House Cricket (Acheta domesticus) and Spirulina (Arthrospira platensis) as Non-Conventional Sources of Nutrients and Bioactive Ingredients—Evaluation of Physicochemical, Nutraceutical, and Sensory Properties of Supplemented Muffins
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Insect Powder
2.3. Muffin Preparation
2.4. Physical Analysis
2.4.1. Color Measurements
2.4.2. Texture Profile Analysis (TPA)
2.5. Nutrient Composition
2.6. Determination of the Amino Acid Composition, Calculation of the Limiting Amino Acid Index, and the Essential Amino Acid Integrated Index (EAAI)
2.7. Minerals Content
2.8. Antioxidant Properties
2.8.1. Extraction of Bioactive Compounds
2.8.2. DPPH Radical Scavenging Activity
2.8.3. ABTS Radical Scavenging Activity
2.8.4. Total Phenolic Content (TPC)
2.9. Predicted Glycemic Index In Vitro
2.10. Consumer Acceptance Evaluation
2.11. Consumer Study
- I know the benefits of consuming non-conventional protein sources (e.g., insects, microalgae).
- I am curious about the taste of muffins that have had spirulina and insect flour added.
- All muffin variants look equally appetizing.
- The non-conventional additives made me reluctant to try the muffins.
- The muffins with non-conventional additives positively surprised me in terms of taste.
- Muffins with non-conventional protein sources are acceptable to me, and I would eat them in the future.
- I would be interested in trying other baked goods with insect flour or spirulina.
- I would recommend trying baked goods made with insect flour or spirulina to others.
2.12. Statistical Analysis
3. Results and Discussion
3.1. Color Measurements
3.2. Instrumental Texture Profile Analysis
3.3. Nutrient Composition
3.4. Amino Acid Composition and the Chemical Score of Protein Quality
3.5. Mineral Content
3.6. Antioxidant Properties
3.7. Predicted Glycemic Index In Vitro
3.8. Consumer Acceptance Evaluation and Consumer Study
4. Research Limitations and Safety Concerns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M. The Future of Food. Foods 2024, 13, 506. [Google Scholar] [CrossRef]
- Di Vita, G.; Zanchini, R.; De Cianni, R.; Pippinato, L.; Mancuso, T.; Brun, F. Sustainable Livestock Farming in the European Union: A Study on Beef Farms in NUTS 2 Regions. Sustainability 2024, 16, 1098. [Google Scholar] [CrossRef]
- De Sousa, R.; Bragança, L.; da Silva, M.V.; Oliveira, R.S. Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Villaño, D.; Gironés-Vilapana, A.; García-Viguera, C.; Moreno, D.A. Development of Functional Foods. In Innovation Strategies in the Food Industry: Tools for Implementation, 2nd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 193–207. [Google Scholar] [CrossRef]
- Approval Insect Novel Food—European Commission. Available online: https://food.ec.europa.eu/food-safety/novel-food/authorisations/approval-insect-novel-food_en (accessed on 2 August 2025).
- Olsen, M.L.; Olsen, K.; Jensen, P.E. Consumer Acceptance of Microalgae as a Novel Food—Where Are We Now? And How to Get Further. Physiol. Plant 2024, 176, e14337. [Google Scholar] [CrossRef]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of Insect Use for Feed and Food: Life Cycle Assessment Perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Tzachor, A.; Smidt-Jensen, A.; Ramel, A.; Geirsdóttir, M. Environmental Impacts of Large-Scale Spirulina (Arthrospira platensis) Production in Hellisheidi Geothermal Park Iceland: Life Cycle Assessment. Mar. Biotechnol. 2022, 24, 991–1001. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Karaś, M.; Jakubczyk, A.; Zieliński, D.; Baraniak, B. Edible Insects as Source of Proteins. In Bioactive Molecules in Food; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 389–441. ISBN 9783319545288. [Google Scholar]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Frozen and Dried Formulations from Migratory Locust (Locusta migratoria) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06667. [Google Scholar] [CrossRef]
