Blueberry Consumption in Early Life and Its Effects on Allergy, Immune Biomarkers, and Their Association with the Gut Microbiome
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Visits
2.3. Study Product
2.4. Immune Indices
2.5. Gut Microbiota Profiling
2.6. Questionnaires Capturing Reported Allergy Related Symptoms
2.7. Statistical Analysis
3. Results
3.1. Demographic Information
3.2. Allergy-Related Symptoms
3.3. Cytokine Profiles by Group
3.4. Immune-Allergy-Related Symptoms Associations for the Whole Group
3.5. Microbiota–Immune Associations for the Total Group
3.5.1. Microbiota at 12 Months and Cytokine Changes (5–12 Months)
3.5.2. Volcano Plot Analysis at 12 Months
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Efsa Panel on Nutrition, N.F.; Food, A.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Appropriate age range for introduction of complementary feeding into an infant’s diet. EFSA J. Eur. Food Saf. Auth. 2019, 17, e05780. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture. Dietary Guidelines for Americans: DGA 2020–2025. Available online: https://www.dietaryguidelines.gov (accessed on 18 August 2025).
- Huang, T.; Zhang, Y.; Qiao, L.; Luo, D.; Ba, L.; Xu, S.; Meng, L.; Cao, S.; Wang, T.; Kou, X. Active ingredients of blueberry pomace: A comprehensive review of isolation, identification, health benefits and food applications. Food Chem. X 2025, 27, 102459. [Google Scholar] [CrossRef]
- Russell, C.G.; Worsley, A.; Liem, D.G. Parents’ food choice motives and their associations with children’s food preferences. Public Health Nutr. 2015, 18, 1018–1027. [Google Scholar] [CrossRef]
- Venable, K.E.; Lee, C.C.; Francis, J. Addressing Mental Health in Rural Settings: A Narrative Review of Blueberry Supplementation as a Natural Intervention. Nutrients 2024, 16, 3539. [Google Scholar] [CrossRef]
- Vendrame, S.; Guglielmetti, S.; Riso, P.; Arioli, S.; Klimis-Zacas, D.; Porrini, M. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J. Agric. Food Chem. 2011, 59, 12815–12820. [Google Scholar] [CrossRef]
- Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Molecular Communication with the Immune System. Front. Microbiol. 2017, 8, 2345. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Valdez, J.C.; Bolling, B.W. Anthocyanins and intestinal barrier function: A review. J. Food Bioact. 2019, 5, 18–30. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- West, C.E.; D’Vaz, N.; Prescott, S.L. Dietary immunomodulatory factors in the development of immune tolerance. Curr. Allergy Asthma Rep. 2011, 11, 325–333. [Google Scholar] [CrossRef]
- Arrieta, M.C.; Stiemsma, L.T.; Dimitriu, P.A.; Thorson, L.; Russell, S.; Yurist-Doutsch, S.; Kuzeljevic, B.; Gold, M.J.; Britton, H.M.; Lefebvre, D.L.; et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015, 7, 307ra152. [Google Scholar] [CrossRef]
- Pascal, M.; Perez-Gordo, M.; Caballero, T.; Escribese, M.M.; Lopez Longo, M.N.; Luengo, O.; Manso, L.; Matheu, V.; Seoane, E.; Zamorano, M.; et al. Microbiome and Allergic Diseases. Front. Immunol. 2018, 9, 1584. [Google Scholar] [CrossRef]
- Vatanen, T.; Kostic, A.D.; d’Hennezel, E.; Siljander, H.; Franzosa, E.A.; Yassour, M.; Kolde, R.; Vlamakis, H.; Arthur, T.D.; Hämäläinen, A.M.; et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell 2016, 165, 1551. [Google Scholar] [CrossRef] [PubMed]
- Glime, G.N.E.; Matzeller, K.L.; Frank, D.N.; Kotter, C.; Kofonow, J.M.; Robertson, C.E.; Venter, C.; Campbell, W.W.; Krebs, N.F.; Tang, M. Introducing blueberry powder as one of the first complementary foods changes the gut microbiota composition and diversity in US human milk-fed infants: A double-blind, randomized controlled trial. Front. Nutr. 2025, in press.
