Exploring the Lifestyle and Dietary Patterns of Food Supplement and Non-Food Supplement Users: A Cross-Sectional Study in the Portuguese Population
Highlights
- Food supplement (FS) users in Portugal are not compensating for poor diets, instead, they are individuals with already healthier lifestyles.
- FS users consistently show more health-orientated behaviours (higher physical activity, better nutrition knowledge, non-smoking), regardless of professional status.
- Nutritionists' recommendations are crucial to increasing the likelihood of FS use and healthier dietary patterns, underscoring their crucial role in public health.
- Pharmacists remain the main FS purchase channel; however, their limited knowledge reduces/lowers counselling quality.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection Tools
2.3. Sociodemographic Information
2.4. Dietary Habits Information
2.5. Attitudes Through Food Supplements and Health Information
2.6. Data Analysis
3. Results
4. Discussion
4.1. FS Use and Dietary–Lifestyle Patterns
4.2. FS Use and Healthy Attitudes
4.3. Pharmaceutical Perspective—FS Knowledge, Recommendation and Place of Purchase
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | HP 1 | nHP 2 | ||||||
---|---|---|---|---|---|---|---|---|
Total Sample | PSHD 3 | PnSLHD 4 | p | Total Sample | nPSHD 5 | nPnSLHD 6 | p | |
Place of residence n (%) | ||||||||
Village | 68 (22.6) | 40 (58.8) | 28 (41.2) | NS Chi2 = 2.8 | 298 (36.3) | 130 (33.4) | 168 (38.9) | NS Chi2 = 4.3 |
City < 20,000 inhabitants | 45 (15.0) | 26 (57.8) | 19 (42.2) | 84 (10.2) | 42 (10.8) | 42 (9.7) | ||
City (20,000–100,000) inhabitants | 85 (28.2) | 50 (58.8) | 35 (41.2) | 216 (26.3) | 100 (25.7) | 116 (26.9) | ||
City > 100,000 inhabitants | 103 (34.2) | 50 (48.5) | 53 (51.5) | 223 (27.2) | 117 (30.1) | 106 (24.5) | ||
Number of residents in the house n (%) | ||||||||
1 and 2 | 107 (35.6) | 60 (36.1) | 47 (34.8) | NS Chi2 = 0.6 | 189 (23.0) | 103 (26.5) | 86 (19.9) | NS Chi2 = 5.4 |
3 and 4 | 165 (54.8) | 92 (55.4) | 73 (54.1) | 535 (65.2) | 245 (63.0) | 290 (67.1) | ||
≥5 | 29 (9.6) | 14 (8.5) | 15 (11.1) | 97 (11.8) | 41 (10.5) | 56 (13.0) | ||
Educational level n (%) | ||||||||
Primary School | 4 (1.3) | 1 (0.6) | 3 (2.2) | NS Chi2 = 1.7 | 60 (7.3) | 24 (6.2) | 36 (8.3) | NS Chi2 = 5.9 |
High School | 2 (0.7) | 1 (0.6) | 1 (0.7) | 273 (33.3) | 125 (32.1) | 148 (34.3) | ||
University | 277 (92.0) | 153 (92.2) | 124 (91.9) | 456 (55.5) | 219 (56.3) | 237 (54.9) | ||
PhD | 18 (6.0) | 11 (6.6) | 7 (5.2) | 32 (3.9) | 21 (5.4) | 11 (2.5) | ||
Employment—full-time n (%) | ||||||||
Other | 15 (5.0) | 10 (6.0) | 5 (3.7) | NS Chi2 = 0.8 | 472 (57.5) | 208 (53.5) | 264 (61.1) | p < 0.05 Chi2 = 4.9 |
Full-time job | 286 (95.0) | 156 (94.0) | 130 (96.3) | 349 (42.5) | 181 (46.5) | 168 (38.9) | ||
Profession nutritionist n (%) | ||||||||
Nutritionist | 52 (17.3) | 48 (28.9) | 4 (3.0) | p < 0.001 Chi2 = 35.1 | 10 (1.2) | 6 (1.5) | 4 (0.9) | NS Chi2 = 0.6 |
Other | 249 (82.7) | 118 (71.1) | 131 (97.0) | 811 (98.8) | 383 (98.5) | 428 (99.1) | ||
Financial situation n (%) | ||||||||
Low class | 18 (6.0) | 9 (5.4) | 9 (6.7) | NS Chi2 = 1.8 | 91 (11.1) | 34 (8.7) | 57 (13.2) | NS Chi2 = 4.1 |
Middle class | 270 (89.7) | 152 (91.6) | 118 (87.4) | 716 (87.2) | 348 (89.5) | 368 (85.2) | ||
High class | 13 (4.3) | 5 (3.0) | 8 (5.9) | 14 (1.7) | 7 (1.8) | 7 (1.6) | ||
Quality of life | ||||||||
(Mean ± SD) (min–max) | 3.4 ± 0.8 (1.0–5.0) | 3.4 ± 0.8 (1.0–5.0) | 3.5 ± 0.9 (1.0–5.0) | NS | 3.3 ± 0.8 (1.0–5.0) | 3.4 ± 0.8 (1.0–5.0) | 3.2 ± 0.9 (1.0–5.0) | p < 0.001 |
n (%) | ||||||||
Modestly poor | 2 (0.7) | 1 (0.6) | 1 (0.8) | NS Chi2 = 3.3 | 9 (1.1) | 2 (0.5) | 7 (1.6) | p < 0.01 Chi2 = 13.6 |
Modestly | 32 (10.6) | 17 (10.2) | 15 (11.1) | 115 (14.0) | 40 (10.3) | 75 (17.4) | ||
Normally | 133 (44.2) | 81 (48.9) | 52 (38.5) | 382 (46.5) | 181 (46.5) | 201 (46.5) | ||
Relatively comfortably | 103 (34.2) | 51 (30.7) | 52 (38.5) | 251 (30.6) | 130 (33.4) | 121 (28.0) | ||
Very comfortably | 31 (10.3) | 16 (9.6) | 15 (11.1) | 64 (7.8) | 36 (9.3) | 28 (6.5) | ||
SES 7—quartiles n (%) | ||||||||
Low | 67 (22.3) | 38 (22.9) | 29 (21.5) | p < 0.01 Chi2 = 11.8 | 296 (36.1) | 118 (30.3) | 178 (41.2) | p < 0.01 Chi2 = 11.0 |
Average | 128 (42.5) | 83 (50.0) | 45 (33.3) | 269 (32.8) | 143 (36.8) | 126 (29.2) | ||
High | 106 (35.2) | 45 (27.1) | 61 (45.2) | 256 (31.1) | 128 (32.9) | 128 (29.6) | ||
SES 7—(Mean ± SD) (min–max) | 2.6 ± 1.1 (1.0–4.0) | 2.5 ± 1.0 (1.0–4.0) | 2.8 ± 1.1 (1.0–4.0) | p < 0.05 | 2.4 ± 1.2 (1.0–4.0) | 2.5 ± 1.1 (1.0–4.0) | 2.3 ± 1.2 (1.0–4.0) | p < 0.05 |
Smoking currently n (%) | ||||||||
Yes | 52 (17.3) | 8 (4.8) | 17 (12.6) | p < 0.05 Chi2 = 5.9 | 144 (17.5) | 55 (14.1) | 89 (20.6) | p < 0.05 Chi2 = 5.9 |
No | 276 (91.7) | 158 (95.2) | 118 (87.4) | 677 (82.5) | 334 (85.9) | 343 (79.4) | ||
BMI 8 (kg/m2) (Mean ± SD) (min–max) | 23.0 ± 3.7 (17.0–41.0) | 22.2 ± 3.2 (16.9–39.4) | 23.9 ± 4.0 (18.0–41.0) | p < 0.001 | 23.3 ± 3.7 (14.1–40.1) | 23.1 ± 3.1 (14.1–33.3) | 23.6 ± 4.2 (16.2–40.1) | NS |
n (%) | ||||||||
