Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Populations
2.2. Questionnaire-Based Interviews
2.3. Physical Examinations
2.4. Laboratory Analyses
2.5. Scores Used to Estimate Cardiovascular Risk in Study Populations
2.6. Statistical Analyses
3. Results
3.1. Basic Characteristics and Lipid Profile
3.2. Association of rs4988235—C/C Genotype with Lipid Parameters
3.3. Association of rs4988235–C/C Genotype with Estimated Cardiovascular Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASCVD | atherosclerotic cardiovascular disease |
CETP | cholesteryl ester transfer protein |
CHD | coronary heart disease |
CVD | cardiovascular disease |
CVR | cardiovascular risk |
FRS | Framingham Risk Score |
GPMSSP | General Practitioners’ Morbidity Sentinel Stations Program |
HDL | high-density lipoprotein |
LCT | lactase |
LDL | low-density lipoprotein |
LNP | lactase non-persistence |
LP | lactase persistence |
MCM6 | minichromosome maintenance complex component 6 |
mRNA | messenger RNA |
PCE | Pooled Cohort Equations |
RPCE | Revised Pooled Cohort Equations |
SCORE | Systematic Coronary Risk Evaluation |
SCORE2 | Systematic Coronary Risk Evaluation 2 |
TC | total cholesterol |
TG | triglycerides |
References
- Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef]
- Olds, L.C.; Sibley, E. Lactase persistence DNA variant enhances lactase promoter activity in vitro: Functional role as a cis regulatory element. Hum. Mol. Genet. 2003, 12, 2333–2340. [Google Scholar] [CrossRef]
- Kuokkanen, M.; Enattah, N.S.; Oksanen, A.; Savilahti, E.; Orpana, A.; Järvelä, I. Transcriptional regulation of the lactase-phlorizin hydrolase gene by polymorphisms associated with adult-type hypolactasia. Gut 2003, 52, 647–652. [Google Scholar] [CrossRef]
- Enattah, N.S.; Kuokkanen, M.; Forsblom, C.; Natah, S.; Oksanen, A.; Järvelä, I.; Peltonen, L.; Savilahti, E. Correlation of intestinal disaccharidase activities with the C/T variant and age. World J. Gastroenterol. 2007, 13, 3508–3512. [Google Scholar] [CrossRef] [PubMed]
- Sahi, T. Genetics and epidemiology of adult-type hypolactasia. Scand. J. Gastroenterol. 1994, 202, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Czeizel, A.; Flatz, G.; Flatz, S.D. Prevalence of primary adult lactose malabsorption in Hungary. Hum. Genet. 1983, 64, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M. How sound is the science behind the dietary recommendations for dairy? Am. J. Clin. Nutr. 2014, 99, 1217s–1222s. [Google Scholar] [CrossRef]
- Timon, C.M.; O’Connor, A.; Bhargava, N.; Gibney, E.R.; Feeney, E.L. Dairy Consumption and Metabolic Health. Nutrients 2020, 12, 3040. [Google Scholar] [CrossRef]
- Sahni, S.; Tucker, K.L.; Kiel, D.P.; Quach, L.; Casey, V.A.; Hannan, M.T. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: The Framingham Offspring Study. Arch. Osteoporos. 2013, 8, 119. [Google Scholar] [CrossRef]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef]
- Vissers, L.E.T.; Sluijs, I.; van der Schouw, Y.T.; Forouhi, N.G.; Imamura, F.; Burgess, S.; Barricarte, A.; Boeing, H.; Bonet, C.; Chirlaque, M.D.; et al. Dairy Product Intake and Risk of Type 2 Diabetes in EPIC-InterAct: A Mendelian Randomization Study. Diabetes Care 2019, 42, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Gary, T.L.; Caballero, B.H.; Lawrence, R.S.; Cheskin, L.J.; Wang, Y.F. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 1914–1925. [Google Scholar] [CrossRef] [PubMed]