- Matts, J.P.; Lachin, J.M. Properties of permuted-block randomization in clinical trials. Control Clin. Trials 1988, 9, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Hindley, J.P.; Oliver, M.A.; Thorpe, C.; Cullinane, A.; Wuenschmann, S.; Chapman, M.D. Bos d 11 in baked milk poses a risk for adverse reactions in milk-allergic patients. Clin. Exp. Allergy 2021, 51, 132–140. [Google Scholar] [CrossRef] [PubMed]
- USDA’s Food and Nutrition Service. Child and Adult Care Food Program: Meal Pattern Revisions Related to the Healthy, Hunger-Free Kids Act; USDA’s Food and Nutrition Service: Alexandria, VA, USA, 2016.
- Feeding Guide for the First Year. Available online: https://www.stanfordchildrens.org/en/topic/default%3Fid=feeding-guide-for-the-first-year-90-P02209 (accessed on 18 August 2025).
- Odiase, E.; Frank, D.N.; Young, B.E.; Robertson, C.E.; Kofonow, J.M.; Davis, K.N.; Berman, L.M.; Krebs, N.F.; Tang, M. The Gut Microbiota Differ in Exclusively Breastfed and Formula-Fed United States Infants and are Associated with Growth Status. J. Nutr. 2023, 153, 2612–2621. [Google Scholar] [CrossRef]
- Tang, M.; Weaver, N.E.; Frank, D.N.; Ir, D.; Robertson, C.E.; Kemp, J.F.; Westcott, J.; Shankar, K.; Garces, A.L.; Figueroa, L.; et al. Longitudinal Reduction in Diversity of Maternal Gut Microbiota During Pregnancy Is Observed in Multiple Low-Resource Settings: Results From the Women First Trial. Front. Microbiol. 2022, 13, 823757. [Google Scholar] [CrossRef]
- Tang, M.; Ma, C.; Weinheimer-Haus, E.M.; Robertson, C.E.; Kofonow, J.M.; Berman, L.M.; Waljee, A.; Zhu, J.; Frank, D.N.; Krebs, N.F. Different gut microbiota in U.S. formula-fed infants consuming a meat vs. dairy-based complementary foods: A randomized controlled trial. Front. Nutr. 2022, 9, 1063518. [Google Scholar] [CrossRef]
- Frank, D.N. BARCRAWL and BARTAB: Software tools for the design and implementation of barcoded primers for highly multiplexed DNA sequencing. BMC Bioinform. 2009, 10, 362. [Google Scholar] [CrossRef]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Homo Sapiens UCSC Hg19 Human Genome Sequence from iGenome. Available online: http://support.illumina.com/sequencing/sequencing_software/igenome.ilmn (accessed on 18 August 2025).
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Ewing, B.; Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 2011, 77, 3219–3226. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glockner, F.O. SINA: Accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.E.; Harris, J.K.; Wagner, B.D.; Granger, D.; Browne, K.; Tatem, B.; Feazel, L.M.; Park, K.; Pace, N.R.; Frank, D.N. Explicet: Graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 2013, 29, 3100–3101. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.D.; Macklaim, J.M.; Linn, T.G.; Reid, G.; Gloor, G.B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 2013, 8, e67019. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Reid, J.N.; Macklaim, J.M.; McMurrough, T.A.; Edgell, D.R.; Gloor, G.B. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2014, 2, 15. [Google Scholar] [CrossRef]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional data. J. R. Stat. Soc. Ser. B Methodol. 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Venter, C. Immunonutrition: Diet Diversity, Gut Microbiome and Prevention of Allergic Diseases. Allergy Asthma Immunol. Res. 2023, 15, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Roduit, C.; Frei, R.; Depner, M.; Schaub, B.; Loss, G.; Genuneit, J.; Pfefferle, P.; Hyvarinen, A.; Karvonen, A.M.; Riedler, J.; et al. Increased food diversity in the first year of life is inversely associated with allergic diseases. J. Allergy Clin. Immunol. 2014, 133, 1056–1064. [Google Scholar] [CrossRef]
- Wynn, T.A. IL-13 effector functions. Annu. Rev. Immunol. 2003, 21, 425–456. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef]
- Roth, S.; Spalinger, M.R.; Gottier, C.; Biedermann, L.; Zeitz, J.; Lang, S.; Weber, A.; Rogler, G.; Scharl, M. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis. PLoS ONE 2016, 11, e0154817. [Google Scholar] [CrossRef]
- Li, S.; Wu, B.; Fu, W.; Reddivari, L. The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. Int. J. Mol. Sci. 2019, 20, 2588. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Vatanen, T.; Franzosa, E.A.; Schwager, R.; Tripathi, S.; Arthur, T.D.; Vehik, K.; Lernmark, Å.; Hagopian, W.A.; Rewers, M.J.; She, J.X.; et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018, 562, 589–594. [Google Scholar] [CrossRef]







| Blueberry n = 30 | Placebo n = 31 | p-Value 1 | |
|---|---|---|---|
| n (%) | n (%) | ||
| Cesarean section | 7 (24) | 7 (23) | 1.00 |
| Girls | 9 (31) | 15 (48) | 0.15 |
| Gestational age in weeks, median (IQR) | 39.0 (2.0) | 39.0 (1.6) | 0.75 2 |
| Age at visit in weeks, median (IQR) | 22 (2.0) | 22 (2.0) | 0.21 3 |
| Vitamin/mineral supplementation | 18 (62) | 25 (80) | 0.15 |
| Vitamin D supplementation | 18 (62) | 25 (80) | 0.15 1 |
| Antibiotic received | 0 | 0 | . |
| Pain reliever received | 2 (7) | 3 (10) | 1.00 |
| Cough suppressant received | 0 | 0 | . |
| Antacid received | 2 (7) | 1 (3) | 0.61 |
| Other medication | 3 (10) | 2 (6) | 0.67 |
| Feeding concerns | 0 | 0 | . |
| Received vaccination | 26 (90) | 30 (97) | 0.60 2 |
| Any medication | 6 (20) | 5 (16) | 0.75 |
| Allergy-Related Symptoms | Blueberry (n = 30) 2 | Placebo (n = 31) 3 | p-Value 4 |
|---|---|---|---|
| n (%) | n (%) | ||
| Wheeze | 0.51 | ||
| No symptoms | 23 (79) | 26 (90) | |
| Developed symptoms | 3 (10) | 3 (10) | |
| Symptoms resolved | 2 (7) | 0 (0) | |
| Symptoms persist | 1 (3) | 0 (0) | |
| Dry cough | 0.22 | ||
| No symptoms | 34 (83) | 28 (93) | |
| Developed symptoms | 1 (3) | 2 (7) | |
| Symptoms resolved | 3 (10) | 0 (0) | |
