Caffeinated Energy Drink Formulations Differentially Impact Hydration Versus Water: Does Habitual Caffeine Intake or Biological Sex Matter?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Test Beverages
2.4. Test Protocol
2.5. Statistical Analysis
3. Results
3.1. Beverage Hydration Index (BHI)
3.2. Net Fluid Balance, Urine Mass and Fluid Retention
3.3. Urine Osmolality
3.4. Thirst Rating
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2005; p. 638. [Google Scholar]
- Nissensohn, M.; Castro-Quezada, I.; Serra-Majem, L. Beverage and water intake of healthy adults in some European countries. Int. J. Food Sci. Nutr. 2013, 64, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.; Owen, J.; Shirreffs, S.; Leiper, J. Post-exercise rehydration in man: Effects of electrolyte addition to ingested fluids. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 209–221. [Google Scholar] [CrossRef]
- Shirreffs, S.M.; Taylor, A.J.; Leiper, J.B.; Maughan, R.J. Post-exercise rehydration in man: Effects of volume consumed and drink sodium content. Med. Sci. Sports Exerc. 1996, 28, 1260–1271. [Google Scholar] [CrossRef]
- Ray, M.L.; Bryan, M.W.; Ruden, T.M.; Baier, S.M.; Sharp, R.L.; King, D.S. Effect of sodium in a rehydration beverage when consumed as a fluid or meal. J. Appl. Physiol. 1998, 85, 1329–1336. [Google Scholar] [CrossRef]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, K.L.; Pallardy, S.E.; Johnson, R.J.; Horswill, C.A. Carbohydrate exerts a mild influence on fluid retention following exercise-induced dehydration. J. Appl. Physiol. 2010, 108, 245–250. [Google Scholar] [CrossRef]
- Maughan, R.J.; Leiper, J.B.; Shirreffs, S.M. Restoration of fluid balance after exercise-induced dehydration: Effects of food and fluid intake. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 317–325. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef]
- Maughan, R.J.; Watson, P.; Cordery, P.A.; Walsh, N.P.; Oliver, S.J.; Dolci, A.; Rodriguez-Sanchez, N.; Galloway, S.D. A randomized trial to assess the potential of different beverages to affect hydration status: Development of a beverage hydration index. Am. J. Clin. Nutr. 2016, 103, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Watson, P.; Cordery, P.A.A.; Walsh, N.P.; Oliver, S.J.; Dolci, A.; Rodriguez-Sanchez, N.; Galloway, S.D.R. Sucrose and Sodium but not Caffeine Content Influence the Retention of Beverages in Humans Under Euhydrated Conditions. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 51–60. [Google Scholar] [CrossRef]
- Maughan, R.J.; Griffin, J. Caffeine ingestion and fluid balance: A review. J. Hum. Nutr. Diet. 2003, 16, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Marx, B.; Scuvée, É.; Scuvée-Moreau, J.; Seutin, V.; Jouret, F. Mechanisms of caffeine-induced diuresis. Med. Sci. 2016, 32, 485–490. [Google Scholar] [CrossRef]
- Armstrong, L.E. Caffeine, body fluid-electrolyte balance, and exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 189–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Coca, A.; Casa, D.J.; Antonio, J.; Green, J.M.; Bishop, P.A. Caffeine and diuresis during rest and exercise: A meta-analysis. J. Sci. Med. Sport 2015, 18, 569–574. [Google Scholar] [CrossRef]
