; Laforest-Lapointe, I.; Reynolds, L.A.; Brown, E.M.; Valdez-Salazar, A.; Morán-Silva, P.; Rojas-Velázquez, L.; Morien, E.; Parfrey, L.W.; et al. Asymptomatic Intestinal Colonization with Protist Blastocystis Is Strongly Associated with Distinct Microbiome Ecological Patterns. mSystems 2018, 3, e00007–e00018. [Google Scholar] [CrossRef]
- Cinek, O.; Polackova, K.; Odeh, R.; Alassaf, A.; Kramná, L.; Ibekwe, M.U.; Majaliwa, E.S.; Ahmadov, G.; Elmahi, B.M.E.; Mekki, H.; et al. Blastocystis in the faeces of children from six distant countries: Prevalence, quantity, subtypes and the relation to the gut bacteriome. Parasit. Vectors 2021, 14, 399. [Google Scholar] [CrossRef] [PubMed]
- Mattiucci, S.; Crisafi, B.; Gabrielli, S.; Paoletti, M.; Cancrini, G. Molecular epidemiology and genetic diversity of Blastocystis infection in humans in Italy. Epidemiol. Infect. 2016, 144, 635–646. [Google Scholar] [CrossRef] [PubMed]
African Individuals from Côte d’Ivoire | African Individuals Residing in Italy | Italian Individuals Residing in Rome | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID | SEX (7M/4F) | AGE | Blastocystis ST | Sample ID | SEX (5M/2F) | AGE | Blastocystis ST | Sample ID | SEX (7M/8F) | AGE | Blastocystis ST |
1AA | M | 37 | neg | 3AI | F | 56 | neg | 1ii | F | 40 | neg |
2AA | F | 33 | ST3 | 4AI | F | 33 | neg | 2ii | M | 51 | neg |
3AA | M | 21 | ST3 | 5AI | M | 24 | ST3 | 3ii | F | 25 | ST1 |
4AA | M | 22 | neg | 6AI | M | 23 | neg | 4ii | F | 29 | ST4 |
5AA | M | 28 | ST1 | 7AI | M | 42 | neg | 5ii | M | 20 | neg |
6AA | M | 31 | ST3 | 8AI | M | 31 | neg | 6ii | F | 30 | neg |
7AA | F | 26 | ST2 | 9AI | M | 34 | ST1 | 7ii | M | 33 | neg |
8AA | M | 22 | ST1 | 8ii | F | 36 | neg | ||||
9AA | M | 35 | ST1 | 9ii | M | 27 | neg | ||||
10AA | F | 35 | neg | 10ii | M | 28 | neg | ||||
11AA | F | 44 | ST3 | 11ii | F | 26 | neg | ||||
12ii | M | 27 | neg | ||||||||
13ii | F | 40 | neg | ||||||||
14ii | M | 31 | neg | ||||||||
15ii | F | 26 | ST4 | ||||||||
Mean ± SD | 30.4 ± 7.3 | 34.7 ± 11.3 | 31.3 ± 7.7 |
FOODS | AA | AI | ii | Total |
---|---|---|---|---|
a Foutou | 73 (*** vs. ii) | 28 | 0 (*** vs. AA) | 33 |
Yam | 73 (*** vs. ii) | 43 (* vs. AA) | 0 | 33 |
b Attiéké | 100 (*** vs. ii) | 43 (* vs. AA) | 0 (* vs. AA) | 42 |
c Cube Maggi | 73 (* vs. AI) | 86 | 0 (*** vs. AA) | 42 |
Palm oil | 75 (*** vs. ii) | 0 (** vs. AA) | 0 | 24 |
Olive oil | 18 (*** vs. ii) | 86 (* vs. AA) | 100 | 70 |
Yogurt | 9 (*** vs. AI) | 100 (* vs. ii) | 40 | 36 |
Pasta | 45 | 100 | 100 (** vs. AA) | 82 |
Potatoes | 45 | 100 | 100 (** vs. AA) | 82 |
Sunflower oil | 9 (* vs. AI) | 71 | 20 (* vs. AI) | 27 |
Beans and lentils | 3 (*** vs. ii) | 12 | 45 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonetti, L.; Berrilli, F.; Cardellini, M.; Federici, M.; D’Alfonso, R. Human Gut Microbiota Profiles Related to Mediterranean and West African Diets and Association with Blastocystis Subtypes. Nutrients 2025, 17, 2950. https://doi.org/10.3390/nu17182950
Antonetti L, Berrilli F, Cardellini M, Federici M, D’Alfonso R. Human Gut Microbiota Profiles Related to Mediterranean and West African Diets and Association with Blastocystis Subtypes. Nutrients. 2025; 17(18):2950. https://doi.org/10.3390/nu17182950
Chicago/Turabian StyleAntonetti, Lorenzo, Federica Berrilli, Marina Cardellini, Massimo Federici, and Rossella D’Alfonso. 2025. "Human Gut Microbiota Profiles Related to Mediterranean and West African Diets and Association with Blastocystis Subtypes" Nutrients 17, no. 18: 2950. https://doi.org/10.3390/nu17182950
APA StyleAntonetti, L., Berrilli, F., Cardellini, M., Federici, M., & D’Alfonso, R. (2025). Human Gut Microbiota Profiles Related to Mediterranean and West African Diets and Association with Blastocystis Subtypes. Nutrients, 17(18), 2950. https://doi.org/10.3390/nu17182950