Potential Effects of Low-Calorie Sweeteners on Human Health
Abstract
1. Introduction

1.1. Sucralose
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Meta-analysis | Body weight | Positive association with weight gain | Laviada-Molina et al., 2020 [9] |
| RCT | Glycemic responses | Impaired insulin sensitivity and dysregulated glycemic responses | Dalenberg, J.R., et al., 2020 [10] |
| Case control | Disease risks | Increased cardiovascular risk | Debras, C., et al., 2022 [12] |
1.2. Acesulfame Potassium (AceK)
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| RCT | Glycemic responses | Interference of oral glucose tolerance | Ayoub-Charette et al., 2023 [19] |
| Case control | Disease risks | Increased coronary heart disease risk | Debras, C., et al., 2022 [12] |
| Case control | Disease risks | Increase the risk of symptomatic carotid atherosclerosis | Stø, K., et al., 2023 [20] |
1.3. Aspartame
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Case control | Glycemic responses | No significant effects | Bonnet, F., et al., 2018 [30] |
| Cohort | Glycemic responses | No significant effects | Bryant, C.E., et al., 2014 [31] |
| RCT | Glycemic responses | No significant effects | Higgins, K.A., R.V. Considine, and R.D. Mattes, 2018 [32] |
| RCT | Glycemic responses | No significant effects | Olalde-Mendoza, L. and Y.E. Moreno-González, 2013 [33] |
| RCT | Glycemic responses | No significant effects | Tey, S.L., et al., 2017 [34] |
| Case control | Disease risks | Higher risk of cerebrovascular disease | Debras, C., et al., 2022 [12] |
| Case control | Disease risks | Higher risk of cerebrovascular disease | Bernstein, A.M., et al., 2012 [36] |
| Case control | Disease risks | Increased cancer risk | Debras, C., et al., 2022 [37] |
| Meta-analysis | Body weight | No effect on body weight changes in the group of NNS | Rogers, P.J. and K.M. Appleton, 2021 [35] |
1.4. Saccharin
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Cohort | Glycemic responses | No significant effect | Bryant, C.E., et al., 2014 [31] |
| RCT | Glycemic responses | No significant effect | Orku, S.E., G. Suyen, and M. Bas, 2023 [41] |
| Meta-analysis | Body weight | No significant effect | Rogers, P.J. and K.M. Appleton, 2021 [35] |
| RCT | Body weight | May increase body weight | Higgins, K.A. and R.D. Mattes, 2019 [43] |
| Case control | Disease risks | Increase the risk of mortality, particularly cardiovascular disease mortality and cancer mortality | Gao, Y., et al., 2024 [44] |
| Case control | Disease risks | Associated with increased degree of carotid stenosis | Stø, K., et al., 2023 [20] |
| Systemic review | Disease risks | No evidence of cancer risk associated | Pavanello, S., et al., 2023 [46] |
| Meta-analysis | Disease risks | May be associated with endometrial cancer | Li, H., et al., 2024 [48] |
1.5. Stevioside
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Meta-analysis | Glycemic responses | May provide beneficial effects on glucose metabolism | Bai, X., et al., 2024 [58] |
| RCT | Glycemic responses | Significant decrease in postprandial blood glucose levels | Anton, S.D., et al., 2010 [59] |
| RCT | Glycemic responses | Significant decrease in postprandial blood glucose levels | Gregersen, S., et al., 2004 [60] |
1.6. Erythritol
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Cohort | Glycemic responses | Does not increase plasma glucose or insulin levels | Noda, K., K. Nakayama, and T. Oku, 1994 [67] |
| RCT | Glycemic responses | Does not increase plasma glucose or insulin levels | Wölnerhanssen, B.K., et al., 2016 [68] |
| Cohort | Body weight | No significant changes in body weight | Tetzloff, W., et al., 1996 [69] |
| Cohort | Body weight | No significant changes in body weight | Ishikawa, M., et al., 1996 [70] |
| RCT | Serum lipid profile | No significant effects on lipid profile | Teysseire, F., et al., 2023 [71] |
| Cohort | Disease risks | Strongly associated with a higher 3-year risk of major adverse cardiovascular events | Witkowski, M., et al., 2023 [65] |
