The Impact of the Alternate Mediterranean Diet (aMED) on the Prevention of Chronic Liver Disease: A Meta-Analysis of Observational Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. aMED Dietary Pattern Definition and Validation
2.3. Study Selection and Eligibility
2.4. Data Extraction
2.5. Literature Quality Assessment
2.6. Data Analysis
2.7. Pre-Analysis of Heterogeneity Sources
3. Results
3.1. Study Screening and Characteristics
3.2. Quality Assessment
3.3. Risk Relationship of aMED for the Prevention of Chronic Liver Disease
3.4. Sensitivity Analysis
3.5. Meta-Regression
3.6. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seto, W.K.; Mandell, M.S. Chronic liver disease: Global perspectives and future challenges to delivering quality health care. PLoS ONE 2021, 16, e0243607. [Google Scholar] [CrossRef]
- Manikat, R.; Ahmed, A.; Kim, D. Current epidemiology of chronic liver disease. Gastroenterol. Rep. 2024, 12, goae069. [Google Scholar] [CrossRef]
- Singal, A.K. Alcohol-Associated Liver Disease: Treatment and Prevention. Clin. Liver Dis. 2024, 28, xvii–xix. [Google Scholar] [CrossRef]
- Zeng, X.F.; Varady, K.A.; Wang, X.D.; Targher, G.; Byrne, C.D.; Tayyem, R.; Latella, G.; Bergheim, I.; Valenzuela, R.; George, J.; et al. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metab. Clin. Exp. 2024, 161, 156028. [Google Scholar] [CrossRef]
- Berumen, J.; Baglieri, J.; Kisseleva, T.; Mekeel, K. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech. Dis. 2021, 13, e1499. [Google Scholar] [CrossRef] [PubMed]
- Aller de la Fuente, R. Nutrition and Chronic Liver Disease. Clin. Drug Investig. 2022, 42, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Brunner, K.T.; Henneberg, C.J.; Wilechansky, R.M.; Long, M.T. Nonalcoholic Fatty Liver Disease and Obesity Treatment. Curr. Obes. Rep. 2019, 8, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Takegoshi, K.; Honda, M.; Okada, H.; Takabatake, R.; Matsuzawa-Nagata, N.; Campbell, J.S.; Nishikawa, M.; Shimakami, T.; Shirasaki, T.; Sakai, Y.; et al. Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget 2017, 8, 18191–18205. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, L.; Pan, H.; Zhang, Y. Retinoid X receptor heterodimers in hepatic function: Structural insights and therapeutic potential. Front. Pharmacol. 2024, 15, 1464655. [Google Scholar] [CrossRef]
- Song, J.; Jiang, Z.G. Low vitamin A levels are associated with liver-related mortality: A nationally representative cohort study. Hepatol. Commun. 2023, 7, e0124. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W.; Zeng, L.Q.; Bai, H.; Li, J.; Zhou, J.; Zhou, G.Y.; Fang, C.W.; Wang, F.; Qin, X.J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020, 36, 101635. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Zarrin, V.; Moghadam, E.R.; Hashemi, F.; Makvandi, P.; Samarghandian, S.; Khan, H.; Hashemi, F.; et al. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front. Pharmacol. 2020, 11, 585413. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, R.; Zhan, Y.; Zheng, J. Resveratrol Inhibits Hepatic Stellate Cell Activation via the Hippo Pathway. Mediat. Inflamm. 2021, 2021, 3399357. [Google Scholar] [CrossRef]
- Clugston, R.D. Carotenoids and fatty liver disease: Current knowledge and research gaps. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158597. [Google Scholar] [CrossRef] [PubMed]