- Salehi, Z.; Ghosn, B.; Namazi, N.; Azadbakht, L. Assessing the association between dairy consumption and the 10-year Framingham Risk Score in women. Bmc Nutr. 2025, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Michaëlsson, K.; Lemming, E.W.; Larsson, S.C.; Höijer, J.; Melhus, H.; Svennblad, B.; Baron, J.A.; Wolk, A.; Byberg, L. Non-fermented and fermented milk intake in relation to risk of ischemic heart disease and to circulating cardiometabolic proteins in swedish women and men: Two prospective longitudinal cohort studies with 100,775 participants. BMC Med. 2024, 22, 483. [Google Scholar] [CrossRef]
- Mullie, P.; Pizot, C.; Autier, P. Daily milk consumption and all-cause mortality, coronary heart disease and stroke: A systematic review and meta-analysis of observational cohort studies. BMC Public Health 2016, 16, 1236. [Google Scholar] [CrossRef]
- Zhang, S.M.; Li, H.P.; Engström, G.; Niu, K.J.; Qi, L.; Borné, Y.; Sonestedt, E. Milk intake, lactase persistence genotype, plasma proteins and risks of cardiovascular events in the Swedish general population. Eur. J. Epidemiol. 2023, 38, 211–224. [Google Scholar] [CrossRef]
- Koskinen, T.T.; Virtanen, H.E.K.; Voutilainen, S.; Tuomainen, T.P.; Mursu, J.; Virtanen, J.K. Intake of fermented and non-fermented dairy products and risk of incident CHD: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2018, 120, 1288–1297. [Google Scholar] [CrossRef]
- Górczyńska-Kosiorz, S.; Cichocka, E.; Niemiec, P.; Trautsolt, W.; Pluskiewicz, W.; Gumprecht, J. Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients 2024, 16, 3002. [Google Scholar] [CrossRef]
- de Luis, D.A.; Izaola, O.; Primo, D. The lactase rs4988235 is associated with obesity related variables and diabetes mellitus in menopausal obese females. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 932–940. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, S.L.; Yeung, S.L.A.; Kwok, M.K.; Xu, L.; Leung, G.M.; Schooling, C.M. Genetically predicted milk consumption and bone health, ischemic heart disease and type 2 diabetes: A Mendelian randomization study. Eur. J. Clin. Nutr. 2017, 71, 1008–1012. [Google Scholar] [CrossRef]
- Manco, L.; Dias, H.; Muc, M.; Padez, C. The lactase-13910C>T polymorphism (rs4988235) is associated with overweight/obesity and obesity-related variables in a population sample of Portuguese young adults. Eur. J. Clin. Nutr. 2017, 71, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.T.; Lei, Y.P.; Mitchell, L.E.; Sharma, S.V.; Swartz, M.D.; Waller, D.K.; Finnell, R.H.; Benjamin, R.H.; Browne, M.L.; Canfield, M.A.; et al. Maternal Lactase Polymorphism (rs4988235) Is Associated with Neural Tube Defects in Offspring in the National Birth Defects Prevention Study. J. Nutr. 2019, 149, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Nolan, D.J.; Han, D.Y.; Lam, W.J.; Morgan, A.R.; Fraser, A.G.; Tapsell, L.C.; Ferguson, L.R. Genetic adult lactase persistence is associated with risk of Crohn’s Disease in a New Zealand population. BMC Res. Notes 2010, 3, 339. [Google Scholar] [CrossRef] [PubMed]
- Damen, J.A.A.G.; Hooft, L.; Schuit, E.; Debray, T.P.A.; Collins, G.S.; Tzoulaki, I.; Lassale, C.M.; Siontis, G.C.M.; Chiocchia, V.; Roberts, C.; et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016, 353, i2416. [Google Scholar] [CrossRef]
- White-Al Habeeb, N.M.A.; Higgins, V.; Wolska, A.; Delaney, S.R.; Remaley, A.T.; Beriault, D.R. The Present and Future of Lipid Testing in Cardiovascular Risk Assessment. Clin. Chem. 2023, 69, 456–469. [Google Scholar] [CrossRef]
- Ádány, R.; Pikó, P.; Fiatal, S.; Kósa, Z.; Sándor, J.; Bíró, É.; Kósa, K.; Paragh, G.; Bácsné Bába, É.; Veres-Balajti, I.; et al. Prevalence of Insulin Resistance in the Hungarian General and Roma Populations as Defined by Using Data Generated in a Complex Health (Interview and Examination) Survey. Int. J. Environ. Res. Public Health 2020, 17, 4833. [Google Scholar] [CrossRef]
