Multi-Species Synbiotic Supplementation Enhances Gut Microbial Diversity, Increases Urolithin A and Butyrate Production, and Reduces Inflammation in Healthy Adults: A Randomized, Placebo-Controlled Trial
Abstract
1. Introduction
2. Methods
2.1. Clinical Trial Design
2.2. Study Participants
2.3. Screening
2.4. Multi-Species Synbiotic Intervention
2.5. Vitals Signs
2.6. Blood Sampling
2.7. Stool Sample Collection and Fecal Metabolomic and Metagenomic Analysis
2.8. Urine Collection
2.9. Safety and Adverse Events
2.10. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Microbiome Profile
3.3. Urolithin a Production and Urolithin-Producing Population Dynamics
3.4. Butyrate
3.5. Inflammation
3.6. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gul, S.; Durante-Mangoni, E. Unraveling the Puzzle: Health Benefits of Probiotics—A Comprehensive Review. J. Clin. Med. 2024, 13, 1436. [Google Scholar] [CrossRef]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A comprehensive review of probiotics and human health-current prospective and applications. Front. Microbiol. 2025, 15, 1487641. [Google Scholar] [CrossRef]
- Ohland, C.L.; Macnaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Deng, F.; Li, Y.; Zhao, J. The gut microbiome of healthy long-living people. Aging 2019, 11, 289–290. [Google Scholar] [CrossRef]
- Tierney, B.T.; Versalovic, J.; Fasano, A.; Petrosino, J.F.; Chumpitazi, B.P.; Mayer, E.A.; Boetes, J.; Smits, G.; Parkar, S.G.; Voreades, N.; et al. Functional response to a microbial synbiotic in the gastrointestinal system of children: A randomized clinical trial. Pediatr. Res. 2023, 93, 2005–2013. [Google Scholar] [CrossRef]
- Giancola, M.L.; Fontana, A.; Panebianco, C.; Mazzarelli, A.; Beccacece, A.; De Marco, P.; Cocomazzi, G.; De Giuli, C.; Grassi, G.; Fontana, C.; et al. Efficacy of a Multistrain Synbiotic Treatment in Acute and Post-Acute COVID-19 Patients: A Double-Blind, Placebo-Controlled Randomized Trial. Microorganisms 2024, 12, 1443. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila-Gálvez, M.Á.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Mol. Nutr. Food Res. 2022, 66, 2101019. [Google Scholar] [CrossRef]
- Espín, J.C.; Jarrín-Orozco, M.P.; Osuna-Galisteo, L.; Ávila-Gálvez, M.Á.; Romo-Vaquero, M.; Selma, M.V. Perspective on the coevolutionary role of host and gut microbiota in polyphenol health effects: Metabotypes and precision health. Mol. Nutr. Food Res. 2024, 68, 2400526. [Google Scholar] [CrossRef]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Fouassier, A.M.; Blanco-Bose, W.; Evans, M.; Aebischer, P.; Auwerx, J.; Rinsch, C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep. Med. 2022, 3, 100633. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, H.; Yun, H.; Liu, J.; Song, G.; Teng, J.; Zou, D.; Lu, N.; Liu, C. Assessment of Urolithin A effects on muscle endurance, strength, inflammation, oxidative stress, and protein metabolism in male athletes with resistance training: An 8-week randomized, double-blind, placebo-controlled study. J. Int. Soc. Sports Nutr. 2024, 21, 2419388. [Google Scholar] [CrossRef]
- Liu, S.; D’Amico, D.; Shankland, E.; Bhayana, S.; Garcia, J.M.; Aebischer, P.; Rinsch, C.; Singh, A.; Marcinek, D.J. Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2144279. [Google Scholar] [CrossRef]
- Facchin, S.; Bertin, L.; Bonazzi, E.; Lorenzon, G.; De Barba, C.; Barberio, B.; Zingone, F.; Maniero, D.; Scarpa, M.; Ruffolo, C.; et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life 2024, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Peng, L.; Li, Z.R.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef]
- Zheng, Z.; Tang, J.; Hu, Y.; Zhang, W. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front. Med. 2022, 9, 961703. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, B.; Verne, G.N. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009, 146, 41–46. [Google Scholar] [CrossRef]
- Moens, F.; Verce, M.; De Vuyst, L. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int. J. Food Microbiol. 2017, 241, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, N.B.; Bryrup, T.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Pedersen, O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: A systematic review of randomized controlled trials. Genome Med. 2016, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Gargari, G.; Taverniti, V.; Balzaretti, S.; Ferrario, C.; Gardana, C.; Simonetti, P.; Guglielmetti, S. Consumption of a Bifidobacterium bifidum Strain for 4 Weeks Modulates Dominant Intestinal Bacterial Taxa and Fecal Butyrate in Healthy Adults. Appl. Environ. Microbiol. 2016, 82, 5850–5859. [Google Scholar] [CrossRef]
- Tierney, B.T.; Van den Abbeele, P.; Al-Ghalith, G.A.; Verstrepen, L.; Ghyselinck, J.; Calatayud, M.; Marzorati, M.; Gadir, A.A.; Daisley, B.; Reid, G.; et al. Capacity of a Microbial Synbiotic To Rescue the In Vitro Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics. Appl. Environ. Microbiol. 2023, 89, e0188022. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 23 July 2025).