Underweight (<18.5) | 11 (3.6) | 8 (4.8) | 3 (2.2) | p < 0.001 Chi2 = 14.9 | 44 (5.4) | 11 (2.8) | 33 (7.6) | p < 0.001 Chi2 = 24.1 |
Normal (18.5–24.99) | 218 (72.4) | 130 78.3) | 88 (65.2) | 555 (67.6) | 291 (74.8) | 264 (61.1) | ||
Overweight (25–30) | 55 (18.3) | 25 (15.1) | 30 (22.2) | 171 (20.8) | 73 (18.8) | 98 (22.7) | ||
Obese (≥30) | 17 (5.7) | 3 (1.8) | 14 (10.4) | 51 (6.2) | 14 (3.6) | 37 (8.6) | ||
Knowledge concerning food supplements n (%) | ||||||||
Incorrect | 235 (78.1) | 129 (77.7) | 106 (78.5) | NS Chi2 = 0.03 | 605 (73.7) | 291 (74.8) | 214 (72.7) | NS Chi2 = 0.5 |
Correct | 66 (21.9) | 37 (22.3) | 29 (21.5) | 216 (26.3) | 98 (25.2) | 118 (27.3) | ||
The presence of chronic illness n (%) | ||||||||
Yes | 88 (29.2) | 50 (30.1) | 38 (28.1) | NS Chi2 = 0.7 | 241 (29.4) | 109 (28.0) | 132 (30.6) | NS Chi2 = 0.6 |
No | 213 (70.8) | 116 (69.9) | 97 (71.9) | 580 (70.6) | 280 (72.0) | 300 (69.4) | ||
Intake medications chronically n (%) | ||||||||
Yes | 87 (28.9) | 51 (30.7) | 36 (26.7) | NS Chi2 = 0.6 | 209 (25.5) | 102 (26.2) | 107 (24.8) | NS Chi2 = 0.2 |
No | 214 (71.1) | 115 (69.3) | 99 (73.3) | 612 (74.5) | 287 (73.8) | 325 (75.2) | ||
Food supplements use in the last 12 months n (%) | ||||||||
Yes | 182 (60.5) | 110 (66.3) | 72 (53.3) | NS Chi2 = 5.2 | 344 (41.9) | 193 (49.6) | 151 (35.0) | p < 0.001 Chi2 = 18.1 |
No | 119 (39.5) | 56 (33.7) | 63 (46.7) | 477 (58.1) | 196 (50.4) | 281 (65.0) | ||
Regular meals n (%) | ||||||||
Yes | 126 (41.9) | 82 (49.4) | 44 (32.6) | p < 0.05 Chi2 = 8.7 | 293 (35.7) | 151 (38.8) | 142 (32.9) | p < 0.01 Chi2 = 9.8 |
No | 35 (11.6) | 16 (9.6) | 19 (14.1) | 116 (14.1) | 40 (10.3) | 76 (17.6) | ||
Yes, but only few | 140 (46.5) | 68 (41.0) | 72 (53.3) | 412 (50.2) | 198 (50.9) | 214 (49.5) | ||
Number of meals | ||||||||
(Mean ± SD) (min–max) | 3.9 ± 0.9 (1.0–5.0) | 4.5 ± 0.6 (3.0–5.0) | 3.1 ± 0.7 (1.0–4.0) | p < 0.001 | 3.5 ± 0.9 (1.0–5.0) | 3.7 ± 0.9 (1.0–5.0) | 3.3 ± 0.9 (1.0–5.0) | p < 0.001 |
n (%) | ||||||||
1 | 2 (0.7) | 0 | 2 (1.5) | p < 0.001 Chi2 = 161.7 | 5 (0.6) | 1 (0.3) | 4 (0.9) | p < 0.001 Chi2 = 49.7 |
2 | 15 (5.0) | 0 | 15 (11.1) | 88 (10.7) | 26 (6.7) | 62 (14.4) | ||
3 | 93 (30.9) | 13 (7.8) | 80 (59.3) | 326 (39.7) | 125 (32.1) | 201 (46.5) | ||
4 | 98 (32.6) | 60 (36.1) | 38 (28.1) | 283 (34.5) | 157 (40.4) | 126 (29.2) | ||
5 or more | 93 (30.9) | 93 (56.0) | 0 | 119 (14.5) | 80 (20.6) | 39 (9.0) | ||
Number of meals n (%) | ||||||||
5 meals | 93 (30.9) | 93 (56.0) | 0 | p < 0.001 Chi2 = 109.4 | 119 (14.5) | 80 (20.6) | 39 (9.0) | p < 0.001 Chi2 = 22.0 |
Other | 208 (69.1) | 73 (44.0) | 135 (100.0) | 702 (85.5) | 309 (79.4) | 393 (91.0) | ||
Snacking between meals Mean ± SD (min–max) | 1.0 ± 0.7 (1.0–2.0) | 1.1 ± 0.8 (0.0–2.0) | 0.8 ± 0.7 (0.0–2.0) | p < 0.001 | 0.9 ± 0.7 (0.0–2.0) | 0.9 ± 0.7 (0.0–2.0) | 1.0 ± 0.7 (0.0–2.0) | NS |
Engagement in sport n (%) | ||||||||
Yes | 176 (58.5) | 100 (60.2) | 76 (56.3) | NS Chi2 = 0.5 | 402 (49.0) | 376 (96.7) | 26 (6.0) | p < 0.001 Chi2 = 672.9 |
No | 125 (41.5) | 66 (39.8) | 59 (43.7) | 419 (51.0) | 13 (3.3) | 406 (94.0) | ||
Diet quality index DQI 9 | ||||||||
(Mean ± SD) (min–max) | 25.5 ± 9.1 (−0.4–69.6) | 29.5 ± 8.2 (9.5–69.6) | 20.7 ± 7.6 (−0.4–43.0) | p < 0.001 | 21.4 ± 9.6 (−14.4–49.1) | 23.7 ± 9.1 (−0.4–49.1) | 19.4 ± 9.5 (−14.4–45.8) | p < 0.001 |
Non-healthy diet index nHDI 10 (Mean ± SD) (min–max) | 6.8 ± 4.6 (0–33.7) | 6.8 ± 4.3 (1.0–28.4) | 6.9 ± 5.1 (0–33.7) | NS | 7.7 ± 5.2 (0.1–44.5) | 6.4 ± 4.0 (0.2–24.0) | 8.8 ± 5.8 (0.1–45.5) | p < 0.001 |
Pro-healthy diet index pHDI 11 (Mean ± SD) (min–max) | 32.4 ± 8.9 (9.0–73.8) | 36.3 ± 8.3 (14.9–73.8) | 27.6 ± 7.1 (9.0–52.2) | p < 0.001 | 29.1 ± 9.5 (3.2–62.7) | 30.1 ± 9.7 (6.6–62.7) | 28.2 ± 9.2 (3.2–56.1) | p < 0.01 |
Sweet index SI 12 | ||||||||
(Mean ± SD) (min–max) | 6.0 ± 5.8 (0.0–46.2) | 6.0 ± 5.3 (0.5–28.8) | 6.0 ± 6.4 (0.0–46.2) | NS | 6.7 ± 6.4 (0.0–50.2) | 5.2 ± 4.2 (0.0–25.0) | 8.0 ± 7.6 (0.0–50.2) | p < 0.001 |
Recommendation to take food supplements in the last 12 months n (%) | ||||||||
Yes | 176 (58.5) | 106 (63.9) | 70 (51.9) | NS Chi2 = 4.7 | 89 (10.8) | 44 (11.3) | 45 (10.4) | NS Chi2 = 0.5 |
No | 115 (38.2) | 56 (33.7) | 59 (43.7) | 693 (84.4) | 325 (83.6) | 368 (85.2) | ||
Not sure | 10 (3.3) | 4 (2.4) | 6 (4.4) | 39 (4.8) | 20 (5.1) | 19 (4.4) | ||
Place of purchase of food supplements n (%) | ||||||||
Pharmacy | 177 (81.9) | 104 (80.6) | 73 (83.9) | NS Chi2 = 0.4 | 342 (74.8) | 165 (69.9) | 177 (80.1) | p < 0.05 Chi2 = 6.3 |
Others | 39 (18.1) | 25 (19.4) | 14 (16.1) | 115 (25.2) | 71 (30.1) | 44 (19.9) | ||
Sleep habits n (%) | ||||||||
≤6 h | 87 (28.9) | 47 (28.3) | 40 (29.6) | NS Chi2 = 0.6 | 212 (25.8) | 95 (24.4) | 117 (27.1) | NS Chi2 = 0.4 |
>7 h | 214 (71.1) | 71.7 (119.0) | 70.4 (95.0) | 609 (74.2) | 294 (75.6) | 315 (72.9) | ||
Food supplements recommendation n (%) | ||||||||
Healthcare professionals | 101 (46.8) | 66 (51.2) | 49 (56.3) | NS Chi2 = 0.6 | 254 (55.7) | 125 (53.0) | 129 (58.6) | NS Chi2 = 1.4 |
Others | 115 (53.2) | 63 (48.8) | 38 (43.7) | 202 (44.3) | 91 (41.4) | 111 (47.0) | ||
Frequency of consumption | ||||||||