- Stice, C.P.; Xia, H.; Wang, X.D. Tomato lycopene prevention of alcoholic fatty liver disease and hepatocellular carcinoma development. Chronic Dis. Transl. Med. 2018, 4, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Nishino, A.; Maoka, T.; Yasui, H. Preventive Effects of β-Cryptoxanthin, a Potent Antioxidant and Provitamin A Carotenoid, on Lifestyle-Related Diseases-A Central Focus on Its Effects on Non-Alcoholic Fatty Liver Disease (NAFLD). Antioxidants 2021, 11, 43. [Google Scholar] [CrossRef]
- Kim, M.N.; Lo, C.H.; Corey, K.E.; Luo, X.; Long, L.; Zhang, X.; Chan, A.T.; Simon, T.G. Red meat consumption, obesity, and the risk of nonalcoholic fatty liver disease among women: Evidence from mediation analysis. Clin. Nutr. 2022, 41, 356–364. [Google Scholar] [CrossRef]
- Shan, L.; Wang, F.; Zhai, D.; Meng, X.; Liu, J.; Lv, X. Caffeine in liver diseases: Pharmacology and toxicology. Front. Pharmacol. 2022, 13, 1030173. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Fan, H.; Yu, Y.; Luo, Y.; Gu, F.; Yu, H.; Liao, X. Blueberry anthocyanins improve liver fibrosis by regulating NCOA4 ubiquitination through TRIM7 to affect ferroptosis of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2024, 326, G426–G437. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Baecker, A.; Wu, M.; Zhou, J.Y.; Yang, J.; Han, R.Q.; Wang, P.H.; Liu, A.M.; Gu, X.; Zhang, X.F.; et al. Raw Garlic Consumption and Risk of Liver Cancer: A Population-Based Case-Control Study in Eastern China. Nutrients 2019, 11, 2038. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Rahmani, A.H. Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways. Anti-Cancer Agents Med. Chem. 2019, 19, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; Li, Y.; Luo, B.; Lin, Z.; Chen, K.; Liu, Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm 2023, 4, e212. [Google Scholar] [CrossRef]
- Steck, S.E.; Murphy, E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer 2020, 20, 125–138. [Google Scholar] [CrossRef]
- Lu, P.Y.; Shu, L.; Shen, S.S.; Chen, X.J.; Zhang, X.Y. Dietary Patterns and Pancreatic Cancer Risk: A Meta-Analysis. Nutrients 2017, 9, 38. [Google Scholar] [CrossRef]
- Zhao, L.; Kase, B.; Zheng, J.; Steck, S.E. Dietary Patterns and Risk of Lung Cancer: A Systematic Review and Meta-Analyses of Observational Studies. Curr. Nutr. Rep. 2023, 12, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.L.; Shu, L.; Zheng, P.F.; Zhang, X.Y.; Si, C.J.; Yu, X.L.; Gao, W.; Zhang, L. Dietary patterns and colorectal cancer risk: A meta-analysis. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. (ECP) 2017, 26, 201–211. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.A.; Blanco, S.; Mejia; Mirrahimi, A.; Jenkins, D.J.A.; Livesey, G.; et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ 2021, 374, n1651. [Google Scholar] [CrossRef]
- Toi, P.L.; Anothaisintawee, T.; Chaikledkaew, U.; Briones, J.R.; Reutrakul, S.; Thakkinstian, A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients 2020, 12, 2722. [Google Scholar] [CrossRef]
- Muñoz Fernández, S.S.; Lima Ribeiro, S.M. Nutrition and Alzheimer Disease. Clin. Geriatr. Med. 2018, 34, 677–697. [Google Scholar] [CrossRef]
- Ellouze, I.; Sheffler, J.; Nagpal, R.; Arjmandi, B. Dietary Patterns and Alzheimer’s Disease: An Updated Review Linking Nutrition to Neuroscience. Nutrients 2023, 15, 3204. [Google Scholar] [CrossRef] [PubMed]
- Śliwińska, S.; Jeziorek, M. The role of nutrition in Alzheimer’s disease. Rocz. Panstw. Zakl. Hig. 2021, 72, 29–39. [Google Scholar] [CrossRef]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef]