- Del Piano, M.; Carmagnola, S.; Anderloni, A.; Andorno, S.; Ballarè, M.; Balzarini, M.; Montino, F.; Orsello, M.; Pagliarulo, M.; Sartori, M.; et al. The use of probiotics in healthy volunteers with evacuation disorders and hard stools: A double-blind, randomized, placebo-controlled study. J. Clin. Gastroenterol. 2010, 44 (Suppl. 1), S30–S34. [Google Scholar] [CrossRef]
- Ferrario, C.; Taverniti, V.; Milani, C.; Fiore, W.; Laureati, M.; De Noni, I.; Stuknyte, M.; Chouaia, B.; Riso, P.; Guglielmetti, S. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J. Nutr. 2014, 144, 1787–1796. [Google Scholar] [CrossRef]
- McOrist, A.L.; Miller, R.B.; Bird, A.R.; Keogh, J.B.; Noakes, M.; Topping, D.L.; Conlon, M.A. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J. Nutr. 2011, 141, 883–889. [Google Scholar] [CrossRef]
- Iemoli, E.; Trabattoni, D.; Parisotto, S.; Borgonovo, L.; Toscano, M.; Rizzardini, G.; Clerici, M.; Ricci, E.; Fusi, A.; De Vecchi, E.; et al. Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J. Clin. Gastroenterol. 2012, 46, S33–S40. [Google Scholar] [CrossRef]
- Rodes, L.; Khan, A.; Paul, A.; Coussa-Charley, M.; Marinescu, D.; Tomaro-Duchesneau, C.; Shao, W.; Kahouli, I.; Prakash, S. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: An in vitro study using a human colonic microbiota model. J. Microbiol. Biotechnol. 2013, 23, 518–526. [Google Scholar] [CrossRef]
- Magistrelli, L.; Amoruso, A.; Mogna, L.; Graziano, T.; Cantello, R.; Pane, M.; Comi, C. Probiotics May Have Beneficial Effects in Parkinson’s Disease: In vitro Evidence. Front. Immunol. 2019, 10, 969. [Google Scholar] [CrossRef] [PubMed]
- Olivares, M.; Laparra, M.; Sanz, Y. Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome. J. Agric. Food Chem. 2011, 59, 7666–7671. [Google Scholar] [CrossRef] [PubMed]
- Fong, F.L.Y.; Kirjavainen, P.V.; El-Nezami, H. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. Sci. Rep. 2016, 6, 22845. [Google Scholar] [CrossRef]
- Bron, P.A.; Catalayud, M.; Marzorati, M.; Pane, M.; Kartal, E.; Dhir, R.; Reid, G. Delivery of metabolically neuroactive probiotics to the human gut. Int. J. Mol. Sci. 2021, 22, 9122. [Google Scholar] [CrossRef]
- O’Toole, P.W.; Jeffery, I.B. Gut microbiota and aging. Science 2015, 350, 1214–1215. [Google Scholar] [CrossRef]
- Claesson, M.J.; Cusack, S.; O’Sullivan, O.; Greene-Diniz, R.; de Weerd, H.; Flannery, E.; Marchesi, J.R.; Falush, D.; Dinan, T.; Fitzgerald, G.; et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 2011, 108, 4586–4591. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Dunngalvin, G.; Kern, T.; Blanco-Bose, W.; Auwerx, J.; Aebischer, P.; Rinsch, C. Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur. J. Clin. Nutr. 2022, 76, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; García-Villalba, R.; González-Sarrías, A.; Beltrán, D.; Tomás-Barberán, F.A.; Espín, J.C.; Selma, M.V. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. J. Funct. Foods 2015, 17, 785–791. [Google Scholar] [CrossRef]
- Cosier, D.J.; Lambert, K.; Neale, E.P.; Probst, Y.; Charlton, K. The effect of oral synbiotics on the gut microbiota and inflammatory biomarkers in healthy adults: A systematic review and meta-analysis. Nutr. Rev. 2025, 83, e4–e24. [Google Scholar] [CrossRef]