1.7. Xylitol
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Cohort | Glycemic responses | Minimal effects on postprandial glucose and insulin levels | Natah, S.S., et al., 1997 [75] |
| Cohort | Disease risks | Associated with an increased 3-year risk of major adverse cardiovascular events | Witkowski, M., et al., 2024 [79] |
1.8. Maltitol
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Cohort | Glycemic responses | Significantly lower blood sugar when following an acute oral dose | Secchi, A., et al., 1986 [82] |
| Meta-analysis | Body weight | Modest or neutral effects on body weight when they are used as true substitutes for caloric sugars rather than simply added to the diet | Miller, P.E. and V. Perez, 2014 [83] |
1.9. Sorbitol
| Category | Measured Parameter | Conclusion | Author, Year [Ref.] |
|---|---|---|---|
| Cohort | Glycemic responses | No significant effects on blood glucose levels | Ellis, F.W., and JC, Jr Krantz., 1941 [86] |
2. Possible Mechanisms of LCS in the Regulation of Metabolic Homeostasis
2.1. Receptor-Mediated Pathway
2.2. LCS Alters Gut Microbiome
3. Conclusions
| Low-Calorie Sweeteners | Current Consumption | Summary |
|---|---|---|
| Sucralose | Most frequently | May impair insulin sensitivity, alter gut microbiota, and affect liver and lipid metabolism |
| AceK | Most frequently | May associate with impaired glucose tolerance, cardiovascular risk, and possible cancer-promoting effects |
| Aspartame | Declining in new products but still widely present | May impair glucose tolerance, alter gut microbiota, and increas risks of cardiovascular disease and cancer |
| Saccharin | Less | Limited metabolic benefits but rising concerns about its potential effects on cardiovascular health and cancer risk |
| Stevioside | Rising | Potential metabolic benefits, including improved glycemic control and lipid regulation, with preliminary evidence suggesting antitumor properties |
| Erythritol | Rising | Minimal impact on glucose and lipid metabolism, but may increase cardiovascular risk |
| Xylitol | Commonly consumed in daily life, particularly in chewing gum and toothpaste | Minimal effects on glucose metabolism, potential lipid benefits, but may increase cardiovascular risk |
| Maltitol | Widely present in food formulations but lacking specific statistical data | Reduced glycemic effects, no known toxicological risks, but high doses may cause gastrointestinal discomfort |
| Sorbitol | Widely present in food formulations but lacking specific statistical data | Potential glycemic benefits, but limited human data and gastrointestinal risks at high doses |
Funding
Conflicts of Interest
References
- Evaluation of Certain Food Additives and Contaminants. Thirty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization Technical Report Series 806; World Health Organization: Geneva, Switzelrand, 1991; pp. 1–52.
- Grotz, V.L.; Munro, I.C. An overview of the safety of sucralose. Regul. Toxicol. Pharmacol. 2009, 55, 1–5. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gil, A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Adv. Nutr. 2019, 10 (Suppl. S1), S31–S48. [Google Scholar] [CrossRef]
- Thomson, P.; Santibañez, R.; Aguirre, C.; Galgani, J.E.; Garrido, D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br. J. Nutr. 2019, 122, 856–862. [Google Scholar] [CrossRef]
- Wu, H.T.; Lin, C.H.; Pai, H.L.; Chen, Y.C.; Cheng, K.P.; Kuo, H.Y.; Li, C.H.; Ou, H.Y. Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Front. Nutr. 2022, 9, 823723. [Google Scholar] [CrossRef]
- Khamise, N.A.; Tayel, D.I.; Helmy, M.W.; Aborhyem, S. Effect of Aspartame and Sucralose Artificial Sweeteners on Weight and Lipid Profile of Male Albino Rats. J. High. Inst. Public Health 2020, 50, 87–100. [Google Scholar] [CrossRef]
- Shi, Q.; Xu, L.; Cai, L.; Deng, S.; Qi, X. Sucralose regulates postprandial blood glucose in mice through intestinal sweet taste receptors Tas1r2/Tas1r3. J. Sci. Food Agric. 2024, 104, 2233–2244. [Google Scholar] [CrossRef]