Carbonated or non-carbonated drinks (Coca-Cola, Fanta, Sprite) Mean ± SD (min–max) | 0.1 ± 0.2 (0.0–2.0) | 0.1 ± 0.2 (0.0–1.0) | 0.2 ± 0.3 (0.0–2.0) | p < 0.05 | 0.2 ± 0.3 (0.0–2.0) | 0.1 ± 0.2 (0.0–2.0) | 0.2 ± 0.4 (0.0–2.0) | p < 0.001 |
Energy drink Mean ± SD (min–max) | 0.01 ± 0.06 (0.0–1.0) | 0.004 ± 0.039 (0.0–0.5) | 0.01 ± 0.09 (0.0–1.0) | NS | 0.02 ± 0.09 (0.0–1.0) | 0.02 ± 0.10 (0.0–1.0) | 0.01 ± 0.08 (0.0–1.0) | NS |
Water Mean ± SD (min–max) | 1.95 ± 0.25 (0.0–2.0) | 1.98 ± 0.15 (1.0–2.0) | 1.92 ± 0.34 (0.0–2.0) | NS | 1.93 ± 0.31 (0.0–2.0) | 1.96 ± 0.24 (0.0–2.0) | 1.89 ± 0.36 (0.0–2.0) | p < 0.01 |
White bread and bakery products (wheat bread) Mean ± SD (min–max) | 0.57 ± 0.56 (0.0–2.0) | 0.633 ± 0.630 (0.0–2.0) | 0.489 ± 0.438 (0.0–2.0) | p < 0.05 | 0.60 ± 0.583 (0.0–2.0) | 0.490 ± 0.539 (0.0–2.0) | 0.698 ± 0.604 (0.0–2.0) | p < 0.001 |
Dark bread (whole meal/rye dark) Mean ± SD (min–max) | 0.6 ± 0.5 (0.0–2.0) | 0.75 ± 0.59 (0.0–2.0) | 0.41 ± 0.40 (0.0–2.0) | p < 0.001 | 0.42 ± 0.48 (0.0–2.0) | 0.49 ± 0.49 (0.0–2.0) | 0.36 ± 0.46 (0.0–2.0) | p < 0.001 |
White rice, pasta Mean ± SD (min–max) | 0.7 ± 0.5 (0.0–2.0) | 0.8 ± 0.6 (0.0–2.0) | 0.6 ± 0.5 (0.0–2.0) | p < 0.01 | 0.7 ± 0.6 (0.0–2.0) | 0.7 ± 0.6 (0.0–2.0) | 0.8 ± 0.6 (0.0–2.0) | NS |
Whole-grain pasta and rice Mean ± SD (min–max) | 0.3 ± 0.4 (0.0–2.0) | 0.3 ± 0.4 (0.0–2.0) | 0.2 ± 0.3 (0.0–2.0) | p < 0.01 | 0.2 ± 0.4 (0.0–2.0) | 0.3 ± 0.4 (0.0–2.0) | 0.2 ± 0.3 (0.0–2.0) | p < 0.05 |
Fast food (French fries, burgers, pizza, hot dogs) Mean ± SD (min–max) | 0.09 ± 0.10 (0.0–1.0) | 0.08 ± 0.07 (0.0–0.5) | 0.10 ± 0.12 (0.0–1.0) | NS | 0.10 ± 0.11 (0.0–1.0) | 0.09 ± 0.10 (0.0–0.5) | 0.10 ± 0.12 (0.0–1.0) | p < 0.05 |
Fried foods (meat or flour-based foods, such as dumplings and pancakes) Mean ± SD (min–max) | 0.09 ± 0.13 (0.0–1.0) | 0.09 ± 0.12 (0.0–1.0) | 0.10 ± 0.15 (0.0–1.0) | NS | 0.14 ± 0.19 (0.0–2.0) | 0.11 ± 0.15 (0.0–1.0) | 0.16 ± 0.22 (0.0–2.0) | p < 0.001 |
Butter to spread on bread or add to meals/for frying/for baking Mean ± SD (min–max) | 0.42 ± 0.46 (0.0–2.0) | 0.41 ± 0.49 (0.0–2.0) | 0.44 ± 0.43 (0.0–2.0) | NS | 0.41 ± 0.47 (0.0–2.0) | 0.32 ± 0.42 (0.0–2.0) | 0.49 ± 0.50 (0.0–2.0) | p < 0.001 |
Lard to spread on bread, or as a complement to meals/for frying/for roasting Mean ± SD (min–max) | 0.02 ± 0.15 (0.0–2.0) | 0.03 ± 0.18 (0.0–2.0) | 0.02 ± 0.10 (0.0–1.0) | NS | 0.03 ± 0.16 (0.0–2.0) | 0.02 ± 0.11 (0.0–1.0) | 0.04 ± 0.20 (0.0–2.0) | NS |
Vegetable oils or margarines or mixtures of butter and margarines Mean ± SD (min–max) | 0.12 ± 0.27 (0.0–2.0) | 0.10 ± 0.24 (0.0–2.0) | 0.14 ± 0.31 (0.0–2.0) | NS | 0.21 ± 0.36 (0.0–2.0) | 0.18 ± 0.35 (0.0–2.0) | 0.23 ± 0.37 (0.0–2.0) | p < 0.05 |
Milk (including flavoured milk. hot chocolate, latte) Mean ± SD (min–max) | 0.59 ± 0.64 (0.0–2.0) | 0.71 ± 0.70 (0.0–2.0) | 0.44 ± 0.53 (0.0–2.0) | p < 0.001 | 0.51 ± 0.57 (0.0–2.0) | 0.45 ± 0.54 (0.0–2.0) | 0.56 ± 0.59 (0.0–2.0) | p < 0.01 |
Fermented dairy Mean ± SD (min–max) | 0.72 ± 0.62 (0.0–2.0) | 0.91 ± 0.66 (0.0–2.0) | 0.5 ± 0.47 (0.0–2.0) | p < 0.001 | 0.51 ± 0.51 (0.0–2.0) | 0.56 ± 0.53 (0.0–2.0) | 0.48 ± 0.49 (0.0–2.0) | p < 0.05 |
Fresh cheese curd products (cottage cheese) Mean ± SD (min–max) | 0.28 ± 0.42 (0.0–2.0) | 0.36 ± 0.51 (0.0–2.0) | 0.17 ± 0.23 (0.0–1.0) | p < 0.001 | 0.19 ± 0.32 (0.0–2.0) | 0.23 ± 0.37 (0.0–2.0) | 0.16 ± 0.29 (0.0–2.0) | p < 0.01 |
Cheese (including processed cheese) Mean ± SD (min–max) | 0.54 ± 0.57 (0.0–2.0) | 0.65 ± 0.61 (0.0–2.0) | 0.41 ± 0.46 (0.0–2.0) | p < 0.001 | 0.4 ± 0.46 (0.0–2.0) | 0.4 ± 0.46 (0.0–2.0) | 0.4 ± 0.46 (0.0–2.0) | NS |
Cured meats, sausages Mean ± SD (min–max) | 0.11 ± 0.17 (0.0–1.0) | 0.10 ± 0.14 (0.0–1.0) | 0.13 ± 0.19 (0.0–1.0) | NS | 0.16 ± 0.24 (0.0–2.0) | 0.14 ± 0.20 (0.0–2.0) | 0.18 ± 0.28 (0.0–2.0) | p < 0.05 |
Red meat (pork, beef, veal, lamb) Mean ± SD (min–max) | 0.33 ± 0.29 (0.0–2.0) | 0.33 ± 0.27 (0.0–2.0) | 0.34 ± 0.32 (0.0–2.0) | NS | 0.37 ± 0.36 (0.0–2.0) | 0.36 ± 0.36 (0.0–2.0) | 0.39 ± 0.36 (0.0–2.0) | NS |
White meat (turkey, chicken) Mean ± SD (min–max) | 0.53 ± 0.27 (0.0–2.0) | 0.56 ± 0.28 (0.0–2.0) | 0.50 ± 0.24 (0.1–2.0) | NS | 0.61 ± 0.43 (0.0–2.0) | 0.64 ± 0.46 (0.0–2.0) | 0.58 ± 0.41 (0.0–2.0) | NS |
Fish, shellfish Mean ± SD (min–max) | 0.49 ± 0.31 (0.0–2.0) | 0.54 ± 0.31 (0.0–2.0) | 0.42 ± 0.3 (0.1–2.0) | p < 0.01 | 0.45 ± 0.32 (0.0–2.0) | 0.49 ± 0.34 (0.0–2.0) | 0.42 ± 0.30 (0.0–2.0) | p < 0.01 |
Eggs Mean ± SD (min–max) | 0.51 ± 0.33 (0.0–2.0) | 0.54 ± 0.31 (0.1–2.0) | 0.47 ± 0.35 (0.0–2.0) | NS | 0.52 ± 0.4 (0.0–2.0) | 0.57 ± 0.42 (0.0–2.0) | 0.48 ± 0.38 (0.0–2.0) | p < 0.001 |
Legume-based foods, e.g., beans, peas, soybeans, lentils Mean ± SD (min–max) | 0.45 ± 0.42 (0.0–2.0) | 0.52 ± 0.46 (0.1–2.0) | 0.36 ± 0.46 (0.0–2.0) | p < 0.01 | 0.44 ± 0.43 (0.0–2.0) | 0.49 ± 0.49 (0.0–2.0) | 0.40 ± 0.36 (0.0–2.0) | p < 0.01 |
Potatoes (excluding French fries) Mean ± SD (min–max) | 0.34 ± 0.30 (0.0–2.0) | 0.39 ± 0.32 (0.0–2.0) | 0.27 ± 0.26 (0.0–2.0) | p < 0.001 | 0.32 ± 0.29 (0.0–2.0) | 0.32 ± 0.3 (0.0–2.0) | 0.32 ± 0.29 (0.0–2.0) | NS |