- Jäger, R.; Purpura, M.; Stone, J.D.; Turner, S.M.; Anzalone, A.J.; Eimerbrink, M.J.; Pane, M.; Amoruso, A.; Rowlands, D.S.; Oliver, J.M. Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise. Nutrients 2016, 8, 642. [Google Scholar] [CrossRef]
- Hammonds, T.L.; Gathright, E.C.; Goldstein, C.M.; Penn, M.S.; Hughes, J.W. Effects of exercise on c-reactive protein in healthy patients and in patients with heart disease: A meta-analysis. Heart Lung 2016, 45, 273–282. [Google Scholar] [CrossRef]
Category | Criteria |
---|---|
Inclusion | (1) Healthy males and females between the ages of 18 to 55. (2) BMI of 18.5–29.9 kg/m2. (3) Waist circumference <102 cm in males or <88 cm in females. (4) Healthy as determined by laboratory results, medical history, and physical exam. (5) Agreed to abstain from use of fermented foods or beverages with live bacteria or products containing active cultures for the duration of the study. (6) Agreed to refrain from intake of nonsteroidal anti-inflammatory drugs. (7) Agreed to refrain from using drugs and supplements containing aluminum, magnesium, sorbitol, and/or mannitol. (8) Agreed to comply with all study procedures. (9) Agreed to maintain current level of physical activity throughout the study. (10) Female participant is not of child-bearing potential, defined as females who have undergone a sterilization procedure (e.g., hysterectomy, bilateral tubal ligation, total endometrial ablation), or females of child-bearing potential must have a negative baseline urine pregnancy test and agree to use a medically approved method of birth control for the duration of the study. (11) Provided voluntary, written, informed consent to participate in the study. |
Exclusion | (1) Women who are pregnant, breast feeding, or planning to become pregnant during the trial. (2) Allergy or sensitivity to the investigational product’s active or inactive ingredients. (3) Use of antibiotics or antifungals within three months prior to enrollment, including topical antibiotics or antifungals. (4) Clinically significant abnormal laboratory results at screening; (5) Use of proton pump inhibitors and H2-antagonists in the past 3 months. (6) Use of tobacco/nicotine products in the past 12 months. (7) Type I or type II diabetes mellitus or treatment with anti-diabetic medication. (8) Unstable metabolic diseases or chronic diseases. (9) Documented or self-reported current or pre-existing thyroid condition. (10) Unstable hypertension. (11) Current or history of any significant diseases of the gastrointestinal tract (including but not limited to inflammatory bowel disease and diverticulosis). (12) Use of implantable device such as a heart pacemaker. (13) Significant cardiovascular event in the past 6 months. (14) Major surgery, including abdominal, in the past 3 months or individuals who have planned surgery during the course of the trial. (15) Documented or self-reported autoimmune disease or an immune-compromised state. (16) Documented or self-reported HIV-, Hepatitis B-, and/or C-positive diagnosis. (17) History of or current diagnosis with kidney and/or liver diseases and/or serious infections, with the exception of symptom free kidney stones’ history for 6 months. (18) Self-reported medical or neuropsychological condition and/or cognitive