- Singh, S.A.; Singh, S.; Begum, R.F.; Vijayan, S.; Vellapandian, C. Unveiling the profound influence of sucralose on metabolism and its role in shaping obesity trends. Front. Nutr. 2024, 11, 1387646. [Google Scholar] [CrossRef] [PubMed]
- Laviada-Molina, H.; Molina-Segui, F.; Pérez-Gaxiola, G.; Cuello-García, C.; Arjona-Villicaña, R.; Espinosa-Marrón, A.; Martinez-Portilla, R.J. Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obes. Rev. 2020, 21, e13020. [Google Scholar] [CrossRef]
- Dalenberg, J.R.; Patel, B.P.; Denis, R.; Veldhuizen, M.G.; Nakamura, Y.; Vinke, P.C.; Luquet, S.; Small, D.M. Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metab. 2020, 31, 493–502.e7. [Google Scholar] [CrossRef]
- Ahmad, S.Y.; Friel, J.K.; MacKay, D.S. The effect of the artificial sweeteners on glucose metabolism in healthy adults: A randomized, double-blinded, crossover clinical trial. Appl. Physiol. Nutr. Metab. 2020, 45, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Debras, C.; Chazelas, E.; Sellem, L.; Porcher, R.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial sweeteners and risk of cardiovascular diseases: Results from the prospective NutriNet-Santé cohort. BMJ 2022, 378, e071204. [Google Scholar] [CrossRef]
- Renwick, A.G. The metabolism of intense sweeteners. Xenobiotica 1986, 16, 1057–1071. [Google Scholar] [CrossRef]
- Schiffman, S.S. Rationale for Further Medical and Health Research on High-Potency Sweeteners. Chem. Senses 2012, 37, 671–679. [Google Scholar] [CrossRef]
- Rathaus, M.; Azem, L.; Livne, R.; Ron, S.; Ron, I.; Hadar, R.; Efroni, G.; Amir, A.; Braun, T.; Haberman, Y.; et al. Long-term metabolic effects of non-nutritive sweeteners. Mol. Metab. 2024, 88, 101985. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Li, H.Y.; Wang, S.H.; Chen, Y.H.; Chen, Y.C.; Wu, H.T. Consumption of Non-Nutritive Sweetener, Acesulfame Potassium Exacerbates Atherosclerosis through Dysregulation of Lipid Metabolism in ApoE−/− Mice. Nutrients 2021, 13, 3984. [Google Scholar] [CrossRef]
- Wiklund, A.E.; Guo, X.; Gorokhova, E. Cardiotoxic and neurobehavioral effects of sucralose and acesulfame in Daphnia: Toward understanding ecological impacts of artificial sweeteners. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 273, 109733. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kwon, E.J.; Park, K.G.; Jin, J.; Byun, J.K. Acesulfame potassium upregulates PD-L1 in HCC cells by attenuating autophagic degradation. Biochem. Biophys. Res. Commun. 2024, 711, 149921. [Google Scholar] [CrossRef]
- Ayoub-Charette, S.; McGlynn, N.D.; Lee, D.; Khan, T.A.; Blanco Mejia, S.; Chiavaroli, L.; Kavanagh, M.E.; Seider, M.; Taibi, A.; Chen, C.T.; et al. Rationale, Design and Participants Baseline Characteristics of a Crossover Randomized Controlled Trial of the Effect of Replacing SSBs with NSBs versus Water on Glucose Tolerance, Gut Microbiome and Cardiometabolic Risk in Overweight or Obese Adult SSB Consumer: Strategies to Oppose SUGARS with Non-Nutritive Sweeteners or Water (STOP Sugars NOW) Trial and Ectopic Fat Sub-Study. Nutrients 2023, 15, 1238. [Google Scholar] [CrossRef]
- Stø, K.; Skagen, K.R.; Valeur, J.; Yang, K.; Bjerkeli, V.; Aukrust, P.; Skjelland, M.; Halvorsen, B. Increased plasma levels of non-sugar sweeteners in patients with symptomatic carotid atherosclerosis. Scand. Cardiovasc. J. 2023, 57, 2205068. [Google Scholar] [CrossRef]
- Czarnecka, K.; Pilarz, A.; Rogut, A.; Maj, P.; Szymańska, J.; Olejnik, Ł.; Szymański, P. Aspartame-True or False? Narrative Review of Safety Analysis of General Use in Products. Nutrients 2021, 13, 1957. [Google Scholar] [CrossRef] [PubMed]
- Palmnäs, M.S.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef]
- Nettleton, J.E.; Cho, N.A.; Klancic, T.; Nicolucci, A.C.; Shearer, J.; Borgland, S.L.; Johnston, L.A.; Ramay, H.R.; Noye Tuplin, E.; Chleilat, F.; et al. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut 2020, 69, 1807–1817. [Google Scholar] [CrossRef]