Fruits Mean ± SD (min–max) | 1.6 ± 0.6 (0.0–2.0) | 1.7 ± 0.5 (0.0–2.0) | 1.3 ± 0.7 (0.0–2.0) | p < 0.001 | 1.2 ± 0.7 (0.0–2.0) | 1.3 ± 0.7 (0.0–2.0) | 1.1 ± 0.7 (0.0–2.0) | p < 0.001 |
Vegetables Mean ± SD (min–max) | 1.5 ± 0.7 (0.0–2.0) | 1.7 ± 0.6 (0.1–2.0) | 1.3 ± 0.7 (0.0–2.0) | p < 0.001 | 1.1 ± 0.7 (0.0–2.0) | 1.2 ± 0.7 (0.0–2.0) | 1.0 ± 0.7 (0.0–2.0) | p < 0.001 |
Sweets (confectionery, biscuits, cakes, chocolate bars, cereal bars) Mean ± SD (min–max) | 0.3 ± 0.4 (0.0–2.0) | 0.3 ± 0.3 (0.0–2.0) | 0.3 ± 0.4 (0.0–2.0) | NS | 0.3 ± 0.4 (0.0–2.0) | 0.3 ± 0.3 (0.0–2.0) | 0.4 ± 0.4 (0.0–2.0) | p < 0.001 |
Instant soups or ready-made soups Mean ± SD (min–max) | 0.2 ± 0.4 (0.0–2.0) | 0.20 ± 0.46 (0.0–2.0) | 0.20 ± 0.41 (0.0–2.0) | NS | 0.25 ± 0.45 (0.0–2.0) | 0.26 ± 0.48 (0.0–2.0) | 0.24 ± 0.42 (0.0–2.0) | NS |
Canned meats Mean ± SD (min–max) | 0.01 ± 0.05 (0.0–0.5) | 0.01 ± 0.03 (0.0–0.14) | 0.01 ± 0.06 (0.0–0.50) | NS | 0.03 ± 0.11 (0.0–2.0) | 0.02 ± 0.12 (0.0–2.0) | 0.03 ± 0.10 (0.0–1.0) | NS |
Vegetables (jar), e.g., pickled vegetables, tinned Mean ± SD (min–max) | 0.05 ± 0.10 (0.0–0.5) | 0.04 ± 0.09 (0.0–0.5) | 0.05 ± 0.11 (0.0–0.5) | NS | 0.07 ± 0.17 (0.0–2.0) | 0.08 ± 0.19 (0.0–2.0) | 0.07 ± 0.15 (0.0–1.0) | NS |
Fruit juice Mean ± SD (min–max) | 0.17 ± 0.30 (0.0–2.0) | 0.18 ± 0.34 (0.0–2.0) | 0.15 ± 0.25 (0.0–2.0) | NS | 0.23 ± 0.38 (0.0–2.0) | 0.21 ± 0.40 (0.0–2.0) | 0.25 ± 0.36 (0.0–2.0) | NS |
Vegetable juices or fruit and vegetable juices Mean ± SD (min–max) | 0.1 ± 0.28 (0.0–2.0) | 0.13 ± 0.36 (0.0–2.0) | 0.05 ± 0.11 (0.0–0.5) | p < 0.05 | 0.11 ± 0.28 (0.0–2.0) | 0.13 ± 0.32 (0.0–2.0) | 0.11 ± 0.23 (0.0–2.0) | NS |
Alcoholic beverage Mean ± SD (min–max) | 0.12 ± 0.17 (0.0–1.0) | 0.1 ± 0.15 (0.0–1.0) | 0.14 ± 0.19 (0.0–1.0) | p < 0.05 | 0.18 ± 0.28 (0.0–2.0) | 0.18 ± 0.27 (0.0–2.0) | 0.18 ± 0.30 (0.0–2.0) | NS |
References
- Hacker, K. The Burden of Chronic Disease. Mayo Clin. Proc. Innov. Qual. Outcomes 2024, 14, 5. [Google Scholar] [CrossRef]
- Instituto Nacional De Estatística Dia Mundial Do Doente. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=712229598&DESTAQUESmodo=2 (accessed on 25 March 2025).
- Coates, P.M.; Bailey, R.L.; Blumberg, J.B.; El-Sohemy, A.; Floyd, E.; Goldenberg, J.Z.; Gould Shunney, A.; Holscher, H.D.; Nkrumah-Elie, Y.; Rai, D.; et al. The Evolution of Science and Regulation of Dietary Supplements: Past, Present, and Future. J. Nutr. 2024, 154, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- Precedence Research Dietary Supplements Market Size, Share, and Trends 2025 to 2034. Available online: https://www.precedenceresearch.com/dietary-supplements-market (accessed on 26 June 2025).
- Bayır, T.; Çam, S.; Tuna, M.F. Does Knowledge and Concern Regarding Food Supplement Safety Affect the Behavioral Intention of Consumers? An Experimental Study on the Theory of Reasoned Action. Front. Nutr. 2023, 10, 1305964. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.; Blatman, J.; El-Dash, N.; Franco, J.C. Consumer Usage and Reasons for Using Dietary Supplements: Report of a Series of Surveys. J. Am. Coll. Nutr. 2014, 33, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Karbownik, M.S.; Horne, R.; Paul, E.; Kowalczyk, E.; Szemraj, J. Determinants of Knowledge about Dietary Supplements among Polish Internet Users: Nationwide Cross-Sectional Study. J. Med. Internet Res. 2021, 23, e25228. [Google Scholar] [CrossRef]
- Sirico, F.; Miressi, S.; Castaldo, C.; Spera, R.; Montagnani, S.; Di Meglio, F.; Nurzynska, D. Habits and Beliefs Related to Food Supplements: Results of a Survey among Italian Students of Different Education Fields and Levels. PLoS ONE 2018, 13, e0191424. [Google Scholar] [CrossRef]
- Bailey, R.L.; Gahche, J.J.; Miller, P.E.; Thomas, P.R.; Dwyer, J.T. Why US Adults Use Dietary Supplements. JAMA Intern. Med. 2013, 173, 355. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Sygnowska, E.; Broda, G.; Chwojnowska, Z. The Use of Vitamin Supplements among Adults in Warsaw: Is There Any Nutritional Benefit? Rocz. Panstw. Zakl. Hig. 2014, 65, 119–126. [Google Scholar]
- Sicińska, E.; Pietruszka, B.; Januszko, O.; Kałuża, J. Different Socio-Demographic and Lifestyle Factors Can Determine the Dietary Supplement Use in Children and Adolescents in Central-Eastern Poland. Nutrients 2019, 11, 658. [Google Scholar] [CrossRef]
- Wierzejska, R.E. Dietary Supplements—For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use. Int. J. Environ. Res. Public Health 2021, 18, 8897. [Google Scholar] [CrossRef]
- Campos, M.J.; Garbacz, A.; Czlapka-Klapinska, N.; Czlapka-Matyasik, M.; Pena, A. Key Factors Driving Portuguese Individuals to Use Food Supplements—Findings from a Cross-Sectional Study. Foods 2025, 14, 884. [Google Scholar] [CrossRef] [PubMed]
- Benjamin Ferrer Self-Care Innovations: How Supplements Are Evolving to Meet Consumer Demand. Available online: https://www.nutritioninsight.com/news/self-care-supplements-wellness-health-market-research-nutrition-women-gut-microbiome-energy-brain-mood-cognition-glp1-weight-fat-obesity.html?utm_content=327633287&utm_medium=social&utm_source=linkedin&hss_channel=lis-r6_Q486x87 (accessed on 22 July 2025).