impairment. (19) Self-reported blood/bleeding disorder. (20) Cancer in the five years prior to enrollment, except skin cancers completely excised with no chemotherapy or radiation with a follow up that is negative. (21) Clinically significant illness in the four weeks prior to randomization or screening. (22) Current use of any probiotic, prebiotic, and synbiotic product unless willing to undergo a 4-week washout prior to run-in period and abstain from consuming such products during the study. (23) Use of any cannabinoid products (including synthetics) within one month of study entry or during the study. (24) Alcohol or drug abuse within the last 12 months. (25) High alcohol intake (average of >2 standard drinks per day or >10 standard drinks per week). (26) Blood donation 30 days prior to screening, during the study, or a planned donation within 30 days of the last study visit. (27) Participation in other clinical research trials 30 days prior to screening. |
All (n = 32) | DS-01 (n = 16) | Placebo (n = 16) | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Age (years) | 33.6 | 9.1 | 37.0 | 9.3 | 34.9 | 10.4 |
Sex (% female) | 63 | NA | 63 | NA | 63 | NA |
Height (cm) | 168.9 | 10.6 | 171.9 | 7.8 | 167.5 | 11.2 |
Body Weight (kg) | 69.2 | 11.0 | 69.7 | 8.6 | 69.8 | 11.6 |
BMI (kg/m2) | 24.2 | 2.5 | 23.5 | 1.8 | 24.8 | 2.7 |
Marker | Study Arm | Day 0 | Day 91 | p-Value | p-Value |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Within Arms | Between Arms | ||
Bilirubin (µmol/L) | PLA | 2.3 ± 0.5 | 2.1 ± 0.5 | 0.51 | 0.08 (Day 0) |
Synbiotic | 2.0 ± 0.7 | 2.2 ± 0.5 | 0.07 | 0.71 (Day 91) | |
Creatinine (µmol/L) | PLA | 75.9 ± 14.7 | 77.3 ± 17.1 | 0.48 | 0.52 (Day 0) |
Synbiotic | 72.9 ± 8.7 | 75.3 ± 10.4 | 0.35 | 0.58 (Day 91) | |
Glucose (mmol/L) | PLA | 5.0 ± 0.3 | 5.1 ± 0.2 | 0.78 | 0.69 (Day 0) |
Synbiotic | 5.1 ± 0.4 | 5.1 ± 0.4 | 0.68 | 0.64 (Day 91) | |
HbA1c (%) | PLA | 5.3 ± 0.3 | 5.2 ± 0.3 | 0.18 | 0.05 (Day 0) |
Synbiotic | 5.5 ± 0.2 | 5.4 ± 0.2 | 0.03 | 0.10 (Day 91) | |
eGFR (mL/min/1.73 m2) | PLA | 100.1 ± 16.6 | 98.1 ± 17.9 | 0.51 | 0.90 (Day 0) |
Synbiotic | 100.8 ± 17.9 | 98.3 ± 14.0 | 0.07 | 0.90 (Day 91) | |
Sodium (mmol/L) | PLA | 139.3 ± 1.8 | 140.0 ± 2.9 | 0.36 | 0.10 (Day 0) |
Synbiotic | 140.6 ± 2.0 | 140.6 ± 1.7 | 0.97 | 0.45 (Day 91) | |
Potassium (mmol/L) | PLA | 4.7 ± 0.3 | 4.5 ± 0.4 | 0.17 | 0.61 (Day 0) |
Synbiotic | 4.7 ± 0.4 | 4.3 ± 0.3 | 0.01 | 0.07 (Day 91) | |
Chloride (mmol/L) | PLA | 100.4 ± 1.5 | 103.6 ± 3.8 | 0.71 | 0.50 (Day 0) |
Synbiotic | 104.0 ± 1.9 | 103.8 ± 1.6 | 0.81 | 0.89 (Day 91) | |
AST (U/L) | PLA | 19.4 ± 5.9 | 20.6 ± 4.9 | 0.53 | 0.39 (Day 0) |
Synbiotic | 17.9 ± 3.6 | 18.5 ± 4.1 | 0.51 | 0.41 (Day 91) | |
ALT (U/L) | PLA | 17.0 ± 8.1 | 18.4 ± 6.9 | 0.58 | 0.73 (Day 0) |
Synbiotic | 16.1 ± 6.6 | 17.8 ± 9.7 | 0.29 | 0.97 (Day 91) | |
Hemoglobin (g/L) | PLA | 142.4 ± 10.4 | 140.2 ± 11.7 | 0.13 | 0.05 (Day 0) |
Synbiotic | 134.4 ± 11.2 | 134.6 ± 11.0 | 0.98 | 0.17(Day 91) | |
Hematocrit (L/L) | PLA | 0.43 ± 0.03 | 0.42 ± 0.3 | 0.02 | 0.06 (Day 0) |
Synbiotic | 0.40 ± 0.0 | 0.40 ± 0.3 | 0.34 | 0.18 (Day 91) | |
RBC (×1021/L) | PLA | 4.7 ± 0.3 | 4.6 ± 0.4 | 0.03 | 0.03 (Day 0) |
Synbiotic | 4.4 ± 0.5 | 4.4 ± 0.4 | 0.14 | 0.06 (Day 91) | |
MCV (ft) | PLA | 88.8 ± 4.8 | 90.0 ± 4.8 | 0.84 | 0.24 (Day 0) |