- Picone, P.; Girgenti, A.; Buttacavoli, M.; Nuzzo, D. Enriching the Mediterranean diet could nourish the brain more effectively. Front. Nutr. 2024, 11, 1489489. [Google Scholar] [CrossRef]
- Zeraattalab-Motlagh, S.; Jayedi, A.; Shab-Bidar, S. Mediterranean dietary pattern and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2022, 61, 1735–1748. [Google Scholar] [CrossRef]
- Agarwal, S.; Fulgoni, V.L., 3rd; Jacques, P.F. Association of 100% Fruit Juice Consumption with Cognitive Measures, Anxiety, and Depression in US Adults. Nutrients 2022, 14, 4827. [Google Scholar] [CrossRef]
- Mori, K.; Akiyama, Y.; Tanaka, M.; Sato, T.; Endo, K.; Hosaka, I.; Hanawa, N.; Sakamoto, N.; Furuhashi, M. Deciphering metabolic dysfunction-associated steatotic liver disease: Insights from predictive modeling and clustering analysis. J. Gastroenterol. Hepatol. 2024, 39, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, X.; Hao, X.; Wang, T.; Wu, P.; Shen, L.; Yang, Y.; Wan, W.; Zhang, K. Association of dietary quality and mortality in the non-alcoholic fatty liver disease and advanced fibrosis populations: NHANES 2005–2018. Front. Nutr. 2025, 12, 1507342. [Google Scholar] [CrossRef]
- Huang, X.; Gan, D.; Fan, Y.; Fu, Q.; He, C.; Liu, W.; Li, F.; Ma, L.; Wang, M.; Zhang, W. The Associations between Healthy Eating Patterns and Risk of Metabolic Dysfunction-Associated Steatotic Liver Disease: A Case-Control Study. Nutrients 2024, 16, 1956. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, J.; Cao, H.; Han, X.; Lu, Y.; Jiang, F.; Li, X.; Sun, J.; Zhou, S.; Sun, Z.; et al. Dietary patterns in the progression of metabolic dysfunction-associated fatty liver disease to advanced liver disease: A prospective cohort study. Am. J. Clin. Nutr. 2024, 120, 518–527. [Google Scholar] [CrossRef]
- Heredia, N.I.; Thrift, A.P.; Ramsey, D.J.; Loomba, R.; El-Serag, H.B. Association of Diet Quality with Metabolic (Dysfunction) Associated Fatty Liver Disease in Veterans in Primary Care. Nutrients 2023, 15, 2598. [Google Scholar] [CrossRef]
- Zhou, K.; Lim, T.; Dodge, J.L.; Terrault, N.A.; Wilkens, L.R.; Setiawan, V.W. Population-attributable risk of modifiable lifestyle factors to hepatocellular carcinoma: The multi-ethnic cohort. Aliment. Pharmacol. Ther. 2023, 58, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Guo, B.; Xiao, X.; Yin, J.; Wang, Z.; Jiang, X.; Li, J.; Long, L.; Zhou, J.; Zhang, N.; et al. Healthy dietary patterns and metabolic dysfunction-associated fatty liver disease in less-developed ethnic minority regions: A large cross-sectional study. BMC Public Health 2022, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Neelakantan, N.; Geng, T.T.; Wang, R.; Goh, G.B.; Clemente, J.C.; Jin, A.; van Dam, R.M.; Jia, W.; Behari, J.; et al. Quality diet indexes and risk of hepatocellular carcinoma: Findings from the Singapore Chinese Health Study. Int. J. Cancer 2021, 148, 2102–2114. [Google Scholar] [CrossRef]
- Park, S.Y.; Noureddin, M.; Boushey, C.; Wilkens, L.R.; Setiawan, V.W. Diet Quality Association with Nonalcoholic Fatty Liver Disease by Cirrhosis Status: The Multiethnic Cohort. Curr. Dev. Nutr. 2020, 4, nzaa024. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, W.; Simon, T.G.; Smith-Warner, S.A.; Fung, T.T.; Sui, J.; Chong, D.; VoPham, T.; Meyerhardt, J.A.; Wen, D.; et al. Dietary Patterns and Risk of Hepatocellular Carcinoma Among U.S. Men and Women. Hepatology 2019, 70, 577–586. [Google Scholar] [CrossRef]