- Stoś, K.; Woźniak, A.; Rychlik, E.; Ziółkowska, I.; Głowala, A.; Ołtarzewski, M. Assessment of Food Supplement Consumption in Polish Population of Adults. Front. Nutr. 2021, 8, 733951. [Google Scholar] [CrossRef] [PubMed]
- Pereira Filho, J.M.; Costa, M.F.; Cavalcanti, J.A. Healthy Lifestyle and Opinion Seeking in the Consumption of Food Supplements. Rev. Adm. UFSM 2021, 14, 750–768. [Google Scholar] [CrossRef]
- Di Martino, M. Food Safety in Personalized Nutrition—A Focus on Food Supplements and Functional Foods; FAO: Rome, Italy, 2025; ISBN 978-92-5-139611-7. [Google Scholar]
- Sunkara, A.; Raizner, A. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment. Methodist. Debakey Cardiovasc. J. 2019, 15, 179–184. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.U.; Riaz, H.; Valavoor, S.; Zhao, D.; Vaughan, L.; Okunrintemi, V.; Riaz, I.B.; Khan, M.S.; Kaluski, E.; et al. Effects of Nutritional Supplements and Dietary Interventions on Cardiovascular Outcomes. Ann. Intern. Med. 2019, 171, 190–198. [Google Scholar] [CrossRef]
- Vernieri, C.; Nichetti, F.; Raimondi, A.; Pusceddu, S.; Platania, M.; Berrino, F.; de Braud, F. Diet and Supplements in Cancer Prevention and Treatment: Clinical Evidences and Future Perspectives. Crit. Rev. Oncol. Hematol. 2018, 123, 57–73. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; Romaguera, D.; Brown, S.; Bender, A.; Kahle, L.L.; Reedy, J. Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System. Nutrients 2019, 11, 1572. [Google Scholar] [CrossRef]
- Moyer, V.A. Vitamin, Mineral, and Multivitamin Supplements for the Primary Prevention of Cardiovascular Disease and Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2014, 160, 558–565. [Google Scholar] [CrossRef]
- Carvalho, C.; Correia, D.; Lopes, C.; Torres, D. Adherence to the EAT-Lancet Planetary Health Diet in Portugal and Its Associations with Socioeconomic and Lifestyle Factors. Eur. J. Nutr. 2025, 64, 152. [Google Scholar] [CrossRef]
- Molina-López, J.; Pérez, A.B.; Gamarra-Morales, Y.; Vázquez-Lorente, H.; Herrera-Quintana, L.; Sánchez-Oliver, A.J.; Planells, E. Prevalence of Sports Supplements Consumption and Its Association with Food Choices among Female Elite Football Players. Nutrition 2024, 118, 112239. [Google Scholar] [CrossRef]
- Rovira, M.A.; Grau, M.; Castañer, O.; Covas, M.I.; Schröder, H. Dietary Supplement Use and Health-Related Behaviors in a Mediterranean Population. J. Nutr. Educ. Behav. 2013, 45, 386–391. [Google Scholar] [CrossRef]
- Ribeiro, F.J.; Teixeira, R.; Poínhos, R. Dietary Habits and Gaming Behaviors of Portuguese and Brazilian Esports Players. Nutrients 2023, 15, 4200. [Google Scholar] [CrossRef]
- Suliga, K.; Grzelak, T.; Grupińska, J.; Pelczyńska, M.; Sperling, M.; Czyżewska, K. Evaluation of Using Dietary Supplements among Polish Adult People below and over 60 Years of Age. J. Med. Sci. 2017, 86, 213–219. [Google Scholar] [CrossRef][Green Version]
- Chiba, T.; Tanemura, N. The Prevalence of Dietary Supplement Use for the Purpose of COVID-19 Prevention in Japan. Nutrients 2022, 14, 3215. [Google Scholar] [CrossRef]
- Sameshima, N.; Akamatsu, R. A Cluster Analysis of Japanese Consumer Perceptions Concerning Information about the Safety of Food Products. Food Control 2023, 149, 109723. [Google Scholar] [CrossRef]
- Kennedy-Shaffer, L.; Qiu, X.; Hanage, W.P. Snowball Sampling Study Design for Serosurveys Early in Disease Outbreaks. Am. J. Epidemiol. 2021, 190, 1918–1927. [Google Scholar] [CrossRef] [PubMed]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Galinski, G.; Dlugosz, A.; Loboda, D.; Czlapka-Matyasik, M. Data-Driven Dietary Patterns and Diet Quality Scores: Reproducibility and Consistency in Sex and Age Subgroups of Poles Aged 15–65 Years. Nutrients 2020, 12, 3598. [Google Scholar] [CrossRef] [PubMed]
- Bykowska-Derda, A.; Kaluzna, M.; Ruchała, M.; Ziemnicka, K.; Czlapka-Matyasik, M. The Significance of Plant-Based Foods and Intense Physical Activity on the Metabolic Health of Women with PCOS: A Priori Dietary-Lifestyle Patterns Approach. Appl. Sci. 2023, 13, 2118. [Google Scholar] [CrossRef]
- Sobas, K.; Wadolowska, L.; Slowinska, M.A.; Czlapka-Matyasik, M.; Wuenstel, J.; Niedzwiedzka, E. Like Mother, Like Daughter? Dietary and Non-Dietary Bone Fracture Risk Factors in Mothers and Their Daughters. Iran. J. Public Health 2015, 44, 939–952. [Google Scholar]
- Gawęcki, J.; Jeżewska-Zychowicz, M.; Wadolowska, L.; Czarnocińska, J.; Galiński, G.; Kołajtis-Dołowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybyłowicz, K.; Stasiewicz, B.; et al. Kwestionariusz Do Badania Poglądów i Zwyczajów Żywieniowych Oraz Procedura Opracowania Danych; KomPAN ® Habits and Nutrition Beliefs Questionnaire Dietary and Technical Report; Komitet Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: Olsztyn, Poland, 2014. [Google Scholar] [CrossRef]
- Długosz, A.; Niedźwiedzka, E.; Długosz, T.; Wądołowska, L. Socio-Economic Status as an Environmental Factor—Incidence of Underweight, Overweight and Obesity in Adolescents from Less-Urbanized Regions of Poland. Ann. Agric. Environ. Med. 2015, 22, 518–523. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kowalkowska, J.; Wadolowska, L.; Weronika Wuenstel, J.; Słowińska, M.A.; Niedźwiedzka, E. Socioeconomic Status and Overweight Prevalence in Polish Adolescents: The Impact of Single Factors and a Complex Index of Socioeconomic Status in Respect to Age and Sex. Iran. J. Public Health 2014, 43, 913–925. [Google Scholar] [PubMed][Green Version]
- Bykowska-Derda, A.; Czlapka-Matyasik, M.; Kaluzna, M.; Ruchala, M.; Ziemnicka, K. Diet Quality Scores in Relation to Fatness and Nutritional Knowledge in Women with Polycystic Ovary Syndrome: Case–Control Study. Public Health Nutr. 2020, 24, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Programa Nacional Para a Promoção da Alimentação Saudável da Direção-Geral da Saúde Roda Dos Alimentos: O Que é? Available online: https://alimentacaosaudavel.dgs.pt/roda-dos-alimentos/ (accessed on 22 June 2025).
- Lopes, C.; Torres, D.; Oliveira, A.; Severo, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Rodrigues, S.; Lobato, L.; et al. IAN-AF, Inquérito Alimentar Nacional e de Atividade Física—Relatório de Resultados de 2017; Universidade do Porto: Porto, Portugal, 2017. [Google Scholar]
- Fundação António Manuel dos Santos PORDATA—Estatisticas Sobre Portugal e Europa. Available online: https://www.pordata.pt/portugal/recenseados+total++por+nacionalidade+e+por+residencia-2250-178922 (accessed on 17 June 2025).
- Sample Size Calculator. Available online: https://www.calculator.net/sample-size-calculator.html?type=1&cl=99&ci=5&pp=27&ps=10883512&x=Calculate (accessed on 10 January 2024).
- Ruano, J.; Teixeira, V.H. Prevalence of Dietary Supplement Use by Gym Members in Portugal and Associated Factors. J. Int. Soc. Sports Nutr. 2020, 17, 11. [Google Scholar] [CrossRef]
- Dietary Supplements Market Size, Share, Trends, Report. 2023. Available online: https://www.fortunebusinessinsights.com/dietary-supplements-market-102082 (accessed on 20 July 2025).
- Cowan, A.E.; Jun, S.; Gahche, J.J.; Tooze, J.A.; Dwyer, J.T.; Eicher-Miller, H.A.; Bhadra, A.; Guenther, P.M.; Potischman, N.; Dodd, K.W.; et al. Dietary Supplement Use Differs by Socioeconomic and Health-Related Characteristics among U.S. Adults, NHANES 2011–2014. Nutrients 2018, 10, 1114. [Google Scholar] [CrossRef]
- Huang, L.; Waseem Shah, M.; Wang, Y.; Nam, Y.; Sun, G. Exploring the Association between Dietary Patterns and the Types of Dietary Supplements Used. J. Funct Foods 2024, 113, 106030. [Google Scholar] [CrossRef]
- Kirk, S.; Woodhouse, A.; Conner, M. Beliefs, Attitudes and Behaviour in Relation to Supplement Use in the UK Women’s Cohort Study (UKWCS). Proc. Nutr. Soc. Lond. 1998, 57, 54A. [Google Scholar]
- Pouchieu, C.; Andreeva, V.A.; Péneau, S.; Kesse-Guyot, E.; Lassale, C.; Hercberg, S.; Touvier, M. Sociodemographic, Lifestyle and Dietary Correlates of Dietary Supplement Use in a Large Sample of French Adults: Results from the NutriNet-Santé Cohort Study. Br. J. Nutr. 2013, 110, 1480–1491. [Google Scholar] [CrossRef]