- Udomsil, N.; Imsoonthornruksa, S.; Gosalawit, C.; Ketudat-Cairns, M. Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 2019, 25, 597–605. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of Sex on the Nutritional Value of House Cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Brena-Melendez, A.; Garcia-Amezquita, L.E.; Liceaga, A.; Pascacio-Villafán, C.; Tejada-Ortigoza, V. Novel Food Ingredients: Evaluation of Commercial Processing Conditions on Nutritional and Technological Properties of Edible Cricket (Acheta domesticus) and Its Derived Parts. Innov. Food Sci. Emerg. Technol. 2024, 92, 103589. [Google Scholar] [CrossRef]
- Pasini, G.; Cullere, M.; Vegro, M.; Simonato, B.; Dalle Zotte, A. Potentiality of Protein Fractions from the House Cricket (Acheta domesticus) and Yellow Mealworm (Tenebrio molitor) for Pasta Formulation. LWT 2022, 164, 113638. [Google Scholar] [CrossRef]
- Bas, A.; El, S.N. Nutritional Evaluation of Biscuits Enriched with Cricket Flour (Acheta domesticus). Int. J. Gastron. Food Sci. 2022, 29, 100583. [Google Scholar] [CrossRef]
- Cavalheiro, C.P.; Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Cruz, T.D.M.P.; da Silva, M.C.A. Cricket (Acheta domesticus) Flour as Meat Replacer in Frankfurters: Nutritional, Technological, Structural, and Sensory Characteristics. Innov. Food Sci. Emerg. Technol. 2023, 83, 103245. [Google Scholar] [CrossRef]
- Gantner, M.; Król, K.; Piotrowska, A.; Sionek, B.; Sadowska, A.; Kulik, K.; Wiącek, M. Adding Mealworm (Tenebrio molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules 2022, 27, 6155. [Google Scholar] [CrossRef]
- Mazurek, A.; Palka, A.; Kowalski, S.; Skotnicka, M. Acceptance of Muffins (Sweet and Savory) with the Addition of T. molitor, A. diaperinus, A. domesticus, R. differens, Considering Psychological Factors (Food Neophobia Scale, Consumer Attitude). Foods 2024, 13, 1735. [Google Scholar] [CrossRef]
- Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef]
- Bruttomesso, M.; Bianchi, F.; Pasqualoni, I.; Rizzi, C.; Simonato, B. Evaluation of the Technological and Compositional Features of Pancakes Fortified with Acheta domesticus. LWT 2024, 199, 116073. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Seephua, N.; Prakitchaiwattana, C.; Liu, R.X.; Zheng, J.S.; Siriamornpun, S. Fortification of Cricket and Silkworm Pupae Powders to Improve Nutritional Quality and Digestibility of Rice Noodles. Food Chem. X 2025, 26, 102279. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022, 11, 2984. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Vieira, V.V.; Benemann, J.; Vonshak, A.; Belay, A.; Ras, M.; Unamunzaga, C.; Cadoret, J.P.; Rizzo, A. Spirulina in the 21st Century: Five Reasons for Success in Europe. J. Appl. Phycol. 2025, 1–14. [Google Scholar] [CrossRef]
- Podgórska-Kryszczuk, I. Spirulina—An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules 2024, 29, 5387. [Google Scholar] [CrossRef] [PubMed]
- Hernández-López, I.; Alamprese, C.; Cappa, C.; Prieto-Santiago, V.; Abadias, M.; Aguiló-Aguayo, I. Effect of Spirulina in Bread Formulated with Wheat Flours of Different Alveograph Strength. Foods 2023, 12, 3724. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of Microalgae Incorporation on the Physicochemical, Nutritional, and Sensorial Properties of an Innovative Broccoli Soup. LWT 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Podgórska-Kryszczuk, I. Effect of Arthrospira platensis (Spirulina) Fortification on Physicochemical, Nutritional, Bioactive, Textural, and Sensory Properties of Vegan Basil Pesto. Nutrients 2024, 16, 2825. [Google Scholar] [CrossRef]
- Lucas, B.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Effect of Spirulina Addition on the Physicochemical and Structural Properties of Extruded Snacks. Food Sci. Technol. 2017, 37, 16–23. [Google Scholar] [CrossRef]
- Niccolai, A.; Venturi, M.; Galli, V.; Pini, N.; Rodolfi, L.; Biondi, N.; D’Ottavio, M.; Batista, A.P.; Raymundo, A.; Granchi, L.; et al. Development of New Microalgae-Based Sourdough “Crostini”: Functional Effects of Arthrospira Platensis (Spirulina) Addition. Sci. Rep. 2019, 9, 19433. [Google Scholar] [CrossRef]
- Erem, F. Investigation of the Effects of Corn Flour, Spirulina Powder, and Buffalo Yogurt on the Quality Characteristics of Gluten-Free Muffins. Food Sci. Technol. Int. 2024. [Google Scholar] [CrossRef]