| Symptoms persist | 1 (3) | 0 (0) | |
| Itchy, stuffy, runny nose | 0.61 | ||
| No symptoms | 18 (62) | 15 (50) | |
| Developed symptoms | 5 (17) | 4 (13) | |
| Symptoms resolved | 4 (14) | 7 (23) | |
| Symptoms persist | 2 (7) | 4 (13) | |
| Rash/Hives | 0.15 | ||
| No symptoms | 22 (79) | 28 (93) | |
| Developed symptoms | 1 (4) | 1 (3) | |
| Symptoms resolved | 5 (18) | 1 (3) | |
| Symptoms persist | 0 (0) | 0 (0) | |
| Eczema | 0.74 | ||
| No symptoms | 14 (48) | 18 (60) | |
| Developed symptoms | 6 (21) | 4 (13) | |
| Symptoms resolved | 6 (21) | 6 (20) | |
| Symptoms persist | 3 (10) | 2 (7) | |
| Aggregated allergy symptoms | |||
| Respiratory | 0.02 | ||
| No symptoms | 20 (69) | 27 (87) | |
| Developed symptoms | 2 (7) | 4 (13) | |
| Symptoms resolved | 4 (14) | 0 (0) | |
| Symptoms persist | 3 (10) | 0 (0) | |
| Skin | 0.53 | ||
| No symptoms | 10 (36) | 16 (53) | |
| Developed symptoms | 5 (18) | 5 (17) | |
| Symptoms resolved | 9 (32) | 7 (23) | |
| Symptoms persist | 4 (14) | 2 (7) | |
| Any | 0.05 | ||
| No symptoms | 6 (21) | 15 (50) | |
| Developed symptoms | 5 (14) | 6 (20) | |
| Symptoms resolved | 9 (32) | 6 (20) | |
| Symptoms persist | 9 (32) | 3 (10) |
| Median (Q1, Q3) | ||||
|---|---|---|---|---|
| Blueberry (n = 27) | Placebo (n = 21) | Total (n = 48) | p-Value | |
| IFN-N3 | 2.9 (−1.3, 23.6) | 5.2 (−0.9, 19.2) | 3.5 (−1.3, 22.8) | 0.80 |
| IL-10 | 0.4 (0.2, 1.2) | 0.1 (−0.3, 0.6) | 0.3 (−0.1, 0.9) | 0.05 * |
| IL-12p70 | 0.0 (−0.0, 0.1) | 0.0 (−0.0, 0.0) | 0.0 (−0.0, 0.1) | 0.69 |
| IL-13 | −0.1 (−0.1, 0.0) | −0.1 (−0.1, 0.0) | −0.1 (−0.1, 0.0) | 0.86 |
| IL-13 sensitivity 1 | −0.1 (−0.2, −0.0) | 0.0 (−0.0, 0.0) | −0.0 (−0.1, 0.0) | 0.04 * |
| IL-2 | 0.1 (−0.0, 0.4) | 0.2 (−0.1, 0.4) | 0.1 (−0.0, 0.4) | 0.78 |
| IL-4 | −0.0 (−0.0, 0.0) | −0.0 (−0.0, 0.0) | −0.0 (−0.0, 0.0) | 0.55 |
| IL-4 sensitivity 2 | −0.0 (−0.0, 0.0) | −0.0 (−0.0, 0.0) | −0.0 (−0.0, 0.0) | 0.58 |
| IL-6 | 0.2 (−0.1, 0.7) | 0.1 (−0.0, 0.2) | 0.1 (−0.1, 0.4) | 0.34 |
| IL-8 | −4.0 (−6.9, −1.1) | −6.0 (−7.9, −2.9) | −4.5 (−7.7, −2.1) | 0.36 |
| TNF-N1 | 0.3 (−0.4, 1.5) | 0.0 (−0.8, 0.8) | 0.2 (−0.5, 1.3) | 0.25 |
| Eotaxin | 214.1 (56.8, 333.0) | 182.1 (44.6, 258.0) | 192.4 (38.0, 282.0) | 0.25 |
| Eotaxin-3 | −0.6 (−12.1, 5.8) | 0.1 (−8.7, 3.4) | −0.3 (−11.7, 4.9) | 0.78 |
| IP-10 | −130.5 (−616.7, 334.6) | −95.8 (−473.7, 117.8) | −113.1 (−610.8, 237.1) | 0.58 |
| MCP-1 | 162.4 (−92.0, 242.5) | 105.7 (−111.1, 208.1) | 127.6 (−101.5, 213.2) | 0.30 |
| MCP-4 | −120.5 (−227.5, 1.4) | −89.2 (−175.7, 25.1) | −112.8 (−223.7, 19.0) | 0.70 |
| MDC | 1396.3 (−960.1, 2441.6) | 1501.6 (−983.7, 1980.7) | 1449.0 (−994.9, 2263.6) | 0.47 |
| MIP-1N1 | 6.2 (1.2, 10.6) | 3.6 (−0.8, 10.1) | 5.6 (0.2, 10.6) | 0.30 |
| MIP-1N2 | 120.7 (−72.6, 197.2) | 81.4 (−101.6, 161.0) | 89.3 (−75.9, 188.7) | 0.44 |