- Touvier, M.; Niravong, M.; Volatier, J.L.; Lafay, L.; Lioret, S.; Clavel-Chapelon, F.; Boutron-Ruault, M.C. Dietary Patterns Associated with Vitamin/Mineral Supplement Use and Smoking among Women of the E3N-EPIC Cohort. Eur. J. Clin. Nutr. 2009, 63, 39–47. [Google Scholar] [CrossRef]
- Patriota, P.; Guessous, I.; Marques-Vidal, P. Dietary Patterns According to Vitamin Supplement Use. A Cross-Sectional Study in Switzerland. Int. J. Vitam. Nutr. Res. 2022, 92, 331–341. [Google Scholar] [CrossRef]
- Tetens, I.; Biltoft-Jensen, A.; Spagner, C.; Christensen, T.; Gille, M.B.; Bügel, S.; Rasmussen, L.B. Intake of Micronutrients among Danish Adult Users and Non-Users of Dietary Supplements. Food Nutr. Res. 2011, 55, 7153. [Google Scholar] [CrossRef]
- Kanellou, A.; Papatesta, E.M.; Martimianaki, G.; Peppa, E.; Stratou, M.; Trichopoulou, A. Dietary Supplement Use in Greece: Methodology and Findings from the National Health and Nutrition Survey—HYDRIA (2013–2014). Br. J. Nutr. 2023, 129, 2174–2181. [Google Scholar] [CrossRef]
- Reinert, A.; Rohrmann, S.; Becker, N.; Linseisen, J. Lifestyle and Diet in People Using Dietary Supplements: A German Cohort Study. Eur. J. Nutr. 2007, 46, 165–173. [Google Scholar] [CrossRef]
- Dickinson, A.; Mackay, D. Health Habits and Other Characteristics of Dietary Supplement Users: A Review. Nutr. J. 2014, 13, 14. [Google Scholar] [CrossRef]
- Pouchieu, C.; Lévy, R.; Faure, C.; Andreeva, V.A.; Galan, P.; Hercberg, S.; Touvier, M. Socioeconomic, Lifestyle and Dietary Factors Associated with Dietary Supplement Use during Pregnancy. PLoS ONE 2013, 8, e70733. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tao, H.; Xu, J.; Liu, L.; Nahata, M.C. Quantity, Duration, Adherence, and Reasons for Dietary Supplement Use among Adults: Results from NHANES 2011–2018. Nutrients 2024, 16, 1830. [Google Scholar] [CrossRef] [PubMed]
- Foote, J.A.; Murphy, S.P.; Wilkens, L.R.; Hankin, J.H.; Henderson, B.E.; Kolonel, L.N. Factors Associated with Dietary Supplement Use among Healthy Adults of Five Ethnicities: The Multiethnic Cohort Study. Am. J. Epidemiol. 2003, 157, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.B.; Bailey, R.L.; Sesso, H.D.; Ulrich, C.M. The Evolving Role of Multivitamin/Multimineral Supplement Use among Adults in the Age of Personalized Nutrition. Nutrients 2018, 10, 248. [Google Scholar] [CrossRef]
- Bertin, M.; Touvier, M.; Dubuisson, C.; Dufour, A.; Havard, S.; Lafay, L.; Volatier, J.L.; Lioret, S. Dietary Patterns of French Adults: Associations with Demographic, Socio-Economic and Behavioural Factors. J. Hum. Nutr. Diet. 2016, 29, 241–254. [Google Scholar] [CrossRef]
- Stehle, P. The Nutrition Report 2012 Summary. Eur. J. Nutr. Food Saf. 2012, 4, 14–62. [Google Scholar] [CrossRef]
- Beitz, R.; Mensink, G.B.M.; Hintzpeter, B.; Fischer, B.; Beitz, R. Do Users of Dietary Supplements Differ From Nonusers in Their Food Consumption? Eur. J. Epidemiol. 2003, 19, 335–341. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Asakura, K.; Sasaki, S. Food and Nutrient Intake in Dietary Supplement Users: A Nationwide School-Based Study in Japan. J. Nutr. Sci. 2022, 11, e29. [Google Scholar] [CrossRef]
- Dorczok, M.C.; Schrank, B.; Mittmann, G.; Steiner-Hofbauer, V. Dietary Supplementation and Health Behavior in a Sample of Young Adults in Austria. J. Public Health 2024, 2024, 1–6. [Google Scholar] [CrossRef]
- Iłowiecka, K.; Maślej, M.; Czajka, M.; Pawłowski, A.; Więckowski, P.; Styk, T.; Gołkiewicz, M.; Kuzdraliński, A.; Koch, W. Lifestyle, Eating Habits, and Health Behaviors Among Dietary Supplement Users in Three European Countries. Front. Public Health 2022, 10, 892233. [Google Scholar] [CrossRef] [PubMed]
- Frey, A.; Hoffmann, I.; Heuer, T. Characterisation of Vitamin and Mineral Supplement Users Differentiated According to Their Motives for Using Supplements: Results of the German National Nutrition Monitoring (NEMONIT). Public Health Nutr. 2017, 20, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Marques-Vidal, P.; Pécoud, A.; Hayoz, D.; Paccaud, F.; Mooser, V.; Waeber, G.; Vollenweider, P. Prevalence and Characteristics of Vitamin or Dietary Supplement Users in Lausanne, Switzerland: The CoLaus Study. Eur. J. Clin. Nutr. 2009, 63, 273–281. [Google Scholar] [CrossRef]
- Sniehotta, F.F.; Scholz, U.; Schwarzer, R.; Fuhrmann, B.; Kiwus, U.; Völler, H. Long-Term Effects of Two Psychological Interventions on Physical Exercise and Self-Regulation Following Coronary Rehabilitation. Int. J. Behav. Med. 2005, 12, 244–255. [Google Scholar] [CrossRef]
- Lentjes, M.A.H. The Balance between Food and Dietary Supplements in the General Population. Proc. Nutr. Soc. 2019, 78, 97–109. [Google Scholar] [CrossRef]
- Radwan, H.; Hasan, H.A.; Ghanem, L.; Alnajjar, G.; Shabir, A.; Alshamsi, A.; Alketbi, F. Prevalence of Dietary Supplement Use and Associated Factors Among College Students in the United Arab Emirates. J. Community Health 2019, 44, 1135–1140. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Food Supplements. 2025. Available online: https://www.efsa.europa.eu/en/topics/topic/food-supplements (accessed on 18 March 2025).
- Waddington, F.; Naunton, M.; Kyle, G.; Thomas, J.; Cooper, G.; Waddington, A. A Systematic Review of Community Pharmacist Therapeutic Knowledge of Dietary Supplements. Int. J. Clin. Pharm. 2015, 37, 439–446. [Google Scholar] [CrossRef]
- Kwan, D.; Hirschkorn, K.; Boon, H. U.S. and Canadian Pharmacists’ Attitudes, Knowledge, and Professional Practice Behaviors toward Dietary Supplements: A Systematic Review. BMC Complement. Altern. Med. 2006, 6, 31. [Google Scholar] [CrossRef]
- Strocka, J.; Religioni, U.; Plagens-Rotman, K.; Drab, A.; Merks, P.; Kaźmierczak, J.; Blicharska, E.; Pinkas, J. Knowledge and Practices Regarding Dietary Supplements Among Healthcare Professionals in Poland. Nutrients 2024, 16, 3691. [Google Scholar] [CrossRef]
- Ng, J.Y.; Tahir, U.; Dhaliwal, S. Barriers, Knowledge, and Training Related to Pharmacists’ Counselling on Dietary and Herbal Supplements: A Systematic Review of Qualitative Studies. BMC Health Serv. Res. 2021, 21, 499. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, M.A.; Shatila, H.; El-Lakany, A.; Aboul Ela, M.; Kharroubi, S.; Alameddine, M.; Naja, F. Beliefs, Practices and Knowledge of Community Pharmacists Regarding Complementary and Alternative Medicine: National Cross-Sectional Study in Lebanon. BMJ Open 2019, 9, e025074. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, M.A.; Shatila, H.; Omeich, Z.; El-Lakany, A.; Ela, M.A.; Naja, F. The Role of Pharmacists in Complementary and Alternative Medicine in Lebanon: Users’ Perspectives. BMC Complement. Med. Ther. 2021, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- Bukic, J.; Rusic, D.; Bozic, J.; Zekan, L.; Leskur, D.; Seselja Perisin, A.; Modun, D. Differences among Health Care Students’ Attitudes, Knowledge and Use of Dietary Supplements: A Cross-Sectional Study. Complement. Ther. Med. 2018, 41, 35–40. [Google Scholar] [CrossRef]
- Kheir, N.; Gad, H.Y.; Abu-Yousef, S.E. Pharmacists’ Knowledge and Attitudes about Natural Health Products: A Mixed-Methods Study. Drug Healthc. Patient Saf. 2014, 6, 7–14. [Google Scholar] [CrossRef]
- Yao, D.; Hu, H.; Harnett, J.E.; Ung, C.O.L. Integrating Traditional Chinese Medicines into Professional Community Pharmacy Practice in China—Key Stakeholder Perspectives. Eur. J. Integr. Med. 2020, 34, 101063. [Google Scholar] [CrossRef]
- Dickinson, A.; Bonci, L.; Boyon, N.; Franco, J.C. Dietitians Use and Recommend Dietary Supplements: Report of a Survey. Nutr. J. 2012, 11, 14. [Google Scholar] [CrossRef]
- Pence, J.C.; Martin, K.R.; Bloomer, R.J. Beyond Nutrition Recommendations: What Healthcare Professionals Should Know about Dietary Supplements to Best Serve Their Patients. Health 2021, 13, 334–346. [Google Scholar] [CrossRef]
- Brunelli, L.; Arnoldo, L.; Mazzilis, G.; d’Angelo, M.; Colautti, L.; Cojutti, P.G.; Parpinel, M. The Knowledge and Attitudes of Pharmacists Related to the Use of Dietary Supplements: An Observational Study in Northeastern Italy. Prev. Med. Rep. 2022, 30, 101986. [Google Scholar] [CrossRef] [PubMed]
- Italian Centre for Social Studies and Policies (CENSIS). Report; CENSIS: Roma, Italy, 2019. [Google Scholar]
- FEDERSALUS. Available online: https://federsalus.org/index.php (accessed on 26 June 2025).