- Piko, P.; Kosa, Z.; Sandor, J.; Seres, I.; Paragh, G.; Adany, R. The profile of HDL-C subfractions and their association with cardiovascular risk in the Hungarian general and Roma populations. Sci. Rep. 2022, 12, 10915. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet 2014, 383, 999–1008. [Google Scholar] [CrossRef]
- Conroy, R.M.; Pyorala, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetiere, P.; Jousilahti, P.; Keil, U.; et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef]
- Goff, D., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 25. [Google Scholar] [CrossRef]
- Yadlowsky, S.; Hayward, R.A.; Sussman, J.B.; McClelland, R.L.; Min, Y.I.; Basu, S. Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk. Ann. Intern. Med. 2018, 169, 20–29. [Google Scholar] [CrossRef]
- Piko, P.; Kosa, Z.; Sandor, J.; Adany, R. Comparative risk assessment for the development of cardiovascular diseases in the Hungarian general and Roma population. Sci. Rep. 2021, 11, 3085. [Google Scholar] [CrossRef]
- Templeton, G.F.; Brian Pope, M.; Burney, L.L. The Usefulness of the Two-Step Normality Transformation in Retesting Existing Theories: Evidence on the Productivity Paradox. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 2021, 52, 53–64. [Google Scholar] [CrossRef]
- Jonckheere, A.R. A distribution-free k-sample test against ordered alternatives. Biometrika 1954, 41, 133–145. [Google Scholar] [CrossRef]
- Nordestgaard, B.G. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ. Res. 2016, 118, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Heianza, Y.; Ma, W.; Manson, J.E.; Rexrode, K.M.; Qi, L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J. Am. Heart Assoc. 2017, 6, 7. [Google Scholar] [CrossRef]
- Sayin, S.I.; Wahlstrom, A.; Felin, J.; Jantti, S.; Marschall, H.U.; Bamberg, K.; Angelin, B.; Hyotylainen, T.; Oresic, M.; Backhed, F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013, 17, 225–235. [Google Scholar] [CrossRef]
- Kettunen, J.; Demirkan, A.; Wurtz, P.; Draisma, H.H.; Haller, T.; Rawal, R.; Vaarhorst, A.; Kangas, A.J.; Lyytikainen, L.P.; Pirinen, M.; et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 2016, 7, 11122. [Google Scholar] [CrossRef]
- Laaksonen, M.M.L.; Mikkilä, V.; Räsänen, L.; Rontu, R.; Lehtimäki, T.J.; Viikari, J.S.A.; Raitakari, O.T.; The Cardiovascular Risk in Young Finns Study Group. Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. Br. J. Nutr. 2009, 102, 8–17. [Google Scholar] [CrossRef]
- Almon, R.; Sjöström, M.; Nilsson, T.K. Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. J. Nutr. Sci. 2013, 2, e26. [Google Scholar] [CrossRef]
- Saleem, G.N.; Gu, R.X.; Qu, H.X.; Khaskheli, G.B.; Rajput, I.R.; Qasim, M.; Chen, X. Therapeutic potential of popular fermented dairy products and its benefits on human health. Front. Nutr. 2024, 11, 1328620. [Google Scholar] [CrossRef]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Borné, Y.; Wirfält, E.; Ericson, U. Dairy Consumption, Lactase Persistence, and Mortality Risk in a Cohort From Southern Sweden. Front. Nutr. 2021, 8, 779034. [Google Scholar] [CrossRef] [PubMed]
- Solovieff, N.; Cotsapas, C.; Lee, P.H.; Purcell, S.M.; Smoller, J.W. Pleiotropy in complex traits: Challenges and strategies. Nat. Rev. Genet. 2013, 14, 483–495. [Google Scholar] [CrossRef]
- Szilagyi, A. Adaptation to Lactose in Lactase Non Persistent People: Effects on Intolerance and the Relationship between Dairy Food Consumption and Evalution of Diseases. Nutrients 2015, 7, 6751–6779. [Google Scholar] [CrossRef]