- Batista de Oliveira, T.T.; Miranda dos Reis, I.; Bastos de Souza, M.; da Silva Bispo, E.; Fonseca Maciel, L.; Druzian, J.I.; Lordelo Guimarães Tavares, P.P.; de Oliveira Cerqueira, A.; dos Santos Boa Morte, E.; Abreu Glória, M.B.; et al. Microencapsulation of Spirulina Sp. LEB-18 and Its Incorporation in Chocolate Milk: Properties and Functional Potential. LWT 2021, 148, 111674. [Google Scholar] [CrossRef]
- Üstün-Aytekin, Ö.; Çoban, I.; Aktaş, B. Nutritional Value, Sensory Properties, and Antioxidant Activity of a Traditional Kefir Produced with Arthrospira Platensis. J. Food Process Preserv. 2022, 46, e16380. [Google Scholar] [CrossRef]
- Çınar, Ç.; Karinen, A.K.; Tybur, J.M. The Multidimensional Nature of Food Neophobia. Appetite 2021, 162, 105177. [Google Scholar] [CrossRef]
- Sogari, G.; Riccioli, F.; Moruzzo, R.; Menozzi, D.; Tzompa Sosa, D.A.; Li, J.; Liu, A.; Mancini, S. Engaging in Entomophagy: The Role of Food Neophobia and Disgust between Insect and Non-Insect Eaters. Food Qual. Prefer. 2023, 104, 104764. [Google Scholar] [CrossRef]
- Zielińska, E.; Zieliński, D.; Karaś, M.; Jakubczyk, A. Exploration of Consumer Acceptance of Insects as Food in Poland. J. Insects Food Feed. 2020, 6, 383–392. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Becoming an Insectivore: Results of an Experiment. Food Qual. Prefer. 2016, 51, 118–122. [Google Scholar] [CrossRef]
- Zielińska, E.; Pankiewicz, U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules 2020, 25, 5629. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P. Effect of Freezing and Room Temperatures Storage for 18 Months on Quality of Raw Rapeseed Honey (Brassica napus). J. Food Sci. Technol. 2016, 53, 3349–3355. [Google Scholar] [CrossRef]
- Ritvanen, T.; Pastell, H.; Welling, A.; Raatikainen, M. The Nitrogen-to-Protein Conversion Factor of Two Cricket Species—Acheta domesticus and Gryllus bimaculatus. Agric. Food Sci. 2020, 29, 1–5. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC International: Rockville, MD, USA, 2010; pp. 2–4. [Google Scholar]
- Fogarasi, M.; Urs, M.J.; Socaciu, M.I.; Ranga, F.; Semeniuc, C.A.; Vodnar, D.C.; Mureșan, V.; Țibulcă, D.; Fogarasi, S.; Socaciu, C. Polyphenols-Enrichment of Vienna Sausages Using Microcapsules Containing Acidic Aqueous Extract of Boletus edulis Mushrooms. Foods 2024, 13, 979. [Google Scholar] [CrossRef]
- Smith, D.M. Protein Separation and Characterization Procedures. In Food Analysis; Heldman, D.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 261–281. ISBN 9781441914781. [Google Scholar]
- Jorhem, L.; Engman, J.; Arvidsson, B.-M.; Åsman, B.; Åstrand, C.; Gjerstad, K.O.; Haugsnes, J.; Heldal, V.; Holm, K.; Jensen, A.M.; et al. Determination of Lead, Cadmium, Zinc, Copper, and Iron in Foods by Atomic Absorption Spectrometry after Microwave Digestion: NMKL1 Collaborative Study. J. AOAC Int. 2000, 83, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Antoniewska, A.; Rutkowska, J.; Pineda, M.M.; Adamska, A. Antioxidative, Nutritional and Sensory Properties of Muffins with Buckwheat Flakes and Amaranth Flour Blend Partially Substituting for Wheat Flour. LWT 2018, 89, 217–223. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Mishra, S.; Monro, J.A. Digestibility of Starch Fractions in Wholegrain Rolled Oats. J. Cereal Sci. 2009, 50, 61–66. [Google Scholar] [CrossRef]
- Reis, S.F.; Abu-Ghannam, N. Antioxidant Capacity, Arabinoxylans Content and Invitro Glycaemic Index of Cereal-Based Snacks Incorporated with Brewer’s Spent Grain. LWT Food Sci. Technol. 2014, 55, 269–277. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A Starch Hydrolysis Procedure to Estimate Glycemic Index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Lim, H.S.; Park, S.H.; Ghafoor, K.; Hwang, S.Y.; Park, J. Quality and Antioxidant Properties of Bread Containing Turmeric (Curcuma longa L.) Cultivated in South Korea. Food Chem. 2011, 124, 1577–1582. [Google Scholar] [CrossRef]
- Mazzocchi, M. Statistics for Marketing and Consumer Research; Sage: London, UK, 2008. [Google Scholar]