- Waddington, F.; Naunton, M.; Kyle, G.; O’Kane, G.; Cooper, G.; Thomas, J. Australian Pharmacists’ Knowledge of the Efficacy and Safety of Complementary Medicines. Aust. J. Prim. Health 2018, 24, 273. [Google Scholar] [CrossRef]
- Chiba, T. Patients Are Using Dietary Supplement for the Treatment of Their Diseases without Consultation with Their Physicians and Pharmacists. Pharmacy 2023, 11, 179. [Google Scholar] [CrossRef]
- Chiba, T.; Tanemura, N. Differences in the Perception of Dietary Supplements between Dietary Supplement/Medicine Users and Non-Users. Nutrients 2022, 14, 4114. [Google Scholar] [CrossRef]
- Elsahoryi, N.A.; Odeh, M.M.; Jadayil, S.A.; McGrattan, A.M.; Hammad, F.J.; Al-Maseimi, O.D.; Alzoubi, K.H. Prevalence of Dietary Supplement Use and Knowledge, Attitudes, Practice (KAP) and Associated Factors in Student Population: A Cross-Sectional Study. Heliyon 2023, 9, e14736. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Melo, W.; Costa, R.; Pereira, S.; Duarte, N. Os Profissionais do SNS: Retrato e Evolução 2017–2023; PlanAPP: Lisboa, Portugal, 2024. [Google Scholar]
Variables | Total Sample | HP 1 | nHP 2 | p |
---|---|---|---|---|
Sample size n (%) | 1122 (100.0) | 301 (26.8) | 821 (73.2) | |
Gender | ||||
Male n (%) | 235 (20.9) | 48 (16.0) | 187 (22.8) | NS p = 0.06 |
Female n (%) | 883 (78.7) | 253 (84.0) | 630 (76.7) | |
Non-binary n (%) | 3 (0.3) | 0 (0.0) | 3 (0.4) | |
I do not want to report n (%) | 1 (0.1) | 0 (0.0) | 1 (0.1) | |
Age (years) Mean ± SD | 35 ± 14.0 (18–85) | 39 ± 11.0 (23–71) | 33 ± 15.0 (18–85) | p < 0.001 |
(min–max) | ||||
BMI 3 (kg/m2) Mean ± SD | 23.3 ± 3.7 | 23.0 ± 3.7 | 23.3 ± 3.7 | NS p = 0.16 |
(min–max) | (14.1–41.0) | (16.9–41.0) | (14.1–40.1) | |
Underweight (<18.5) | 55 (4.9) | 11 (3.7) | 44 (5.4) | NS p = 0.45 |
Normal (18.5–24.99) | 772 (68.8) | 217 (72.1) | 555 (67.6) | |
Overweight (≥25.0–30.0) | 227 (20.2) | 56 (18.6) | 171 (20.8) | |
Obese (≥30.0) | 68 (6.1) | 17 (5.6) | 51 (6.2) | |
Place of residence n (%) | ||||
Village | 366 (32.6) | 68 (22.6) | 298 (36.3) | p < 0.01 Chi2 = 8.5 |
City < 20,000 inhabitants | 128 (11.4) | 45 (15.0) | 84 (10.2) | |
City (20,000–100,000) inhabitants | 302 (26.9) | 85 (28.2) | 216 (26.3) | |
City > 100,000 inhabitants | 326 (29.1) | 103 (34.2) | 223 (27.2) | |
Number of housemates n (%) | ||||
1–2 | 296 (26.4) | 107 (35.6) | 49 (6.0) | p < 0.001 Chi2 = 17.8 |
3–4 | 699 (62.3) | 165 (54.8) | 140 (17.1) | |
≥5 | 127 (11.3) | 29 (9.6) | 97 (11.8) | |
Children living in a house n (%) | ||||
0 | 705 (62.8) | 178 (59.1) | 189 (23.0) | p < 0.05 Chi2 = 7.8 |
1–2 | 382 (34.0) | 107 (35.5) | 535 (65.2) | |
≥3 | 35 (3.2) | 16 (5.3) | 97 (11.8) | |
Status SES 4 Mean ± SD | 5.2 ± 1.0 | 5.4 ± 0.9 | 5.2 ± 1.1 | p < 0.001 |
(min–max) | (1.1–7.6) | (2.1–7.5) | (1.1–7.6) | |
Status SES 4 (categorisation) n (%) | ||||
Low | 362 (32.3) | 67 (22.3) | 296 (36.1) | p < 0.001 Chi2 = 21.1 |
Average | 398 (35.5) | 128 (42.5) | 269 (32.8) | |
High | 362 (32.3) | 106 (35.2) | 256 (31.2) | |
Education level n (%) | ||||
Primary school | 64 (5.7) | 4 (1.3) | 60 (7.3) | p < 0.001 Chi2 = 156.2 |
High school | 275 (24.5) | 2 (0.7) | 273 (33.3) | |
University | 733 (65.3) | 277 (92.0) | 456 (55.5) | |
PhD | 50 (4.5) | 18 (6.0) | 32 (3.9) | |
Self-declared financial situation n (%) | ||||
Low class | 109 (9.7) | 18 (6.0) | 91 (11.1) | p < 0.01 Chi2 = 12.3 |
Middle class | 986 (87.9) | 270 (89.7) | 716 (87.2) | |
High class | 27 (2.4) | 13 (4.3) | 14 (1.7) | |
Self-declared quality of life n (%) | ||||
Modestly poor | 10 (0.9) | 2 (0.7) | 9 (1.1) | NS p = 0.21 |
Modestly | 147 (13.1) | 32 (10.6) | 115 (14.0) | |
Normally | 517 (46.1) | 133 (44.2) | 382 (46.5) | |
Relatively comfortably | 353 (31.5) | 103 (34.2) | 251 (30.6) | |
Comfortably | 95 (8.5) | 31 (10.3) | 64 (7.8) | |
Employment n (%) | ||||
Full-time worker | 635 (56.6) | 286 (95.0) | 349 (42.5) | p < 0.001 Chi 2 = 250.5 |
Temporary job | 487 (43.4) | 15 (5.0) | 472 (57.5) | |
Smoking cigarettes n (%) | ||||
Yes | 169 (15.1) | 25 (8.3) | 144 (17.5) | p < 0.001 Chi 2 = 14.7 |
No | 953 (84.9) | 276 (91.7) | 677 (82.5) | |
Nationality n (%) | ||||
Portugal | 1084 (96.6) | 291 (96.7) | 793 (96.6) | NS p = 0.16 |
Others | 38 (3.4) | 10 (3.3) | 28 (3.4) |
Variables | Total Sample | HP 1 | p | Total Sample | nHP 2 | p | ||
---|---|---|---|---|---|---|---|---|
HP 1 | PSHD 3 | PnSLHD 4 | nHP 2 | nPSHD 5 | nPnSLHD 6 | |||
Sample size n (%) | 301 (100.0) | 166 (55.1) | 135 (44.9) | 821 (100.0) | 389 (47.4) | 432 (52.6) | ||
Food supplementation last 12 months n (%) | ||||||||
Yes | 182 (60.5) | 110 (66.3) | 72 (53.3) | p < 0.05 Chi2 = 5.2 | 344 (41.9) | 193 (56.1) | 151 (43.9) | p < 0.001 Chi2 = 18.1 |
No | 119 (39.5) | 56 (33.7) | 63 (46.7) | 477 (58.1) | 196 (41.1) | 281 (58.9) | ||
Dietary habits (Mean ± SD) | ||||||||
Number of meals per day | 3.9 ± 0.9 | 4.5 ± 0.6 | 3.1 ± 0.7 | p < 0.001 | 3.5 ± 0.9 | 3.7 ± 0.9 | 3.3 ± 0.9 | p < 0.001 |
Frequency of snacking between meals | 1.0 ± 0.7 | 1.1 ± 0.8 | 0.8 ± 0.7 | p < 0.001 | 0.9 ± 0.7 | 0.9 ± 0.7 | 1.0 ± 0.7 | NS p = 0.42 |
Self-evaluation of dietary habits | 3.2 ± 0.5 | 3.3 ± 0.5 | 2.9 ± 0.4 | p < 0.001 | 3.0 ± 0.5 | 3.2 ± 0.5 | 2.8 ± 0.5 | p < 0.001 |
Sum of pro-healthy foods intake | 11.6 ± 3.6 | 13.8 ± 3.2 | 10.7 ± 2.8 | p < 0.001 | 11.3 ± 3.6 | 11.6 ± 3.7 | 11.0 ± 3.5 | p < 0.05 |
Sum of non-healthy foods intake | 4.0 ± 2.7 | 3.6 ± 2.3 | 3.6 ± 2.7 | NS | 4.0 ± 2.7 | 3.3 ± 2.1 | 4.6 ± 3.1 | p < 0.002 |
SES 7 (-) (Mean ± SD) | 5.4 ± 0.9 | 5.4 ± 0.8 | 5.6 ± 0.9 | NS | 5.2 ± 1.1 | 5.3 ± 1.0 | 5.1 ± 1.1 | p < 0.001 |
Declaration of sporting activity n (%) | ||||||||
yes | 176 (58.5) | 100 (56.8) | 76 (43.2) | NS Chi2 = 0.5 | 402 (49.0) | 376 (93.5) | 26 (6.5) | p < 0.001 Chi2 = 672.9 |
no | 125 (41.5) | 66 (52.8) | 59 (47.2) | 419 (51.0) | 13 (3.1) | 406 (96.9) | ||
Smoking currently n (%) | ||||||||
yes | 25 (8.3) | 8 (4.8) | 17 (13.0) | p < 0.05 Chi2 = 5.9 | 144 (17.5) | 55 (38.2) | 89 (61.8) | p < 0.05 Chi2 = 5.9 |