- Bogumil, D.; Park, S.Y.; Le Marchand, L.; Haiman, C.A.; Wilkens, L.R.; Boushey, C.J.; Setiawan, V.W. High-Quality Diets Are Associated With Reduced Risk of Hepatocellular Carcinoma and Chronic Liver Disease: The Multiethnic Cohort. Hepatol. Commun. 2019, 3, 437–447. [Google Scholar] [CrossRef]
- Maskarinec, G.; Lim, U.; Jacobs, S.; Monroe, K.R.; Ernst, T.; Buchthal, S.D.; Shepherd, J.A.; Wilkens, L.R.; Le Marchand, L.; Boushey, C.J. Diet Quality in Midadulthood Predicts Visceral Adiposity and Liver Fatness in Older Ages: The Multiethnic Cohort Study. Obesity 2017, 25, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Park, Y.; McGlynn, K.A.; Hollenbeck, A.R.; Taylor, P.R.; Goldstein, A.M.; Freedman, N.D. Index-based dietary patterns and risk of incident hepatocellular carcinoma and mortality from chronic liver disease in a prospective study. Hepatology 2014, 60, 588–597. [Google Scholar] [CrossRef]
- Hutchins-Wiese, H.L.; Bales, C.W.; Porter Starr, K.N. Mediterranean diet scoring systems: Understanding the evolution and applications for Mediterranean and non-Mediterranean countries. Br. J. Nutr. 2022, 128, 1371–1392. [Google Scholar] [CrossRef]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yue, Y.; Yuan, C.; Wang, D.D.; Wang, M.; Song, M.; Shan, Z.; Hu, F.; Rosner, B.; Smith-Warner, S.A.; Willett, W.C. Reproducibility and validity of diet quality scores derived from food-frequency questionnaires. Am. J. Clin. Nutr. 2022, 115, 843–853. [Google Scholar] [CrossRef]
- He, Y.; Yang, Y.; Cheng, P.; Zhang, W.; Jia, J.; Ye, D.; Wang, J. Association Between Dietary Inflammatory Index and NAFLD: A Cross-Sectional Study of the National Health and Nutrition Examination Survey. Mediat. Inflamm. 2025, 2025, 4954551. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver, European Association for the Study of Diabetes (EASD). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Govaere, O.; Petersen, S.K.; Martinez-Lopez, N.; Wouters, J.; Van Haele, M.; Mancina, R.M.; Jamialahmadi, O.; Bilkei-Gorzo, O.; Lassen, P.B.; Darlay, R.; et al. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. J. Hepatol. 2022, 76, 1001–1012. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, X.; Zeng, M.; Qi, L.; Tang, X.; Wang, D.; Zhang, M.; Xie, Y.; Li, H.; Yang, X.; et al. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl. Psychiatry 2021, 11, 328. [Google Scholar] [CrossRef]
- Huang, H.C.; Lee, P.N.; Huang, W.C.; Yang, H.Y. Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease. Nutrients 2023, 15, 4375. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 2009, 28, 500s–516s. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Negrete, E.V.; Morales-González, Á.; Madrigal-Santillán, E.O.; Sánchez-Reyes, K.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Valadez-Vega, C.; Chamorro-Cevallos, G.; Garcia-Melo, L.F.; Morales-González, J.A. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants 2024, 13, 523. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, X.; Yuen, M.; Yuen, T.; Yuen, H.; Wang, M.; Smith, D.; Peng, Q. Effects of Ball Milling Combined With Cellulase Treatment on Physicochemical Properties and in vitro Hypoglycemic Ability of Sea Buckthorn Seed Meal Insoluble Dietary Fiber. Front. Nutr. 2021, 8, 820672. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Cheng, D.C.; Cao, Y.N.; Su, Y.; Chen, L.; Liu, W.Y.; Yu, Y.X.; Xu, X.M. The effect of dietary fiber supplement on prevention of gestational diabetes mellitus in women with pre-pregnancy overweight/obesity: A randomized controlled trial. Front. Pharmacol. 2022, 13, 922015. [Google Scholar] [CrossRef]