- Pez Jaeschke, D.; Rocha Teixeira, I.; Damasceno Ferreira Marczak, L.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef] [PubMed]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, Sensory, and Texture Quality of Bread and Cookie Enriched with House Cricket (Acheta domesticus) Powder. J. Food Process Preserv. 2020, 44, e14601. [Google Scholar] [CrossRef]
- Marzec, A.; Kramarczuk, P.; Kowalska, H.; Kowalska, J. Effect of Type of Flour and Microalgae (Chlorella vulgaris) on the Rheological, Microstructural, Textural, and Sensory Properties of Vegan Muffins. Appl. Sci. 2023, 13, 7632. [Google Scholar] [CrossRef]
- Francis, F.; Clydesdale, F. Food Colorimetry: Theory and Applications; The AVI Publishing Company: Westport, CT, USA, 1975. [Google Scholar]
- Pauter, P.; Różańska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P. Effects of the Replacement of Wheat Flour with Cricket Powder on the Characteristics of Muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, S. A Comprehensive Study on Physical Properties of Two Gluten-Free Flour Fortified Muffins. J. Food Process Technol. 2013, 4, 1–4. [Google Scholar] [CrossRef]
- Goswami, D.; Gupta, R.K.; Mridula, D.; Sharma, M.; Tyagi, S.K. Barnyard Millet Based Muffins: Physical, Textural and Sensory Properties. LWT Food Sci. Technol. 2015, 64, 374–380. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Bartczak, O.; Lewandowicz, J.; Kubiak, P.; Baranowska, H.M. Gluten-Free Bread with Cricket Powder—Mechanical Properties and Molecular Water Dynamics in Dough and Ready Product. Foods 2019, 8, 240. [Google Scholar] [CrossRef]
- Zielińska, E. Evaluating the Functional Characteristics of Certain Insect Flours (Non-Defatted/Defatted Flour) and Their Protein Preparations. Molecules 2022, 27, 6339. [Google Scholar] [CrossRef]
- Feili, R.; Zzaman, W.; Nadiah, W.; Abdullah, W.O.; Yang, T.A. Physical and Sensory Analysis of High Fiber Bread Incorporated with Jackfruit Rind Flour. Food Sci. Technol. Int. 2013, 1, 30–36. [Google Scholar] [CrossRef]
- Kaur, A.; Virdi, A.S.; Singh, N.; Singh, A.; Kaler, R.S.S. Effect of Degree of Milling and Defatting on Proximate Composition, Functional and Texture Characteristics of Gluten-Free Muffin of Bran of Long-Grain Indica Rice Cultivars. Food Chem. 2021, 345, 128861. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. illucens, A. domestica and T. molitor Flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of Healthy Protein-Rich Crackers Using Tenebrio Molitor Flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef]
- Moradi, Y.; Ghaeni, M.; Hadaegh, H. Comparison of the Effect of Adding Spirulina Platensis Powder on Sensory, Physical, Protein and Iron Properties of Three Different Industrial Products of Bread, Cake and Layered Sweets. Iran. Food Sci. Technol. Res. J. 2024, 20, 153–164. [Google Scholar] [CrossRef]
- Sanjari, S.; Sarhadi, H.; Shahdadi, F. Investigating the Effect of Spirulina Platensis Microalgae on Textural and Sensory Properties of Baguette Bread. J. Nutr. Food Secur. 2018, 3, 218–225. [Google Scholar] [CrossRef]
- Devi, S.; Varkey, A.; Sheshshayee, M.S.; Preston, T.; Kurpad, A.V. Measurement of Protein Digestibility in Humans by a Dual-Tracer Method. Am. J. Clin. Nutr. 2018, 107, 984. [Google Scholar] [CrossRef]
- Chen, W.; Xu, J.; Yu, Q.; Yuan, Z.; Kong, X.; Sun, Y.; Wang, Z.; Zhuang, X.; Zhang, Y.; Guo, Y. Structural Insights Reveal the Effective Spirulina Platensis Cell Wall Dissociation Methods for Multi-Output Recovery. Bioresour. Technol. 2020, 300, 122628. [Google Scholar] [CrossRef]
- Alfadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A.; Rohn, S.; Alfadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; et al. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef] [PubMed]
- WHO. Protein and Amino Acid Requirements in Human Nutrition; WHO Technical Report Series 935; WHO: Geneva, Switzerland, 2007; pp. 1–265.
- Astorga-España, M.S.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E.M.; Díaz-Romero, C. Amino Acid Content in Seaweeds from the Magellan Straits (Chile). J. Food Compos. Anal. 2016, 53, 77–84. [Google Scholar] [CrossRef]