Synbiotic | 91.6 ± 3.9 | 91.3 ± 4.0 | 0.89 | 0.22 (Day 91) | |
MCH (pg) | PLA | 30.0 ± 1.6 | 30.5 ± 1.7 | 0.16 | 0.21 (Day 0) |
Synbiotic | 30.7 ± 1.5 | 30.9 ± 1.6 | 0.24 | 0.27 (Day 91) | |
MCHC (g/L) | PLA | 335.4 ± 5.6 | 337.9 ± 6.3 | 0.25 | 0.80 (Day 0) |
Synbiotic | 334.8 ± 6.8 | 337.4 ± 7.4 | 0.23 | 0.84 (Day 91) | |
RDW (%) | PLA | 13.1 ± 0.6 | 13.0 ± 0.7 | 0.45 | 0.41 (Day 0) |
Synbiotic | 13.3 ± 0.7 | 13.4 ± 0.9 | 0.44 | 0.17(Day 91) | |
WBC (×109/L) | PLA | 1.7 ± 0.3 | 1.6 ± 0.3 | 0.13 | 0.06 (Day 0) |
Synbiotic | 1.6 ± 0.2 | 1.6 ± 0.2 | 0.29 | 0.89 (Day 91) | |
Platelets (×109/L) | PLA | 239.9 ± 55.4 | 223.8 ± 55.3 | 0.09 | 0.76 (Day 0) |
Synbiotic | 234.8 ± 42.3 | 234.1 ± 28.6 | 0.41 | 0.48 (Day 91) | |
MPV (fl) | PLA | 8.7 ± 0.6 | 9.1 ± 0.7 | 0.02 | 0.07 (Day 0) |
Synbiotic | 9.3 ± 1.0 | 9.3 ± 0.9 | 0.77 | 0.36 (Day 91) | |
Absolute Neutrophils (×109/L) | PLA | 1.2 ± 0.3 | 1.0 ± 0.3 | 0.11 | 0.13 (Day 0) |
Synbiotic | 1.0 ± 0.3 | 1.0 ± 0.2 | 0.07 | 0.84 (Day 91) | |
Absolute Lymphocytes (×109/L) | PLA | 1.7 ± 0.5 | 1.6 ± 0.5 | 0.28 | 0.09 (Day 0) |
Synbiotic | 1.4 ± 0.4 | 1.5 ± 0.4 | 0.29 | 0.72 (Day 91) | |
Absolute Monocytes (×109/L) | PLA | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.95 | 0.61 (Day 0) |
Synbiotic | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.70 | 0.78 (Day 91) | |
Absolute Eosinophils (×109/L) | PLA | 0.2 ± 0.2 | 0.2 ± 0.2 | 0.09 | 0.09 (Day 0) |
Synbiotic | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.22 | 0.06 (Day 91) | |
Absolute Basophils (×109/L) | PLA | 0.01 ± 0.02 | 0.01 ± 0.02 | 1.00 | 0.60 (Day 0) |
Synbiotic | 0.00 ± 0.02 | 0.02 ± 0.03 | 0.07 | 0.38 (Day 91) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napier, B.A.; Allegretti, J.R.; Feuerstadt, P.; Kelly, C.R.; Van Hise, N.W.; Jäger, R.; Kassam, Z.; Reid, G. Multi-Species Synbiotic Supplementation Enhances Gut Microbial Diversity, Increases Urolithin A and Butyrate Production, and Reduces Inflammation in Healthy Adults: A Randomized, Placebo-Controlled Trial. Nutrients 2025, 17, 2734. https://doi.org/10.3390/nu17172734
Napier BA, Allegretti JR, Feuerstadt P, Kelly CR, Van Hise NW, Jäger R, Kassam Z, Reid G. Multi-Species Synbiotic Supplementation Enhances Gut Microbial Diversity, Increases Urolithin A and Butyrate Production, and Reduces Inflammation in Healthy Adults: A Randomized, Placebo-Controlled Trial. Nutrients. 2025; 17(17):2734. https://doi.org/10.3390/nu17172734
Chicago/Turabian StyleNapier, Brooke A., Jessica R. Allegretti, Paul Feuerstadt, Colleen R. Kelly, Nicholas W. Van Hise, Ralf Jäger, Zain Kassam, and Gregor Reid. 2025. "Multi-Species Synbiotic Supplementation Enhances Gut Microbial Diversity, Increases Urolithin A and Butyrate Production, and Reduces Inflammation in Healthy Adults: A Randomized, Placebo-Controlled Trial" Nutrients 17, no. 17: 2734. https://doi.org/10.3390/nu17172734
APA StyleNapier, B. A., Allegretti, J. R., Feuerstadt, P., Kelly, C. R., Van Hise, N. W., Jäger, R., Kassam, Z., & Reid, G. (2025). Multi-Species Synbiotic Supplementation Enhances Gut Microbial Diversity, Increases Urolithin A and Butyrate Production, and Reduces Inflammation in Healthy Adults: A Randomized, Placebo-Controlled Trial. Nutrients, 17(17), 2734. https://doi.org/10.3390/nu17172734