- Soffritti, M.; Belpoggi, F.; Degli Esposti, D.; Lambertini, L.; Tibaldi, E.; Rigano, A. First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environ. Health Perspect. 2006, 114, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Soffritti, M.; Belpoggi, F.; Tibaldi, E.; Esposti, D.D.; Lauriola, M. Life-span exposure to low doses of aspartame beginning during prenatal life increases cancer effects in rats. Environ. Health Perspect. 2007, 115, 1293–1297. [Google Scholar] [CrossRef]
- Soffritti, M.; Belpoggi, F.; Manservigi, M.; Tibaldi, E.; Lauriola, M.; Falcioni, L.; Bua, L. Aspartame administered in feed, beginning prenatally through life span, induces cancers of the liver and lung in male Swiss mice. Am. J. Ind. Med. 2010, 53, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Belpoggi, F.; Soffritti, M.; Padovani, M.; Degli Esposti, D.; Lauriola, M.; Minardi, F. Results of long-term carcinogenicity bioassay on Sprague-Dawley rats exposed to aspartame administered in feed. Ann. N. Y. Acad. Sci. 2006, 1076, 559–577. [Google Scholar] [CrossRef]
- Tibaldi, E.; Gnudi, F.; Panzacchi, S.; Mandrioli, D.; Vornoli, A.; Manservigi, M.; Sgargi, D.; Falcioni, L.; Bua, L.; Belpoggi, F. Identification of aspartame-induced haematopoietic and lymphoid tumours in rats after lifetime treatment. Acta Histochem. 2020, 122, 151548. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Straif, K. Aspartame and cancer—New evidence for causation. Environ. Health 2021, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Tavenard, A.; Esvan, M.; Laviolle, B.; Viltard, M.; Lepicard, E.M.; Lainé, F. Consumption of a Carbonated Beverage with High-Intensity Sweeteners Has No Effect on Insulin Sensitivity and Secretion in Nondiabetic Adults. J. Nutr. 2018, 148, 1293–1299. [Google Scholar] [CrossRef]
- Bryant, C.E.; Wasse, L.K.; Astbury, N.; Nandra, G.; McLaughlin, J.T. Non-nutritive sweeteners: No class effect on the glycaemic or appetite responses to ingested glucose. Eur. J. Clin. Nutr. 2014, 68, 629–631. [Google Scholar] [CrossRef]
- Higgins, K.A.; Considine, R.V.; Mattes, R.D. Aspartame Consumption for 12 Weeks Does Not Affect Glycemia, Appetite, or Body Weight of Healthy, Lean Adults in a Randomized Controlled Trial. J. Nutr. 2018, 148, 650–657. [Google Scholar] [CrossRef]
- Olalde-Mendoza, L.; Moreno-González, Y.E. Modification of fasting blood glucose in adults with diabetes mellitus type 2 after regular soda and diet soda intake in the State of Querétaro, Mexico. Arch. Latinoam. Nutr. 2013, 63, 142–147. [Google Scholar]
- Tey, S.L.; Salleh, N.B.; Henry, C.J.; Forde, C.G. Effects of non-nutritive (artificial vs. natural) sweeteners on 24-h glucose profiles. Eur. J. Clin. Nutr. 2017, 71, 1129–1132. [Google Scholar] [CrossRef]
- Rogers, P.J.; Appleton, K.M. The effects of low-calorie sweeteners on energy intake and body weight: A systematic review and meta-analyses of sustained intervention studies. Int. J. Obes. 2021, 45, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda consumption and the risk of stroke in men and women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef]
- Debras, C.; Chazelas, E.; Srour, B.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaesse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; et al. Artificial sweeteners and cancer risk: Results from the NutriNet-Sante population-based cohort study. PLoS Med. 2022, 19, e1003950. [Google Scholar] [CrossRef]
- Sweatman, T.W.; Renwick, A.G.; Burgess, C.D. The pharmacokinetics of saccharin in man. Xenobiotica 1981, 11, 531–540. [Google Scholar] [CrossRef]
- Whysner, J.; Williams, G.M. Saccharin mechanistic data and risk assessment: Urine composition, enhanced cell proliferation, and tumor promotion. Pharmacol. Ther. 1996, 71, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.L. Toxicology of saccharin. Fundam. Appl. Toxicol. 1984, 4, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Orku, S.E.; Suyen, G.; Bas, M. The effect of regular consumption of four low- or no-calorie sweeteners on glycemic response in healthy women: A randomized controlled trial. Nutrition 2023, 106, 111885. [Google Scholar] [CrossRef]