- Brown, M.R.; Jeffrey, S.W. Biochemical Composition of Microalgae from the Green Algal Classes Chlorophyceae and Prasinophyceae. 1. Amino Acids, Sugars and Pigments. J. Exp. Mar. Biol. Ecol. 1992, 161, 91–113. [Google Scholar] [CrossRef]
- Kumar, S.B.; Arnipalli, S.R.; Mehta, P.; Carrau, S.; Ziouzenkova, O. Iron Deficiency Anemia: Efficacy and Limitations of Nutritional and Comprehensive Mitigation Strategies. Nutrients 2022, 14, 2976. [Google Scholar] [CrossRef]
- Kougia, E.; Ioannou, E.; Roussis, V.; Tzovenis, I.; Chentir, I.; Markou, G. Iron (Fe) Biofortification of Arthrospira platensis: Effects on Growth, Biochemical Composition and in Vitro Iron Bioaccessibility. Algal Res. 2023, 70, 103016. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2022, 14, 180. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Kowalcze, K. Food Sources of Potassium in the Average Polish Diet. Nutrients 2019, 11, 2905. [Google Scholar] [CrossRef]
- Ivanišová, E.; Rajnoha, M.; Harangozo, Ľ.; Kunecová, D.; Čech, M.; Gabríny, L.; Gálik, B.; Banach, J.K.; Kowalczewski, P.Ł.; Pietrzak-Fiećko, R. Physicochemical, Nutritional, Antioxidant, and Sensory Properties of Crackers Supplemented with Edible Insects. Appl. Sci. 2023, 13, 11911. [Google Scholar] [CrossRef]
- Souiy, Z.; Zakhama, N.; Cheraief, I.; Hammami, M. Nutritional, Physical, Microbial, and Sensory Characteristics of Gluten-and Sugar-Free Cereal Bar Enriched with Spirulina and Flavored with Neroli Essential Oil. LWT 2022, 169, 113955. [Google Scholar] [CrossRef]
- Marcinkowska-Lesiak, M.; Onopiuk, A.; Zalewska, M.; Ciepłoch, A.; Barotti, L. The Effect of Different Level of Spirulina Powder on the Chosen Quality Parameters of Shortbread Biscuits. J. Food Process. Preserv. 2018, 42, e13561. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat Bread Supplementation with Various Edible Insect Flours. Influence of Chemical Composition on Nutritional and Technological Aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Nurko, E.; Nakilcioğlu, E. Optimization of Spirulina-Enriched Vegan Cake Formulation Using Response Surface Methodology. Food Sci. Nutr. 2025, 13, e70116. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, I.; Lončarević, I.; Rakita, S.; Čabarkapa, I.; Vulić, J.; Takači, A.; Petrović, J. Technological Challenges of Spirulina Powder as the Functional Ingredient in Gluten-Free Rice Crackers. Processes 2025, 13, 908. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.D.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional Properties of Bioactive Compounds from Spirulina Spp.: Current Status and Future Trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef]
- Denardi de Souza, T.; Prietto, L.; Moraes de Souza, M.; Badiale Furlong, E. Profile, Antioxidant Potential, and Applicability of Phenolic Compounds Extracted from Spirulina platensis. Afr. J. Biotechnol. 2015, 14, 2903–2909. [Google Scholar] [CrossRef]
- Citi, V.; Torre, S.; Flori, L.; Usai, L.; Aktay, N.; Dunford, N.T.; Lutzu, G.A.; Nieri, P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients 2024, 16, 1752. [Google Scholar] [CrossRef]
- Lafarga, T.; Sánchez-Zurano, A.; Villaró, S.; Morillas-España, A.; Acién, G. Industrial Production of Spirulina as a Protein Source for Bioactive Peptide Generation. Trends Food Sci. Technol. 2021, 116, 176–185. [Google Scholar] [CrossRef]
- Mlcek, J.; Borkovcova, M.; Bednarova, M. Biologically Active Substances of Edible Insects and Their Use in Agriculture, Veterinary and Human Medicine—A Review. J. Cent. Eur. Agric. 2014, 15, 225–237. [Google Scholar] [CrossRef]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant Activities in Vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Front. Nutr. 2019, 6, 438996. [Google Scholar] [CrossRef] [PubMed]