- Sollanek, K.J.; Tsurumoto, M.; Vidyasagar, S.; Kenefick, R.W.; Cheuvront, S.N. Neither body mass nor sex influences beverage hydration index outcomes during randomized trial when comparing 3 commercial beverages. Am. J. Clin. Nutr. 2018, 107, 544–549. [Google Scholar] [CrossRef]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the Ergogenic Effect of Caffeine in Athletes Who Regularly Consume Caffeine: Is It Due to the Disparity in the Criteria That Defines Habitual Caffeine Intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef]
- Penna, E.M.; Harp, A.; Hack, B.; Talik, T.N.; Millard-Stafford, M. Guarana (Paullinia cupana) but Not Low-Dose Caffeine Improves Cycling Time-Trial Performance Versus Placebo. Int. J. Sport Nutr. Exerc. Metab. 2024, 34, 30–37. [Google Scholar] [CrossRef]
- Watson, E.J.; Kohler, M.; Banks, S.; Coates, A.M. Validation and reproducibility of an Australian caffeine food frequency questionnaire. Int. J. Food Sci. Nutr. 2017, 68, 617–626. [Google Scholar] [CrossRef] [PubMed]
- McCusker, R.R.; Goldberger, B.A.; Cone, E.J. Caffeine content of specialty coffees. J. Anal. Toxicol. 2003, 27, 520–522. [Google Scholar] [CrossRef]
- McCusker, R.R.; Goldberger, B.A.; Cone, E.J. Caffeine content of energy drinks, carbonated sodas, and other beverages. J. Anal. Toxicol. 2006, 30, 112–114. [Google Scholar] [CrossRef]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109, 585–648. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–181. [Google Scholar] [CrossRef]
- Wang, Z.; Deurenberg, P.; Wang, W.; Pietrobelli, A.; Baumgartner, R.N.; Heymsfield, S.B. Hydration of fat-free body mass: Review and critique of a classic body-composition constant. Am. J. Clin. Nutr. 1999, 69, 833–841. [Google Scholar] [CrossRef]
- World Health Organization. Reduced Osmolarity: Oral Rehydration Salts (ORS) Formulation: A Report from a Meeting of Experts Jointly Organised by UNICEF and WHO; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Atia, A.N.; Buchman, A.L. Oral rehydration solutions in non-cholera diarrhea: A review. Am. J. Gastroenterol. 2009, 104, 2596–2604; quiz 2605. [Google Scholar] [CrossRef]
- Pence, J.; Bloomer, R.J. Impact of Nuun Electrolyte Tablets on Fluid Balance in Active Men and Women. Nutrients 2020, 12, 3030. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Snow, T.K.; Jones, M.L.; Suh, H. The Beverage Hydration Index: Influence of Electrolytes, Carbohydrate and Protein. Nutrients 2021, 13, 2933. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Siedler, M.R.; Rodriguez, C.; Harty, P.S.; Stratton, M.T.; White, S.J.; Keith, D.S.; Green, J.J.; Boykin, J.R.; Williams, A.D.; et al. Evaluation of novel beverage formulations for hydration enhancement in humans. J. Electr. Bioimpedance 2023, 14, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.M.; Stanhewicz, A.E.; Wolf, S.T.; Cheuvront, S.N.; Kenefick, R.W.; Kenney, W.L. A randomized trial to assess beverage hydration index in healthy older adults. Am. J. Clin. Nutr. 2019, 109, 1640–1647. [Google Scholar] [CrossRef]
- Stachenfeld, N.S. Sex hormone effects on body fluid regulation. Exerc. Sport Sci. Rev. 2008, 36, 152–159. [Google Scholar] [CrossRef]
- Stachenfeld, N.S.; Silva, C.; Keefe, D.L.; Kokoszka, C.A.; Nadel, E.R. Effects of oral contraceptives on body fluid regulation. J. Appl. Physiol. 1999, 87, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, D.R.; Todd, E.L. Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur. J. Clin. Pharmacol. 1985, 28, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.D.; Steege, J.F.; Rupp, S.L.; Kuhn, C.M. Menstrual cycle effects on caffeine elimination in the human female. Eur. J. Clin. Pharmacol. 1992, 43, 543–546. [Google Scholar] [CrossRef]