- Solomons, N.W. Fermentation, fermented foods and lactose intolerance. Eur. J. Clin. Nutr. 2002, 56, S50–S55. [Google Scholar] [CrossRef]
- Xu, H.T.; Fang, F.; Wu, K.Z.; Song, J.P.; Li, Y.Q.; Lu, X.Y.; Liu, J.C.; Zhou, L.Y.; Yu, W.Q.; Yu, F.; et al. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia. Microbiome 2023, 11, 262. [Google Scholar] [CrossRef]
- Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef]
- Matey-Hernandez, M.L.; Williams, F.M.K.; Potter, T.; Valdes, A.M.; Spector, T.D.; Menni, C. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol. Genom. 2018, 50, 117–126. [Google Scholar] [CrossRef]
- Elkanawati, R.Y.; Sumiwi, S.A.; Levita, J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des. Dev. Ther. 2024, 18, 3337–3360. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Charney, M. Bioactive Components in Milk and Dairy Products. J. Agric. Food Inf. 2010, 11, 358–359. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, C.; Yang, Y.F.; Huang, L.; Liu, Q.Y.; Li, L.; Zeng, Q.K.; Li, Z.P. Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites. Metabolites 2024, 14, 688. [Google Scholar] [CrossRef]
- Vinarova, L.; Vinarov, Z.; Tcholakova, S.; Denkov, N.D.; Stoyanov, S.; Lips, A. The mechanism of lowering cholesterol absorption by calcium studied by using an digestion model. Food Funct. 2016, 7, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Mulet-Cabero, A.I.; Wilde, P.J. Role of calcium on lipid digestion and serum lipids: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Auestad, N.; Layman, D.K. Dairy bioactive proteins and peptides: A narrative review. Nutr. Rev. 2021, 79, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.R.; Bhat, M.Y.; Dar, T.A. Casein Proteins: Structural and Functional Aspects. In Milk Proteins—From Structure to Biological Properties and Health Aspects; Gigli, I., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Hubácek, J.A.; Adámková, V.; Sedová, L.; Olisarová, V.; Adámek, V.; Tóthová, V. Frequency of adult type-associated lactase persistence LCT-13910C/T genotypes in the Czech/Slav and Czech Roma/Gypsy populations. Genet. Mol. Biol. 2017, 40, 450–452. [Google Scholar] [CrossRef]
- Hubacek, J.A.; Adamkova, V.; Sedova, L.; Olisarova, V.; Tothova, V. Adult type associated lactase persistence genotypes in Czech and Roma/Gypsy populations. Eur. J. Public Health 2016, 26, 464. [Google Scholar] [CrossRef]
- Song, Y.; Yang, Y.; Zhang, J.; Wang, Y.; He, W.; Zhang, X.; Zhu, J.; Lu, Z. The apoB100/apoAI ratio is independently associated with the severity of coronary heart disease: A cross sectional study in patients undergoing coronary angiography. Lipids Health Dis. 2015, 14, 150. [Google Scholar] [CrossRef]
- Sniderman, A.D.; Thanassoulis, G.; Glavinovic, T.; Navar, A.M.; Pencina, M.; Catapano, A.; Ference, B.A. Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA Cardiol. 2019, 4, 1287–1295. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. The apoB/apoA-I ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy--a review of the evidence. J. Intern. Med. 2006, 259, 493–519. [Google Scholar] [CrossRef]
rs4988235—T/T or T/C (Lactose Tolerance) | rs4988235—C/C (Lactose Intolerance) | p-Value | ||
---|---|---|---|---|
N = 364 | N = 401 | |||
Prevalence in % (95%CI) | ||||
Roma | 34.89 (30.13–39.89) | 60.10 (55.25–64.81) | <0.001 * | |
Women | 57.42 (52.30–62.42) | 70.32 (65.72–74.64) | <0.001 * | |
Lipid lowering treatment | 7.42 (5.06–10.45) | 10.72 (7.89–14.03) | 0.113 | |
Antihypertensive treatment | 28.85 (24.37–33.65) | 30.92 (26.55–35.57) | 0.531 | |
Antidiabetic treatment | 7.42 (5.06–10.45) | 9.48 (6.90–12.63) | 0.308 | |