- Margolis, L.M.; Rivas, D.A.; Ezzyat, Y.; Gaffney-Stomberg, E.; Young, A.J.; McClung, J.P.; Fielding, R.A.; Pasiakos, S.M. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats. Nutrients 2016, 8, 571. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, Z.; Yu, L.; Chen, K.; Xie, Y.; Liu, Y.; Liang, W.; Zheng, Y.; Zhan, Y.; et al. The interplay of transcriptional coregulator NUPR1 with SREBP1 promotes hepatocellular carcinoma progression via upregulation of lipogenesis. Cell Death Discov. 2022, 8, 431. [Google Scholar] [CrossRef]
- Adeola, O.L.; Agudosi, G.M.; Akueme, N.T.; Okobi, O.E.; Akinyemi, F.B.; Ononiwu, U.O.; Akunne, H.S.; Akinboro, M.K.; Ogbeifun, O.E.; Okeaya-Inneh, M. The Effectiveness of Nutritional Strategies in the Treatment and Management of Obesity: A Systematic Review. Cureus 2023, 15, e45518. [Google Scholar] [CrossRef]
- Barania Adabi, S.; Daneghian, S.; Khalkhali, H.; Nejadrahim, R.; Shivappa, N. The association between inflammatory and immune system biomarkers and the dietary inflammatory index in patients with COVID-19. Front. Nutr. 2023, 10, 1075061. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Lee, Y.J.; Baek, S.M.; Kang, K.K.; Kim, T.U.; Yim, J.H.; Kim, H.Y.; Han, S.H.; Choi, S.K.; Park, S.J.; et al. Mega-Dose Vitamin C Ameliorates Nonalcoholic Fatty Liver Disease in a Mouse Fast-Food Diet Model. Nutrients 2022, 14, 2195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Wei, M.; Zhu, K.; Wang, X.; Zhao, Y.; Shi, J.; Liu, Z. Global burden of TBL cancer in older adults: The role of dietary factors (1990–2021). BMC Public Health 2025, 25, 1436. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, L.; Wang, S.; Wang, Y.; Zhou, Y.; Li, Y.; Cheng, Z.; Wang, Y.; Jiang, Y.; Zhao, Z.; et al. Effects of Prunus Tomentosa Thumb Total Flavones on adjuvant arthritis in rats and regulation of autophagy. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2023, 31, 123–136. [Google Scholar] [CrossRef]
- Sharma, M.; Kaur, R.; Kaushik, K.; Kaushal, N. Redox modulatory protective effects of ω-3 fatty acids rich fish oil against experimental colitis. Toxicol. Mech. Methods 2019, 29, 244–254. [Google Scholar] [CrossRef]
- Zhuang, C.; Yuan, J.; Du, Y.; Zeng, J.; Sun, Y.; Wu, Y.; Gao, X.H.; Chen, H.D. Effects of Oral Carotenoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Studies in the Recent 20 Years. Front. Nutr. 2022, 9, 754707. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, X.; Wang, Q.; Li, F.; Yang, J.; Zhu, X.; Wang, J.; Bo, J. Causal Association Between 12 Micronutrients and Common Chronic Respiratory Diseases: A Bidirectional Two-Sample Mendelian Randomization Study. Genet. Res. 2025, 2025, 7575005. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidou, Y.; Wood, C.; Ferrier, C.; Dolci, A.; Elliott, B. The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2021, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Meital, L.T.; Windsor, M.T.; Perissiou, M.; Schulze, K.; Magee, R.; Kuballa, A.; Golledge, J.; Bailey, T.G.; Askew, C.D.; Russell, F.D. Omega-3 fatty acids decrease oxidative stress and inflammation in macrophages from patients with small abdominal aortic aneurysm. Sci. Rep. 2019, 9, 12978. [Google Scholar] [CrossRef]
- Martins, F.O.; Conde, S.V. Impact of Diet Composition on Insulin Resistance. Nutrients 2022, 14, 3716. [Google Scholar] [CrossRef]
- Skeie, G.; Fadnes, L.T. Cereals and cereal products—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2024, 68, 10457. [Google Scholar] [CrossRef]