- de la Luz Sánchez-Estrada, M.; Aguirre-Becerra, H.; Feregrino-Pérez, A.A. Bioactive Compounds and Biological Activity in Edible Insects: A Review. Heliyon 2024, 10, e24045. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.O. Insect Cuticular Sclerotization: A Review. Insect Biochem. Mol. Biol. 2010, 40, 166–178. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Gutiérrez-Docio, A.; Otero, P.; Reglero, G.; Martin, D. Characterization, Antioxidant Activity, and Inhibitory Effect on Pancreatic Lipase of Extracts from the Edible Insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the Biological Potential of Proteins from Edible Insects through Enzymatic Hydrolysis: A Review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef]
- Sanchez-Rivera, M.M.; Bello-Pérez, L.A.; Tovar, J.; Martinez, M.M.; Agama-Acevedo, E. Esterified Plantain Flour for the Production of Cookies Rich in Indigestible Carbohydrates. Food Chem. 2019, 292, 1–5. [Google Scholar] [CrossRef]
- Chao, C.; Yu, J.; Wang, S.; Copeland, L.; Wang, S. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids. J. Agric. Food Chem. 2018, 66, 272–278. [Google Scholar] [CrossRef]
- Barrett, A.H.; Farhadi, N.F.; Smith, T.J. Slowing Starch Digestion and Inhibiting Digestive Enzyme Activity Using Plant Flavanols/Tannins—A Review of Efficacy and Mechanisms. LWT 2018, 87, 394–399. [Google Scholar] [CrossRef]
- Rakhesh, N.; Fellows, C.M.; Sissons, M. Evaluation of the Technological and Sensory Properties of Durum Wheat Spaghetti Enriched with Different Dietary Fibres. J. Sci. Food Agric. 2015, 95, 2–11. [Google Scholar] [CrossRef]
- Platta, A.; Mikulec, A.; Radzymińska, M.; Kowalski, S.; Skotnicka, M. Willingness to Consume and Purchase Food with Edible Insects among Generation Z in Poland. Foods 2024, 13, 2202. [Google Scholar] [CrossRef]
- Günden, C.; Atakan, P.; Yercan, M.; Mattas, K.; Knez, M. Consumer Response to Novel Foods: A Review of Behavioral Barriers and Drivers. Foods 2024, 13, 2051. [Google Scholar] [CrossRef]
- Rehman, N.; Ogrinc, N. Consumer Perceptions and Acceptance of Edible Insects in Slovenia. Foods 2024, 13, 2629. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.S.; Nogueira Silva, N.F.; Jessen, F.; Mohammadifar, M.A.; Stephani, R.; Fernandes de Carvalho, A.; Perrone, Í.T.; Casanova, F. Edible Insect as an Alternative Protein Source: A Review on the Chemistry and Functionalities of Proteins under Different Processing Methods. Heliyon 2023, 9, e14831. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, E.; Sisto, R.; Nigro, C. The Willingness to Consume Insect-Based Food: An Empirical Research on Italian Consumers. Agric. Econ. 2019, 65, 454–462. [Google Scholar] [CrossRef]
- Moran, L.; Bou, G.; Aldai, N.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Barron, L.J.R.; Lafarga, T. Characterisation of the Volatile Profile of Microalgae and Cyanobacteria Using Solid-Phase Microextraction Followed by Gas Chromatography Coupled to Mass Spectrometry. Sci. Rep. 2022, 12, 3661. [Google Scholar] [CrossRef]
- Güroy, B. Determination of the Phycocyanin, Protein Content and Sensory Properties of Muffins Containing Spirulina Powder or Fresh Spirulina. J. Food Feed. Sci. Technol. 2020, 23, 10–18. [Google Scholar]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae Biomass as an Alternative Ingredient in Cookies: Sensory, Physical and Chemical Properties, Antioxidant Activity and in Vitro Digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Ganseman, E.; Gouwy, M.; Bullens, D.M.A.; Breynaert, C.; Schrijvers, R.; Proost, P. Reported Cases and Diagnostics of Occupational Insect Allergy: A Systematic Review. Int. J. Mol. Sci. 2022, 24, 86. [Google Scholar] [CrossRef]
- Gałęcki, R.; Bakuła, T.; Gołaszewski, J. Foodborne Diseases in the Edible Insect Industry in Europe—New Challenges and Old Problems. Foods 2023, 12, 770. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.; Wang, N. Entomophagy and Allergies: A Study of the Prevalence of Entomophagy and Related Allergies in a Population Living in North-Eastern Thailand. Biosci. Horiz. Int. J. Stud. Res. 2018, 11, hzy003. [Google Scholar] [CrossRef]
- De Marchi, L.; Wangorsch, A.; Zoccatelli, G. Allergens from Edible Insects: Cross-Reactivity and Effects of Processing. Curr. Allergy Asthma Rep. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
Sample | L* | a* | b* | C* | h° | ΔE | WI |
---|---|---|---|---|---|---|---|