Current smoker | 40.38 (25.44–45.48) | 56.36 (51.47–61.15) | <0.001 * | |
Lactose-free diet | 1.65 (0.69–3.37) | 1.50 (0.63–3.06) | 0.866 | |
Education | Primary | 45.05 (40.00–50.19) | 59.10 (54.24–63.83) | <0.001* |
Secondary | 42.58 (37.58–47.70) | 33.17 (28.569–37.88) | ||
College or university | 12.36 (9.28–16.04) | 7.73 (5.42–10.65) | ||
rs1532624 in the CETP gene | C/C—genotype | 30.77 (26.19–35.65) | 33.17 (28.69–37.88) | 0.633 |
A/C—genotype | 47.80 (42.71–52.93) | 44.39 (39.68–49.28) | ||
A/A—genotype | 21.43 (17.45–25.86) | 22.44 (18.57–26.72) | ||
rs5882 in the CETP gene | G/G—genotype | 12.15 (9.09–15.82) | 17.21 (13.76–21.13) | 0.046 * |
G/A—genotype | 48.34 (43.23–53.49) | 40.65 (35.92–45.51) | ||
A/A—genotype | 39.50 (34.57–44.61) | 42.14 (37.38–47.02) | ||
Average (95%CI) | p-value | |||
Age (years) | 43.51 (42.25–44.77) | 43.53 (42.33–44.74) | 0.945 | |
Waist circumference (cm) | 95.97 (94.36–97.58) | 94.93 (93.35–96.52) | 0.341 | |
BMI (kg/m2) | 27.64 (27.03–28.25) | 27.25 (26.62–27.87) | 0.292 | |
Systolic blood pressure (mmHg) | 125.10 (123.60–126.59) | 125.46 (123.75–127.17) | 0.672 | |
Diastolic blood pressure (mmHg) | 79.09 (78.18–79.99) | 79.32 (78.33–80.31) | 0.990 | |
Insulin level (mU/L) | 16.01 (14.27–17.75) | 16.44 (14.41–18.46) | 0.402 | |
Fasting glucose (mmol/L) | 5.25 (5.05–5.44) | 5.12 (4.96–5.27) | 0.281 | |
Uric acid (µmol/L) | 284.32 (276.67–291.98) | 263.02 (255.57–270.47) | <0.001 * | |
Creatinine (μmol/L) | 65.88 (64.43–67.32) | 62.39 (60.87–63.90) | <0.001 * | |
GGT (U/L) | 34.27 (31.15–37.39) | 36.64 (29.29–43.99) | 0.106 |
rs4988235–T/T or T/C (Lactose Tolerance) | rs4988235–C/C (Lactose Intolerance) | p-Value | |
---|---|---|---|
N = 361 | N = 395 | ||
Average (95%CI) | |||
Total cholesterol | 4.93 (4.82–5.04) | 5.00 (4.90–5.11) | 0.195 |
LDL-C (mmol/L) | 3.09 (2.99–3.18) | 3.20 (3.10–3.29) | 0.092 |
TG (mmol/L) | 1.63 (1.52–1.74) | 1.56 (1.46–1.66) | 0.349 |
HDL-C (mmol/L) | 1.34 (1.30–1.38) | 1.30 (1.26–1.33) | 0.093 |
LDL-C/HDL-C ratio | 2.53 (2.40–2.66) | 2.70 (2.58–2.82) | 0.053 |
TG/HDL-C ratio | 1.43 (1.30–1.56) | 1.41 (1.29–1.53) | 0.838 |
ApoAI (g/L) | 1.52 (1.50–1.55) | 1.48 (1.46–1.51) | 0.024 * |
ApoB100 (g/L) | 1.04 (1.01–1.07) | 1.08 (1.05–1.11) | 0.036 * |
ApoB100/ApoAI ratio | 0.71 (0.68–0.73) | 0.75 (0.73–0.78) | 0.008 * |
rs4988235–T/T or T/C (Lactose Tolerance) | rs4988235–C/C (Lactose Intolerance) | p-Value | |
---|---|---|---|
Average Risk in % (95%CI) | |||
SCORE | 2.23 (1.87–2.58) | 2.95 (2.48–3.43) | 0.039 * |
SCORE2 | 5.49 (4.79–6.19) | 7.09 (6.30–7.88) | 0.001 * |
PCE | 5.35 (4.63–6.06) | 6.76 (5.94–7.58) | 0.005 * |
RPCE | 4.15 (3.54–4.76) | 5.56 (4.74–6.39) | 0.017 * |
FRS–CVD | 4.04 (3.41–4.68) | 4.59 (3.97–5.22) | 0.098 |
FRS–CHD | 9.05 (8.04–10.07) | 10.75 (9.52–11.97) | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharrat Helu, N.; Al Ashkar, H.; Kovacs, N.; Adany, R.; Piko, P. Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI. Nutrients 2025, 17, 2741. https://doi.org/10.3390/nu17172741
Kharrat Helu N, Al Ashkar H, Kovacs N, Adany R, Piko P. Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI. Nutrients. 2025; 17(17):2741. https://doi.org/10.3390/nu17172741
Chicago/Turabian StyleKharrat Helu, Nihad, Habib Al Ashkar, Nora Kovacs, Roza Adany, and Peter Piko. 2025. "Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI" Nutrients 17, no. 17: 2741. https://doi.org/10.3390/nu17172741
APA StyleKharrat Helu, N., Al Ashkar, H., Kovacs, N., Adany, R., & Piko, P. (2025). Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI. Nutrients, 17(17), 2741. https://doi.org/10.3390/nu17172741