- Liang, J.; Wen, Y.; Yin, J.; Zhu, G.; Wang, T. Utilization of plant-based foods for effective prevention of chronic diseases: A longitudinal cohort study. npj Sci. Food 2024, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Vallazhath, A.; Thimmappa, P.Y.; Joshi, H.B.; Hebbar, K.R.; Nayak, A.; Umakanth, S.; Saoji, A.A.; Manjunath, N.K.; Hadapad, B.S.; Joshi, M.B. A comprehensive review on the implications of Yogic/Sattvic diet in reducing inflammation in type 2 diabetes. Nutr. Diabetes 2025, 15, 14. [Google Scholar] [CrossRef]
- Smoak, P.; Burke, S.J.; Collier, J.J. Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy. SN Compr. Clin. Med. 2021, 3, 2465–2491. [Google Scholar] [CrossRef]
- Chen, S.; Li, B.; Chen, L.; Jiang, H. Identification and validation of immune-related biomarkers and potential regulators and therapeutic targets for diabetic kidney disease. BMC Med. Genom. 2023, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.H.; Neelakantan, N.; Lee, Y.Q.; Park, S.H.; Kor, Z.H.; van Dam, R.M.; Chong, M.F.; Chia, A. Dietary Patterns and Cardiovascular Diseases in Asia: A Systematic Review and Meta-Analysis. Adv. Nutr. 2024, 15, 100249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, W.; Zhang, L.; Wang, M.; Chang, W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients 2022, 14, 5373. [Google Scholar] [CrossRef]
- Jahić Mujkić, A.; Tušek Žnidarič, M.; Berbić, S.; Žerovnik, E. Synergy of the Inhibitory Action of Polyphenols Plus Vitamin C on Amyloid Fibril Formation: Case Study of Human Stefin B. Antioxidants 2021, 10, 1471. [Google Scholar] [CrossRef]
- Guo, X.F.; Wang, C.; Yang, T.; Ma, W.J.; Zhai, J.; Zhao, T.; Xu, T.C.; Li, J.; Liu, H.; Sinclair, A.J.; et al. The effects of fish oil plus vitamin D(3) intervention on non-alcoholic fatty liver disease: A randomized controlled trial. Eur. J. Nutr. 2022, 61, 1931–1942. [Google Scholar] [CrossRef]
- Chen, H.K.; Lan, Q.W.; Li, Y.J.; Xin, Q.; Luo, R.Q.; Wang, J.J. Association between Dietary Potassium Intake and Nonalcoholic Fatty Liver Disease and Advanced Hepatic Fibrosis in U.S. Adults. Int. J. Endocrinol. 2024, 2024, 5588104. [Google Scholar] [CrossRef] [PubMed]
Study | Disease | Location | Specific Countries | Study Design | Sample Size | Adjustment Variables | NOS Score |
---|---|---|---|---|---|---|---|
Huang et al. (2025) [38] | NAFLD, MASLD | North America | USA | cross-sectional | 70,190 | age, sex, race, BMI, hypertension, and diabetes | 7 |
Huang et al. (2024) [39] | MAFLD, MASLD | Asia | China | case–control | 456 | age, education level, monthly household income, marriage, physical activity, smoking, and total energy intake | 8 |
Li et al. (2024) [40] | chronic liver disease, liver-related death, liver cancer, hepatocellular carcinoma | Europe | UK | cohort | 459,502 | age, sex, race, education, BMI grade, smoking status, hypertension, diabetes, TG, TC, and HDL-C | 8 |
Heredia et al. (2023) [41] | MAFLD, MASLD, moderate fibrosis, fibrosis | North America | USA | cross-sectional | 187 | age, sex, BMI, and kcal | 7 |
Zhou et al. (2023) [42] | hepatocellular carcinoma, liver cancer | Asia | China | cohort | 181,346 | age, sex, race/ethnicity, education, diabetes, and hypertension | 8 |