CON | 71.19 ± 0.99 a | 2.80 ± 0.32 c | 25.68 ± 0.74 b | 25.73 ± 0.68 b | 83.80 ± 0.61 a | - | 61.31 |
MC | 65.08 ± 0.81 b | 3.41 ± 0.25 b | 20.13 ± 0.42 c | 20.33 ± 0.47 c | 80.37 ± 0.66 b | 8.28 | 59.55 |
MS | 32.62 ± 1.06 c | 7.78 ± 0.71 a | 30.43 ± 0.71 a | 31.41 ± 0.60 a | 75.72 ± 0.88 c | 39.17 | 25.67 |
Sample | Hardness (g) | Cohesiveness | Springiness (mm) | Gumminess (g) | Chewiness (mJ) |
---|---|---|---|---|---|
CON | 2754.33 ± 90.64 a | 0.51 ± 0.01 b | 10.37 ± 0.58 a | 1416.00 ± 21.00 a | 144.03 ± 10.01 a |
MC | 1877.50 ± 76.36 b | 0.56 ± 0.02 a | 9.98 ± 0.50 a | 1049.00 ± 23.71 b | 102.75 ± 6.08 b |
MS | 1434.00 ± 80.73 c | 0.56 ± 0.01 a | 9.83 ± 0.71 a | 861.00 ± 49.52 c | 77.20 ± 2.63 c |
Sample | Protein | Fat | Carbohydrates | Ash | Moisture | Energy Value |
---|---|---|---|---|---|---|
g/100 g FM | kcal/100 g | |||||
CON | 6.79 ± 0.05 b | 14.66 ± 0.08 b | 40.22 ± 0.4 a | 1.19 ± 0.01 b | 37.14 ± 0.53 a | 319.98 |
MC | 7.19 ± 0.06 a | 15.54 ± 0.11 a | 38.47 ± 0.77 b | 1.21 ± 0.02 b | 37.59 ± 0.45 a | 322.50 |
MS | 7.10 ± 0.05 a | 14.59 ± 0.09 b | 39.91 ± 0.4 a | 1.28 ± 0.04 a | 37.12 ± 0.38 a | 319.35 |
Cricket powder | 73.24 ± 0.17 | 12.01 ± 0.04 | 0.8 ± 0.08 | 4.43 ± 0.03 | 9.52 ± 0.18 | 404.25 |
Spirulina powder | 70.20 ± 0.23 | 5.60 ± 0.01 | 11.93 ± 0.12 | 6.21 ± 0.03 | 6.06 ± 0.29 | 378.92 |
Amino Acids | Muffins | Cricket Powder | Spirulina Powder | WHO/FAO/UNU 1 | |||
---|---|---|---|---|---|---|---|
CON | MC | MS | (mg/g Protein) | (mg/kg Body Mass/Day) | |||
Isoleucine * | 3.74 ± 0.07 b | 3.77 ± 0.06 b | 4.03 ± 0.05 a | 47.8 ± 0.2 | 37.5 ± 0.09 | 30 | 20 |
Leucine * | 7.42 ± 0.1 b | 7.45 ± 0.08 b | 7.93 ± 0.1 a | 56.1 ± 0.12 | 63.7 ± 0.12 | 59 | 39 |
Lysine * | 3.56 ± 0.09 b | 4.10 ± 0.05 a | 4.16 ± 0.11 a | 39.3 ± 0.15 | 34.6 ± 0.08 | 45 | 30 |
Methionine * | 4.0 ± 0.04 c | 4.39 ± 0.04 b | 4.59 ± 0.08 a | 15.5 ± 0.07 | 23.2 ± 0.07 | 16 | 10 |
Cysteine * | 2.8 ± 0.05 b | 3.09 ± 0.04 a | 3.16 ± 0.06 a | 10.2 ± 0.07 | 10.5 ± 0.02 | 6 | 4 |
Total sulphur a.a. ** | 6.8 | 7.48 | 7.75 | 25.7 | 33.7 | 22 | 14 |
Phenylalanine * | 4.75 ± 0.11 b | 4.77 ± 0.07 ab | 4.98 ± 0.09 a | 23.9 ± 0.05 | 33.0 ± 0.07 | 30 | 25 |
Tyrosine | 2.63 ± 0.08 b | 2.81 ± 0.1 ab | 2.88 ± 0.11 a | 35.0 ± 0.05 | 30.7 ± 0.09 | 32 | |
Total aromatic a.a. *** | 7.38 | 7.58 | 7.86 | 58.9 | 63.7 | 30 | 25 |
Threonine * | 3.17 ± 0.07 b | 3.41 ± 0.12 ab | 3.59 ± 0.1 a | 27.0 ± 0.12 | 37.5 ± 0.11 | 23 | 15 |
Valine * | 4.53 ± 0.1 b | 4.92 ± 0.1 a | 4.93 ± 0.14 a | 39.2 ± 0.15 | 42.5 ± 0.12 | 39 | 26 |
Total essential a.a. | 36.6 | 38.71 | 40.25 | 294 | 313.2 | 242 | 165 |
Histidine | 2.11 ± 0.05 b | 2.39 ± 0.05 a | 2.32 ± 0.07 a | 20.5 ± 0.07 | 14.5 ± 0.08 | ||
No essential a.a. | |||||||
Aspartic acid | 6.63 ± 0.14 b | 6.89 ± 0.11 b | 7.22 ± 0.1 a | 66.4 ± 0.2 | 72.0 ± 0.15 | ||
Serine | 4.71 ± 0.09 b | 4.92 ± 0.12 ab | 5.02 ± 0.07 a | 34.6 ± 0.07 | 35.1 ± 0.12 | ||
Glutamic acid | 26.1 ± 0.18 a | 25.7 ± 0.17 a | 26.2 ± 0.2 a | 88.3 ± 0.25 | 109.6 ± 0.22 | ||
Proline | 9.03 ± 0.12 a | 8.98 ± 0.09 a | 9.04 ± 0.11 a | 63.6 ± 0.2 | 29.2 ± 0.1 | ||
Glycine | 2.98 ± 0.09 b | 3.3 ± 0.06 a | 3.38 ± 0.07 a | 35.9 ± 0.07 | 35.8 ± 0.1 | ||
Alanine | 3.59 ± 0.1 b | 4.56 ± 0.12 a | 4.47 ± 0.1 a | 63.4 ± 0.2 | 56.0 ± 0.2 | ||
Arginine | 3.43 ± 0.1 b | 4.1 ± 0.09 a | 4.02 ± 0.08 a | 44.6 ± 0.15 | 44.0 ± 0.17 | ||
Total a.a. | 95.18 | 98.55 | 101.92 | 711.3 | 709.4 |
Amino Acids | Chemical Score of Protein Quality (CS) (%) | ||||
---|---|---|---|---|---|
CON | MC | MS | Cricket Powder | Spirulina Powder | |
Isoleucine | 12.47 | 12.57 | 13.43 | 159.33 | 125.00 |
Methionine | 25.00 | 27.44 | 28.69 | 96.88 | 145.00 |
Leucine | 12.58 | 12.63 | 13.44 | 95.08 | 107.97 |
Threonine | 13.78 | 14.83 | 15.61 | 117.39 | 163.04 |
Lysine | 7.91 | 9.11 | 9.24 | 87.33 | 76.89 |
Phenylalanine + Tyrosine | 11.9 | 12.2 | 12.67 | 95 | 102.74 |
Valine | 11.62 | 12.64 | 12.64 | 100.51 | 108.97 |
EAAI | 17.12 | 18.38 | 19.04 | 112.84 | 123.09 |
Amino acid limiting | Lysine | Lysine | Lysine | Lysine | Lysine |
Sample | Ca | Mg | K | Na | Fe | Zn |
---|---|---|---|---|---|---|
mg/100 g FM | ||||||