- Wilk, K.; Korytek, W.; Pelczyńska, M.; Moszak, M.; Bogdański, P. The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients 2022, 14, 1261. [Google Scholar] [CrossRef]
- Higgins, K.A.; Mattes, R.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 2019, 109, 1288–1301. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, L.; Zhang, Y.; Li, X.; Liu, L. Associations of saccharin intake with all-cause, cardiovascular and cancer mortality risk in USA adults. Br. J. Nutr. 2024, 132, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Cohen, Y.; Valdés-Mas, R.; Mor, U.; Dori-Bachash, M.; Federici, S.; Zmora, N.; Leshem, A.; Heinemann, M.; Linevsky, R.; et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022, 185, 3307–3328.e19. [Google Scholar] [CrossRef]
- Pavanello, S.; Moretto, A.; La Vecchia, C.; Alicandro, G. Non-sugar sweeteners and cancer: Toxicological and epidemiological evidence. Regul. Toxicol. Pharmacol. 2023, 139, 105369. [Google Scholar] [CrossRef]
- Palomar-Cros, A.; Straif, K.; Romaguera, D.; Aragonés, N.; Castaño-Vinyals, G.; Martin, V.; Moreno, V.; Gómez-Acebo, I.; Guevara, M.; Aizpurua, A.; et al. Consumption of aspartame and other artificial sweeteners and risk of cancer in the Spanish multicase-control study (MCC-Spain). Int. J. Cancer 2023, 153, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; He, Y.; Huang, J.; Yao, J.; Zhuang, X. Association between consumption of sweeteners and endometrial cancer risk: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2024, 131, 63–72. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Degen, G.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; Husøy, T.; et al. Safety evaluation of the food additive steviol glycosides, predominantly Rebaudioside M, produced by fermentation using Yarrowia lipolytica VRM. EFSA J. 2023, 21, e8387. [Google Scholar] [CrossRef] [PubMed]
- Geuns, J.M.; Buyse, J.; Vankeirsbilck, A.; Temme, E.H. Metabolism of stevioside by healthy subjects. Exp. Biol. Med. 2007, 232, 164–173. [Google Scholar]
- Hossain, M.S.; Alam, M.B.; Asadujjaman, M.; Islam, M.M.; Rahman, M.A.; Islam, M.A.; Islam, A. Antihyperglycemic and antihyperlipidemic effects of different fractions of Stevia rebaudiana leaves in alloxan induced diabetic rats. Int. J. Pharm. Sci. Res. 2011, 2, 1722–1729. [Google Scholar]
- Ahmad, U.; Ahmad, R.S.; Arshad, M.S.; Mushtaq, Z.; Hussain, S.M.; Hameed, A. Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. Lipids Health Dis. 2018, 17, 175. [Google Scholar] [CrossRef]
- Assaei, R.; Mokarram, P.; Dastghaib, S.; Darbandi, S.; Darbandi, M.; Zal, F.; Akmali, M.; Ranjbar Omrani, G.H. Hypoglycemic Effect of Aquatic Extract of Stevia in Pancreas of Diabetic Rats: PPARγ-dependent Regulation or Antioxidant Potential. Avicenna J. Med. Biotechnol. 2016, 8, 65–74. [Google Scholar]
- Chen, C.; Na, X.; Wang, L.; Yu, R. High-throughput screening identifies stevioside as a potent agent to induce apoptosis in bladder cancer cells. Biochem. Pharmacol. 2022, 203, 115166. [Google Scholar] [CrossRef]
- Ren, H.P.; Yin, X.Y.; Yu, H.Y.; Xiao, H.F. Stevioside induced cytotoxicity in colon cancer cells via reactive oxygen species and mitogen-activated protein kinase signaling pathways-mediated apoptosis. Oncol. Lett. 2017, 13, 2337–2343. [Google Scholar] [CrossRef]
- Khare, N.; Chandra, S. Stevioside mediated chemosensitization studies and cytotoxicity assay on breast cancer cell lines MDA-MB-231 and SKBR3. Saudi J. Biol. Sci. 2019, 26, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Sengupta, S.; Bandyopadhyay, T.K.; Bhattacharyya, A. Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7. Nutr. Cancer 2012, 64, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Qu, H.; Zhang, J.; Li, L.; Zhang, C.; Li, S.; Li, G. Effect of steviol glycosides as natural sweeteners on glucose metabolism in adult participants. Food Funct. 2024, 15, 3908–3919. [Google Scholar] [CrossRef]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef]