Xie et al. (2022) [43] | MAFLD, MASLD | Asia | China | cohort | 66,526 | age, sex, urbanicity, ethnicity, marital status, highest education attained, household income, profession, regular smoking, physical activity in metabolic equivalent tasks, total energy intake, regular intake of sweetened beverages, regular intake of dietary supplements, regular intake of spicy food, regular intake of pepper, insomnia symptoms, depressive symptoms, anxiety symptoms, menopause status for women, family history of cardiometabolic diseases, and BMI (models for DASH were additionally adjusted for alcohol intake) | 7 |
Luu et al. (2021) [44] | hepatocellular carcinoma, liver cancer | Asia | China | cohort, case–control | 91,603 | age, sex, dialect, year of enrollment, education level, smoking status, coffee drinking status, alcohol drinking status, total energy intake, BMI, and diabetes status | 8 |
Park et al. (2020) [45] | NAFLD, MASLD | North America | USA | cohort | 5888 | birth year, sex, race/ethnicity, length of Medicare enrollment, BMI, physical activity, total energy intake, and coffee consumption | 9 |
Ma et al. (2019) [46] | hepatocellular carcinoma, liver cancer | North America | USA | cohort | 173,229 | age, race, cohort, physical activity level, body mass index, smoking, regular aspirin use, alcohol intake, total calorie intake, and type 2 diabetes | 8 |
Bogumil et al. (2019) [47] | hepatocellular carcinoma, liver cancer | North America | USA | cohort | 215,000 | age at cohort entry, sex, race/ethnicity, BMI, history of diabetes, smoking status, and total energy | 8 |
Maskarinec et al. (2017) [48] | NAFLD, MASLD | North America | USA | cohort | 21,500 | sex, age, ethnicity, total energy intake at cohort entry, and physical activity at cohort entry | 8 |
Li et al. (2014) [49] | chronic liver disease | North America | USA | cohort | 1053 | age, sex, race, smoking, alcohol intake, education, BMI, diabetes, usual activity throughout the day, vigorous physical activity, and total energy intake | 7 |
No. of Studies | OR (95% CI) | I2 | |
---|---|---|---|
Disease Type | |||
MASLD | 6 | 0.86 (0.75, 0.99) | 66.0% |
liver cancer | 7 | 0.69 (0.60, 0.79) | 0.0% |
chronic liver disease | 6 | 0.52 (0.46, 0.58) | 0.0% |
fibrosis | 1 | 0.48 (0.10, 2.29) | NA |
Geography | |||
Asia | 5 | 0.70 (0.53, 0.92) | 80.6% |
North America | 10 | 0.67 (0.54, 0.83) | 83.6% |
Europe | 5 | 0.54 (0.44, 0.66) | 0.0% |
Study Design | |||
cohort | 15 | 0.66 (0.55, 0.78) | 86.9% |
case–control | 2 | 0.47 (0.32, 0.69) | 0.0% |
cross-sectional | 3 | 0.81 (0.68, 0.96) | 0.0% |
Sample Size | |||
≥1000 | 3 | 0.50 (0.33, 0.76) | 0.0% |
<1000 | 17 | 0.66 (0.57, 0.77) | 85.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Sui, J.; Yin, H.; Zhao, Q.; Zhou, Y.; Xia, H. The Impact of the Alternate Mediterranean Diet (aMED) on the Prevention of Chronic Liver Disease: A Meta-Analysis of Observational Studies. Nutrients 2025, 17, 2914. https://doi.org/10.3390/nu17182914
Zhang L, Sui J, Yin H, Zhao Q, Zhou Y, Xia H. The Impact of the Alternate Mediterranean Diet (aMED) on the Prevention of Chronic Liver Disease: A Meta-Analysis of Observational Studies. Nutrients. 2025; 17(18):2914. https://doi.org/10.3390/nu17182914
Chicago/Turabian StyleZhang, Linjie, Jing Sui, Hanlin Yin, Qun Zhao, Yajie Zhou, and Hui Xia. 2025. "The Impact of the Alternate Mediterranean Diet (aMED) on the Prevention of Chronic Liver Disease: A Meta-Analysis of Observational Studies" Nutrients 17, no. 18: 2914. https://doi.org/10.3390/nu17182914
APA StyleZhang, L., Sui, J., Yin, H., Zhao, Q., Zhou, Y., & Xia, H. (2025). The Impact of the Alternate Mediterranean Diet (aMED) on the Prevention of Chronic Liver Disease: A Meta-Analysis of Observational Studies. Nutrients, 17(18), 2914. https://doi.org/10.3390/nu17182914