| TARC | 490.1 (−696.1, 842.6) | 270.7 (−902.9, 454.7) | 271.7 (−850.3, 763.8) | 0.28 |
| GM-CSF | −399.6 (−488.6, −2.4) | −354.5 (−472.1, −3.3) | −395.7 (−473.4, −2.7) | 0.81 |
| IL-12 | −200.1 (−326.0, 26.3) | −131.5 (−375.4, 127.2) | −154.2 (−352.1, 89.4) | 0.70 |
| IL-15 | −34.3 (−49.6, 1.0) | −30.9 (−46.8, −4.9) | −32.4 (−49.3, −0.6) | 0.55 |
| IL-16 | 886.4 (−14.3, 1141.6) | 846.8 (−10.6, 1046.8) | 866.6 (−25.8, 1089.8) | 0.38 |
| IL-17 | −3578.6 (−4278.8, −44.8) | −3085.7 (−4179.7, −16.0) | −3512.1 (−4252.6, −34.1) | 0.76 |
| IL-5 | −11.7 (−24.3, 3.9) | −11.0 (−19.0, 16.8) | −11.3 (−22.5, 4.5) | 0.55 |
| IL-7 | −423.9 (−697.8, −42.4) | −294.3 (−645.2, −43.3) | −364.9 (−676.2, −41.5) | 0.76 |
| TNF-N2 | −435.2 (−524.3, −3.7) | −381.1 (−485.3, −0.1) | −431.0 (−505.9, −2.6) | 0.41 |
| VEGF | −47.7 (−249.1, 217.8) | −109.1 (−259.6, −46.8) | −99.5 (−256.9, 110.6) | 0.25 |
| n | Median (Q1, Q3) | p-Value b | |
|---|---|---|---|
| IL-10 difference | 0.22 | ||
| No symptoms | 17 | 0.24 (−0.23, 0.69) | |
| Developed symptoms | 9 | 0.62 (−0.76, 0.93) | |
| Symptoms resolved | 11 | 1.38 (0.24, 1.77) | |
| Symptoms persist | 10 | 0.21 (−0.05, 0.61) | |
| IL-13 difference | 0.99 | ||
| No symptoms | 17 | −0.55 (−0.07, 0.02) | |
| Developed symptoms | 9 | −0.05 (−0.14, 0.05) | |
| Symptoms resolved | 11 | −0.55 (−0.08, −0.00) | |
| Symptoms persist | 10 | −0.02 (−0.18, 0.42) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venter, C.; Boden, S.; Pickett-Nairne, K.; O’Mahony, L.; Glime, G.N.E.; Matzeller, K.L.; Frank, D.N.; Kotter, C.; Kofonow, J.M.; Robertson, C.E.; et al. Blueberry Consumption in Early Life and Its Effects on Allergy, Immune Biomarkers, and Their Association with the Gut Microbiome. Nutrients 2025, 17, 2795. https://doi.org/10.3390/nu17172795
Venter C, Boden S, Pickett-Nairne K, O’Mahony L, Glime GNE, Matzeller KL, Frank DN, Kotter C, Kofonow JM, Robertson CE, et al. Blueberry Consumption in Early Life and Its Effects on Allergy, Immune Biomarkers, and Their Association with the Gut Microbiome. Nutrients. 2025; 17(17):2795. https://doi.org/10.3390/nu17172795
Chicago/Turabian StyleVenter, Carina, Stina Boden, Kaci Pickett-Nairne, Liam O’Mahony, Gabrielle N. E. Glime, Kinzie L. Matzeller, Daniel N. Frank, Cassandra Kotter, Jennifer M. Kofonow, Charles E. Robertson, and et al. 2025. "Blueberry Consumption in Early Life and Its Effects on Allergy, Immune Biomarkers, and Their Association with the Gut Microbiome" Nutrients 17, no. 17: 2795. https://doi.org/10.3390/nu17172795
APA StyleVenter, C., Boden, S., Pickett-Nairne, K., O’Mahony, L., Glime, G. N. E., Matzeller, K. L., Frank, D. N., Kotter, C., Kofonow, J. M., Robertson, C. E., Campbell, W. W., Krebs, N. F., & Tang, M. (2025). Blueberry Consumption in Early Life and Its Effects on Allergy, Immune Biomarkers, and Their Association with the Gut Microbiome. Nutrients, 17(17), 2795. https://doi.org/10.3390/nu17172795