- Gregersen, S.; Jeppesen, P.B.; Holst, J.J.; Hermansen, K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004, 53, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Mogra, R.; Upadhyay, B. Effect of stevia extract intervention on lipid profile. Stud. Ethno-Med. 2009, 3, 137–140. [Google Scholar] [CrossRef]
- Regnat, K.; Mach, R.L.; Mach-Aigner, A.R. Erythritol as sweetener-wherefrom and whereto? Appl. Microbiol. Biotechnol. 2018, 102, 587–595. [Google Scholar] [CrossRef]
- Munro, I.C.; Berndt, W.O.; Borzelleca, J.F.; Flamm, G.; Lynch, B.S.; Kennepohl, E.; Bär, E.A.; Modderman, J. Erythritol: An interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicol. 1998, 36, 1139–1174. [Google Scholar] [CrossRef]
- Soetan, O.A.; Ajao, F.O.; Ajayi, A.F. Blood glucose lowering and anti-oxidant potential of erythritol: An in vitro and in vivo study. J. Diabetes Metab. Disord. 2023, 22, 1217–1229. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Nemet, I.; Alamri, H.; Wilcox, J.; Gupta, N.; Nimer, N.; Haghikia, A.; Li, X.S.; Wu, Y.; Saha, P.P.; et al. The artificial sweetener erythritol and cardiovascular event risk. Nat. Med. 2023, 29, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Mazi, T.A.; Stanhope, K.L. Erythritol: An In-Depth Discussion of Its Potential to Be a Beneficial Dietary Component. Nutrients 2023, 15, 204. [Google Scholar] [CrossRef]
- Noda, K.; Nakayama, K.; Oku, T. Serum glucose and insulin levels and erythritol balance after oral administration of erythritol in healthy subjects. Eur. J. Clin. Nutr. 1994, 48, 286–292. [Google Scholar]
- Wölnerhanssen, B.K.; Cajacob, L.; Keller, N.; Doody, A.; Rehfeld, J.F.; Drewe, J.; Peterli, R.; Beglinger, C.; Meyer-Gerspach, A.C. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E1053–E1061. [Google Scholar] [CrossRef]
- Tetzloff, W.; Dauchy, F.; Medimagh, S.; Carr, D.; Bär, A. Tolerance to subchronic, high-dose ingestion of erythritol in human volunteers. Regul. Toxicol. Pharmacol. 1996, 24, S286–S295. [Google Scholar] [CrossRef]
- Ishikawa, M.; Miyashita, M.; Kawashima, Y.; Nakamura, T.; Saitou, N.; Modderman, J. Effects of oral administration of erythritol on patients with diabetes. Regul. Toxicol. Pharmacol. 1996, 24, S303–S308. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, F.; Bordier, V.; Budzinska, A.; Van Oudenhove, L.; Weltens, N.; Beglinger, C.; Wölnerhanssen, B.K.; Meyer-Gerspach, A.C. Metabolic Effects and Safety Aspects of Acute D-allulose and Erythritol Administration in Healthy Subjects. Nutrients 2023, 15, 458. [Google Scholar] [CrossRef]
- Salli, K.; Lehtinen, M.J.; Tiihonen, K.; Ouwehand, A.C. Xylitol’s Health Benefits beyond Dental Health: A Comprehensive Review. Nutrients 2019, 11, 1813. [Google Scholar] [CrossRef]
- Storey, D.; Lee, A.; Bornet, F.; Brouns, F. Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. Eur. J. Clin. Nutr. 2007, 61, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [PubMed]
- Natah, S.S.; Hussien, K.R.; Tuominen, J.A.; Koivisto, V.A. Metabolic response to lactitol and xylitol in healthy men. Am. J. Clin. Nutr. 1997, 65, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, K.K. Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care Professionals. Int. J. Dent. 2016, 2016, 5967907. [Google Scholar] [CrossRef]
- Tamura, M.; Hoshi, C.; Hori, S. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice. Int. J. Mol. Sci. 2013, 14, 23993–24007. [Google Scholar] [CrossRef]
- Uebanso, T.; Kano, S.; Yoshimoto, A.; Naito, C.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients 2017, 9, 756. [Google Scholar] [CrossRef]
- Witkowski, M.; Nemet, I.; Li, X.S.; Wilcox, J.; Ferrell, M.; Alamri, H.; Gupta, N.; Wang, Z.; Tang, W.H.W.; Hazen, S.L. Xylitol is prothrombotic and associated with cardiovascular risk. Eur. Heart J. 2024, 45, 2439–2452. [Google Scholar] [CrossRef]
- Nabors, L.O. Sweet choices: Sugar replacements for foods and beverages. Food Technol. 2002, 56, 28–34. [Google Scholar]
- Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv. Nutr. 2017, 8, 587–596. [Google Scholar] [CrossRef]