no | 276 (91.7) | 158 (95.2) | 118 (87.0) | 677 (82.5) | 334 (49.3) | 343 (50.7) |
Variables | PSHD 1, n = 166 | PnSLHD 2, n = 135 | nPSHD 3, n = 389 | nPnSLHD 4, n = 432 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (CI 95); p | OR (CI 95); p | OR (CI 95); p | OR (CI 95); p | |||||||||||||
n (%) | Without Adjustment | Adjusted for BMI 5 | Adjusted for BMI 5 and Age | n (%) | Without Adjustment | Adjusted for BMI 5 | Adjusted for BMI5 and Age | n (%) | Without Adjustment | Adjusted for BMI 5 | Adjusted for 5 BMI and Age | n (%) | Without Adjustment | Adjusted for BMI 5 | Adjusted for BMI 5 and Age | |
Insufficient nutritional knowledge level | 5 (3) | - | - | - | 5 (4) | - | - | - | 18 (5) | 0.26 (0.15; 0.44); p < 0.001 | 0.25 (0.15; 0.43); p < 0.001 | 0.25 (0.14; 0.43); p < 0.001 | 69 (16) | 3.92 (2.29; 6.72); p < 0.001 | 3.96 (2.31; 6.80); p < 0.001 | 4.03 (2.34; 6.92); p < 0.001 |
Nutritional knowledge at insufficient or sufficient level | 41 (25) | 0.32 (0.20; 0.53); p < 0.001 | 0.30 (0.18; 0.50); p < 0.001 | 0.29 (0.17; 0.48); p < 0.001 | 68 (50) | 3.09 (1.90; 5.05); p < 0.001 | 3.34 (2.01; 5.54); p < 0.001 | 3.46 (2.07; 5.77); p < 0.001 | 218 (56) | 0.50 (0.38; 0.67); p < 0.001 | 0.51 (0.38; 0.68); p < 0.001 | 0.50 ‘(0.38; 0.68); p < 0.001 | 310 (72) | 1.99 (1.49; 2.66); p < 0.001 | 1.96 (1.47; 2.62); p < 0.001 | 1.98 (1.48; 2.66); p < 0.001 |
Nutritional knowledge at a good or very good level | 125 (75) | 3.09 (1.90; 5.05); p < 0.001 | 3.34 (2.01; 5.54); p < 0.001 | 3.46 (2.07; 5.77); p < 0.001 | 67 (50) | 0.32 (0.20; 0.53); p < 0.001 | 0.30 (0.18; 0.50); p < 0.001 | 0.29 (0.17; 0.48); p < 0.001 | 171 (44) | 1.99 (1.49; 2.66); p < 0.001 | 1.96 (1.47; 2.62); p < 0.001 | 1.98 (1.48; 2.66); p < 0.001 | 122 (28) | 0.50 (0.38; 0.67); p < 0.001 | 0.51 (0.38; 0.68); p < 0.001 | 0.50 (0.38; 0.68); p < 0.001 |
Nutritional knowledge at a very good level | 47 (28) | 6.27 (2.84; 13.86); p < 0.001 | 6.29 (2.77; 14.30); p < 0.001 | 6.21 (2.75; 14.04); p < 0.001 | 8 (6) | 0.16 (0.07; 0.35); p < 0.001 | 0.16 (0.07; 0.36); p < 0.001 | 0.16 (0.07; 0.36); p < 0.001 | 28 (7) | 2.16 (1.13; 4.10); p < 0.05 | 2.16 (1.13; 4.12); p < 0.05 | 2.23 (1.17; 4.26); p < 0.05 | 15 (3) | 0.46 (0.24; 0.88); p < 0.05 | 0.46 (0.24; 0.88); p < 0.05 | 0.45 (0.23; 0.86); p < 0.05 |
Being a smoker | 8 (5) | 0.35 (0.15; 0.84); p < 0.05 | 0.32 (0.13; 0.79); p < 0.05 | 0.34 (0.14; 0.84); p < 0.05 | 17 (13) | 2.85 (1.18; 6.84); p < 0.05 | 3.10 (1.26; 7.60); p < 0.05 | 2.93 (1.19; 7.23); p < 0.05 | 55 (14) | 0.63 (0.44; 0.92); p < 0.05 | 0.65 (0.45; 0.93); p < 0.05 | 0.62 (0.43; 0.91); p < 0.05 | 89 (21) | 1.58 (1.09; 2.28); p < 0.05 | 1.55 (1.07; 2.24); p < 0.05 | 1.60 (1.10; 2.32); p < 0.05 |
FS advice from the nutritionist | 24 (14) | 3.75 (1.36; 10.31); p < 0.05 | 3.91 (1.36; 11.24); p < 0.05 | 3.86 (1.34; 11.13); p < 0.05 | 5 (4) | 0.27 (0.10; 0.73); p < 0.05 | 0.26 (0.09; 0.74); p < 0.05 | 0.26 (0.09; 0.75); p < 0.05 | 36 (9) | 3.13 (1.58; 6.21); p < 0.01 | 3.12 (1.57; 6.18); p < 0.01 | 3.24 (1.62; 6.45); p < 0.001 | 12 (3) | 0.32 (0.16; 0.63); p < 0.01 | 0.32 (1.16; 0.64); p < 0.01 | 0.31 (0.16; 0.62); p < 0.001 |
FS advice from the trainer | 5 (3) | - | - | - | 0 (0) | - | - | - | 17 (4) | 17.08 (2.24; 130.04); p < 0.01 | 17.08 (2.24; 130.26); p < 0.01 | 17.93 (2.35; 136.98); p < 0.01 | 1 (0) | 0.06 (0.01; 0.45); p < 0.01 | 0.06 (0.01; 0.45); p < 0.01 | 0.06 (0.01; 0.43); p < 0.01 |
FS advice—other origins | 57 (34) | 0.53 (0.31; 0.93); p < 0.05 | 0.54 (0.31; 0.96); p < 0.05 | 0.52 (0.29; 0.93); p < 0.05 | 52 (39) | 1.88 (1.08; 3.27); p < 0.05 | 1.85 (1.04; 3.27); p < 0.05 | 1.92 (1.08; 3.43); p < 0.05 | 56 (14) | 0.56 (0.37; 0.84); p < 0.01 | 0.56 (0.37; 0.84); p < 0.01 | 0.54 (0.36; 0.82); p < 0.01 | 79 (18) | 1.79 (1.19; 2.69); p < 0.01 | 1.78 (1.18; 2.68); p < 0.01 | 1.84 (1.22; 2.79); p < 0.01 |
Being a female | 142 (86) | 1.28 (0.69; 2.38); p = 0.434 | 1.07 (0.57; 2.03); p = 0.833 | 1.04 (0.54; 1.98); p = 0.908 | 111 (82) | 0.78 (0.42; 1.45); p = 0.435 | 0.93 (0.49; 1.77); p = 0.834 | 0.96 (0.51; 1.83); p = 0.907 | 283 (73) | 0.65 (0.47; 0.91); p < 0.05 | 0.60 (0.43; 0.84); p < 0.01 | 0.61 (0.43; 0.85); p < 0.01 | 347 (80) | 1.53 (1.10; 2.12); p < 0.05 | 1.66 (1.19; 2.33); p < 0.01 | 1.65 (1.18; 2.31); p < 0.01 |
Being a male | 24 (14) | 0.78 (0.42; 1.45); p = 0.434 | 0.93 (0.49; 1.77); p = 0.833 | 0.96 (0.51; 1.83); p = 0.907 | 24 (18) | 1.28 (0.69; 2.38); p = 0.435 | 1.07 (0.57; 2.03); p = 0.834 | 1.04 (0.55; 1.98); p = 0.907 | 103 (27) | 1.49 (1.07; 2.07); p < 0.05 | 1.62 (1.16; 2.28); p < 0.01 | 1.61 (1.15; 2.25); p < 0.01 | 84 (19) | 0.67 (0.48; 0.93); p < 0.05 | 0.62 (0.44; 0.86); p < 0.01 | 0.62 (0.44; 0.87); p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, M.J.; Garbacz, A.; Czlapka-Klapinska, N.; Czlapka-Matyasik, M.; Pena, A. Exploring the Lifestyle and Dietary Patterns of Food Supplement and Non-Food Supplement Users: A Cross-Sectional Study in the Portuguese Population. Nutrients 2025, 17, 2802. https://doi.org/10.3390/nu17172802
Campos MJ, Garbacz A, Czlapka-Klapinska N, Czlapka-Matyasik M, Pena A. Exploring the Lifestyle and Dietary Patterns of Food Supplement and Non-Food Supplement Users: A Cross-Sectional Study in the Portuguese Population. Nutrients. 2025; 17(17):2802. https://doi.org/10.3390/nu17172802
Chicago/Turabian StyleCampos, Maria João, Agnieszka Garbacz, Natalia Czlapka-Klapinska, Magdalena Czlapka-Matyasik, and Angelina Pena. 2025. "Exploring the Lifestyle and Dietary Patterns of Food Supplement and Non-Food Supplement Users: A Cross-Sectional Study in the Portuguese Population" Nutrients 17, no. 17: 2802. https://doi.org/10.3390/nu17172802
APA StyleCampos, M. J., Garbacz, A., Czlapka-Klapinska, N., Czlapka-Matyasik, M., & Pena, A. (2025). Exploring the Lifestyle and Dietary Patterns of Food Supplement and Non-Food Supplement Users: A Cross-Sectional Study in the Portuguese Population. Nutrients, 17(17), 2802. https://doi.org/10.3390/nu17172802