- Rodriguez-Giustiniani, P.; Rodriguez-Sanchez, N.; Galloway, S.D.R. Fluid and electrolyte balance considerations for female athletes. Eur. J. Sport Sci. 2022, 22, 697–708. [Google Scholar] [CrossRef]
- Mahoney, C.R.; Giles, G.E.; Marriott, B.P.; Judelson, D.A.; Glickman, E.L.; Geiselman, P.J.; Lieberman, H.R. Intake of caffeine from all sources and reasons for use by college students. Clin. Nutr. 2019, 38, 668–675. [Google Scholar] [CrossRef] [PubMed]
Men (n = 14) | Women (n = 14) | Total (N = 28) | |
---|---|---|---|
Age (yr) | 23.9 ± 3.7 | 21.3 ± 2.4 | 22.6 ± 3.3 |
Height (cm) | 181.1 ± 7.6 * | 164.6 ± 6.7 | 172.8 ± 10.9 |
Mass (kg) | 75.8 ± 9.2 * | 61.0 ± 7.4 | 68.4 ± 11.1 |
% Body Fat—Skinfold | 11.4 ± 5.0 * | 21.2 ± 4.3 | 16.3 ± 6.7 |
Body Mass Index | 23.1 ± 2.3 | 22.5 ± 2.1 | 22.8 ± 2.2 |
Fat Free Mass (kg)—Skinfold | 67.1 ± 7.9 * | 48.0 ± 5.6 | 57.6 ± 11.8 |
Total Body Water (kg)—Skinfold | 50.5 ± 5.9 * | 36.9 ± 4.2 | 43.7 ± 8.6 |
Total Body Water (kg)—InBody | 47.5 ± 6.3 * | 32.9 ± 5.0 | 40.2 ± 9.3 |
Beverage | Osmolality (mOsm) | Sodium (mmol) | Potassium (mmol) | Carbohydrate (gm/500 mL) | Caffeine (mg/500 mL) |
---|---|---|---|---|---|
Water | 2.5 ± 0.8 | 0.5 ± 0.0 | 0.1 ± 0.0 | 0 | 0 |
CAF | 98.3 ± 3.6 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0 | 280 |
CAF + E | 139.9 ± 4.4 | 8.1 ± 0.8 | 10.4 ± 1.0 | 4 | 280 |
CAF + CE | 225.3 ± 3.8 | 44.7 ± 2.5 | 18.0 ± 1.2 | 12 | 106 |
Nutrient | WAT | CAF | CAF + E | CAF + CE |
---|---|---|---|---|
Water (g) | 4103 ± 1585 | 4088 ± 1682 | 4140 ± 1592 | 4316 ± 1701 |
Energy (kcal) | 2324 ± 899 | 2428 ± 724 | 2384 ± 926 | 2249 ± 686 |
Sodium (mg) | 2617 ± 1375 | 3475 ± 1693 | 3144 ± 1694 | 3040 ± 1808 |
Protein (g) | 120 ± 67 | 116 ± 46 | 127 ± 81 | 119 ± 58 |
Carbohydrate (g) | 284 ± 108 | 276 ± 82 | 287 ± 116 | 264 ± 80 |
Time (min) | Water | CAF + CE | CAF | CAF + E |
---|---|---|---|---|
60 | 22.2 ± 3.9 † | 15.1 ± 21.8 * | 1.4 ± 20.0 | 3.0 ± 28.9 |
90 | −1.8 ±25.9 * | −8.9 ± 19.1 * | −25.4 ± 17.7 | −23.7 ± 27.1 |
120 | −18.7 ± 24.5 * | −22.6± 17.5 * | −40.5 ± 17.1 | −37.2 ± 25.4 |
180 | −36.3 ± 3.7 * | −36.6± 17.3 * | −59.0 ± 18.2 | −53.4 ± 25.4 |
240 | −48.2 ±3.8 * | −46.4 ±18.8 * | −71.2 ± 21.5 | −65.1 ± 26.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millard-Stafford, M.; Hack, B.; Harp, A.; Smith, E. Caffeinated Energy Drink Formulations Differentially Impact Hydration Versus Water: Does Habitual Caffeine Intake or Biological Sex Matter? Nutrients 2025, 17, 2913. https://doi.org/10.3390/nu17182913
Millard-Stafford M, Hack B, Harp A, Smith E. Caffeinated Energy Drink Formulations Differentially Impact Hydration Versus Water: Does Habitual Caffeine Intake or Biological Sex Matter? Nutrients. 2025; 17(18):2913. https://doi.org/10.3390/nu17182913
Chicago/Turabian StyleMillard-Stafford, Melinda, Brian Hack, Alec Harp, and Ella Smith. 2025. "Caffeinated Energy Drink Formulations Differentially Impact Hydration Versus Water: Does Habitual Caffeine Intake or Biological Sex Matter?" Nutrients 17, no. 18: 2913. https://doi.org/10.3390/nu17182913
APA StyleMillard-Stafford, M., Hack, B., Harp, A., & Smith, E. (2025). Caffeinated Energy Drink Formulations Differentially Impact Hydration Versus Water: Does Habitual Caffeine Intake or Biological Sex Matter? Nutrients, 17(18), 2913. https://doi.org/10.3390/nu17182913