- Secchi, A.; Pontiroli, A.E.; Cammelli, L.; Bizzi, A.; Cini, M.; Pozza, G. Effects of oral administration of maltitol on plasma glucose, plasma sorbitol, and serum insulin levels in man. Klin. Wochenschr. 1986, 64, 265–269. [Google Scholar] [CrossRef]
- Miller, P.E.; Perez, V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Chukwuma, C.I.; Islam, M.S. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats. Appl. Physiol. Nutr. Metab. 2017, 42, 377–383. [Google Scholar] [CrossRef]
- Li, C.H.; Wang, C.T.; Lin, Y.J.; Kuo, H.Y.; Wu, J.S.; Hong, T.C.; Chang, C.J.; Wu, H.T. Long-term consumption of the sugar substitute sorbitol alters gut microbiome and induces glucose intolerance in mice. Life Sci. 2022, 305, 120770. [Google Scholar] [CrossRef] [PubMed]
- Ellis, F.W.; Krantz, J.C., Jr. Sugar alcohols. 22. Metabolism and toxicity studies with mannitol and sorbitol in man and animals. J. Biol. Chem. 1941, 141, 147–154. [Google Scholar] [CrossRef]
- Godswill, A.C. Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. Int. J. Adv. Acad. Res. 2017, 3, 31–66. [Google Scholar]
- Kim, S.K.; Guthrie, B.; Goddard, W.A., 3rd. Ligand-Dependent and G Protein-Dependent Properties for the Sweet Taste Heterodimer, TAS1R2/1R3. J. Phys. Chem. B 2024, 128, 8927–8932. [Google Scholar] [CrossRef]
- Just, T.; Pau, H.W.; Engel, U.; Hummel, T. Cephalic phase insulin release in healthy humans after taste stimulation? Appetite 2008, 51, 622–627. [Google Scholar] [CrossRef]
- Kokrashvili, Z.; Mosinger, B.; Margolskee, R.F. T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann. N. Y. Acad. Sci. 2009, 1170, 91–94. [Google Scholar] [CrossRef]
- Daly, K.; Al-Rammahi, M.; Arora, D.K.; Moran, A.W.; Proudman, C.J.; Ninomiya, Y.; Shirazi-Beechey, S.P. Expression of sweet receptor components in equine small intestine: Relevance to intestinal glucose transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R199–R208. [Google Scholar] [CrossRef] [PubMed]
- Margolskee, R.F.; Dyer, J.; Kokrashvili, Z.; Salmon, K.S.; Ilegems, E.; Daly, K.; Maillet, E.L.; Ninomiya, Y.; Mosinger, B.; Shirazi-Beechey, S.P. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl. Acad. Sci. USA 2007, 104, 15075–15080. [Google Scholar] [CrossRef]
- Mace, O.J.; Affleck, J.; Patel, N.; Kellett, G.L. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 2007, 582, 379–392. [Google Scholar] [CrossRef]
- Smith, K.; Karimian Azari, E.; LaMoia, T.E.; Hussain, T.; Vargova, V.; Karolyi, K.; Veldhuis, P.P.; Arnoletti, J.P.; de la Fuente, S.G.; Pratley, R.E.; et al. T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways. Mol. Metab. 2018, 17, 98–111. [Google Scholar] [CrossRef]
- Mace, O.J.; Lister, N.; Morgan, E.; Shepherd, E.; Affleck, J.; Helliwell, P.; Bronk, J.R.; Kellett, G.L.; Meredith, D.; Boyd, R.; et al. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J. Physiol. 2009, 587, 195–210. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shigemura, N.; Ninomiya, Y.; Kojima, I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 2009, 4, e5106. [Google Scholar] [CrossRef] [PubMed]
- Kyriazis, G.A.; Soundarapandian, M.M.; Tyrberg, B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl. Acad. Sci. USA 2012, 109, E524–E532. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, F.; Bordier, V.; Budzinska, A.; Weltens, N.; Rehfeld, J.F.; Holst, J.J.; Hartmann, B.; Beglinger, C.; Van Oudenhove, L.; Wölnerhanssen, B.K.; et al. The Role of D-allulose and Erythritol on the Activity of the Gut Sweet Taste Receptor and Gastrointestinal Satiation Hormone Release in Humans: A Randomized, Controlled Trial. J. Nutr. 2022, 152, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Kojima, I.; Nakagawa, Y. The Role of the Sweet Taste Receptor in Enteroendocrine Cells and Pancreatic β-Cells. Diabetes Metab. J. 2011, 35, 451–457. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Kundu, N.; Domingues, C.C.; Patel, J.; Aljishi, M.; Ahmadi, N.; Fakhri, M.; Sylvetsky, A.C.; Sen, S. Sucralose promotes accumulation of reactive oxygen species (ROS) and adipogenesis in mesenchymal stromal cells. Stem Cell Res. Ther. 2020, 11, 250. [Google Scholar] [CrossRef]