CON | 43.44 ± 0.77 b | 11.50 ± 0.41 b | 108.76 ± 2.15 b | 185.20 ± 1.59 b | 0.75 ± 0.03 b | 0.51 ± 0.04 b |
MC | 48.05 ± 0.15 a | 11.98 ± 0.42 b | 126.65 ± 0.34 a | 190.86 ± 2.20 b | 0.86 ± 0.05 b | 0.78 ± 0.02 a |
MS | 48.83 ± 0.29 a | 16.30 ± 0.05 a | 126.72 ± 0.32 a | 251.17 ± 0.81 a | 1.50 ± 0.05 a | 0.60 ± 0.05 b |
Cricket powder | 87.18 ± 0.37 | 114.80 ± 0.78 | 1296.22 ± 3.03 | 408.26 ± 2.99 | 4.42 ± 0.07 | 22.65 ± 0.65 |
Spirulina powder | 99.33 ± 1.29 | 245.42 ± 1.55 | 1448.41 ± 1.21 | 606.93 ± 0.28 | 35.59 ± 0.20 | 1.62 ± 0.06 |
Sample | TPC (mg GAE/100 g) | DPPH· (mM TE/100 g) | ABTS·+ (mM TE/100 g) |
---|---|---|---|
CON | 18.42 ± 0.06 c | 0.018 ± 0.002 c | 0.126 ± 0.001 c |
MC | 26.47 ± 0.27 a | 0.087 ± 0.003 a | 0.211 ± 0.005 a |
MS | 20.20 ± 0.35 b | 0.053 ± 0.002 b | 0.163 ± 0.004 b |
Sample | Color | Smell | Texture | Taste | Overall Impression | Ranking |
---|---|---|---|---|---|---|
CON | 7.91 ± 1.24 a | 7.19 ± 1.35 a | 7.41 ± 1.44 b | 7.50 ± 1.19 a | 7.59 ± 1.10 a | 143 |
MC | 6.60 ± 1.63 c | 6.36 ± 2.04 b | 7.26 ± 1.59 b | 7.23 ± 1.60 a | 7.03 ± 1.38 b | 113 |
MS | 7.23 ± 1.52 b | 7.79 ± 1.24 a | 8.07 ± 1.04 a | 7.73 ± 1.43 a | 7.69 ± 1.21 a | 164 |
Statement | Mean ± SD | DF | p-Value | Male Mean ± SD | Female Mean ± SD | F-Value |
---|---|---|---|---|---|---|
I know the benefits of consuming non-conventional protein sources (e.g., insects, microalgae) | 3.60 ± 1.18 | 1 | 0.966 | 3.61 ± 1.16 | 3.60 ± 1.21 | 0.0018 |
I am curious about the taste of muffins that have had spirulina and insect powder added | 4.16 ± 0.99 | 1 | 0.049 * | 3.83 ± 1.40 | 4.32 ± 0.66 | 4.019 |
All muffin variants look equally appetizing | 3.64 ± 1.08 | 1 | 0.036 * | 3.26 ± 1.18 | 3.83 ± 0.99 | 4.527 |
The non-conventional additives made me reluctant to try the muffins | 2.37 ± 1.28 | 1 | 0.138 | 2.70 ± 1.33 | 2.21 ± 1.23 | 2.252 |
Statement | Mean ± SD | DF | p-Value | Male Mean ± SD | Female Mean ± SD | F-Value |
---|---|---|---|---|---|---|
The muffins with non-conventional additives positively surprised me in terms of taste | 4.13 ± 1.03 | 1 | 0.334 | 3.96 ± 1.19 | 4.21 ± 0.95 | 0.947 |
Muffins with non-conventional protein sources are acceptable to me, and I would eat them in the future | 4.34 ± 0.88 | 1 | 0.974 | 4.35 ± 1.07 | 4.34 ± 0.79 | 0.001 |
I would be interested in trying other baked goods with insect powder or spirulina | 4.27 ± 0.93 | 1 | 0.543 | 4.17 ± 1.15 | 4.32 ± 0.81 | 0.372 |
I would recommend trying baked goods made with insect powder or spirulina to others | 4.16 ± 0.86 | 1 | 0.637 | 4.09 ± 1.00 | 4.19 ± 0.80 | 0.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, E.; Podgórska-Kryszczuk, I.; Ramotowski, D.; Pankiewicz, U. House Cricket (Acheta domesticus) and Spirulina (Arthrospira platensis) as Non-Conventional Sources of Nutrients and Bioactive Ingredients—Evaluation of Physicochemical, Nutraceutical, and Sensory Properties of Supplemented Muffins. Nutrients 2025, 17, 2931. https://doi.org/10.3390/nu17182931
Zielińska E, Podgórska-Kryszczuk I, Ramotowski D, Pankiewicz U. House Cricket (Acheta domesticus) and Spirulina (Arthrospira platensis) as Non-Conventional Sources of Nutrients and Bioactive Ingredients—Evaluation of Physicochemical, Nutraceutical, and Sensory Properties of Supplemented Muffins. Nutrients. 2025; 17(18):2931. https://doi.org/10.3390/nu17182931
Chicago/Turabian StyleZielińska, Ewelina, Izabela Podgórska-Kryszczuk, Dawid Ramotowski, and Urszula Pankiewicz. 2025. "House Cricket (Acheta domesticus) and Spirulina (Arthrospira platensis) as Non-Conventional Sources of Nutrients and Bioactive Ingredients—Evaluation of Physicochemical, Nutraceutical, and Sensory Properties of Supplemented Muffins" Nutrients 17, no. 18: 2931. https://doi.org/10.3390/nu17182931
APA StyleZielińska, E., Podgórska-Kryszczuk, I., Ramotowski, D., & Pankiewicz, U. (2025). House Cricket (Acheta domesticus) and Spirulina (Arthrospira platensis) as Non-Conventional Sources of Nutrients and Bioactive Ingredients—Evaluation of Physicochemical, Nutraceutical, and Sensory Properties of Supplemented Muffins. Nutrients, 17(18), 2931. https://doi.org/10.3390/nu17182931