- Tsai, M.J.; Li, C.H.; Wu, H.T.; Kuo, H.Y.; Wang, C.T.; Pai, H.L.; Chang, C.J.; Ou, H.Y. Long-Term Consumption of Sucralose Induces Hepatic Insulin Resistance through an Extracellular Signal-Regulated Kinase 1/2-Dependent Pathway. Nutrients 2023, 15, 2814. [Google Scholar] [CrossRef]
- Van Opstal, A.M.; Hafkemeijer, A.; van den Berg-Huysmans, A.A.; Hoeksma, M.; Mulder, T.P.J.; Pijl, H.; Rombouts, S.; van der Grond, J. Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr. Neurosci. 2021, 24, 395–405. [Google Scholar] [CrossRef]
- Dore, R.; Krotenko, R.; Reising, J.P.; Murru, L.; Sundaram, S.M.; Di Spiezio, A.; Müller-Fielitz, H.; Schwaninger, M.; Jöhren, O.; Mittag, J.; et al. Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 2020, 45, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yu, Z.; Zhao, Y.; Yin, D. Obesogenic potentials of environmental artificial sweeteners with disturbances on both lipid metabolism and neural responses. Sci. Total Environ. 2024, 919, 170755. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Cai, J.; Liu, W.; Akihisa, T.; Li, W.; Kikuchi, T.; Xu, J.; Feng, F.; Zhang, J. The role of metabolites of steviol glycosides and their glucosylated derivatives against diabetes-related metabolic disorders. Food Funct. 2021, 12, 8248–8259. [Google Scholar] [CrossRef]
- Yang, P.S.; Lee, J.J.; Tsao, C.W.; Wu, H.T.; Cheng, J.T. Stimulatory effect of stevioside on peripheral mu opioid receptors in animals. Neurosci. Lett. 2009, 454, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K.; Maykish, A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Méndez-García, L.A.; Bueno-Hernández, N.; Cid-Soto, M.A.; De León, K.L.; Mendoza-Martínez, V.M.; Espinosa-Flores, A.J.; Carrero-Aguirre, M.; Esquivel-Velázquez, M.; León-Hernández, M.; Viurcos-Sanabria, R.; et al. Ten-Week Sucralose Consumption Induces Gut Dysbiosis and Altered Glucose and Insulin Levels in Healthy Young Adults. Microorganisms 2022, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Shon, W.J.; Song, J.W.; Oh, S.H.; Lee, K.H.; Seong, H.; You, H.J.; Seong, J.K.; Shin, D.M. Gut taste receptor type 1 member 3 is an intrinsic regulator of Western diet-induced intestinal inflammation. BMC Med. 2023, 21, 165. [Google Scholar] [CrossRef]
- Zani, F.; Blagih, J.; Gruber, T.; Buck, M.D.; Jones, N.; Hennequart, M.; Newell, C.L.; Pilley, S.E.; Soro-Barrio, P.; Kelly, G.; et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 2023, 615, 705–711. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Sikaroodi, M.; Lamb, E.; Shoemaker, S.; Gillevet, P.M. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann. Epidemiol. 2015, 25, 736–742.e4. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.Y.; Friel, J.; Mackay, D. The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients 2020, 12, 3408. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Singh, G.; McBain, A.J.; McLaughlin, J.T.; Stamataki, N.S. Consumption of the Non-Nutritive Sweetener Stevia for 12 Weeks Does Not Alter the Composition of the Human Gut Microbiota. Nutrients 2024, 16, 296. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-P.; Kao, Y.; Lin, M.-W.; Lee, C.-T.; Wu, H.-T.; Kuo, H.-Y. Potential Effects of Low-Calorie Sweeteners on Human Health. Nutrients 2025, 17, 2726. https://doi.org/10.3390/nu17172726
Chen H-P, Kao Y, Lin M-W, Lee C-T, Wu H-T, Kuo H-Y. Potential Effects of Low-Calorie Sweeteners on Human Health. Nutrients. 2025; 17(17):2726. https://doi.org/10.3390/nu17172726
Chicago/Turabian StyleChen, Huang-Pin, Yuan Kao, Meng-Wei Lin, Chun-Te Lee, Hung-Tsung Wu, and Hsin-Yu Kuo. 2025. "Potential Effects of Low-Calorie Sweeteners on Human Health" Nutrients 17, no. 17: 2726. https://doi.org/10.3390/nu17172726
APA StyleChen, H.-P., Kao, Y., Lin, M.-W., Lee, C.-T., Wu, H.-T., & Kuo, H.-Y. (2025). Potential Effects of Low-Calorie Sweeteners on Human Health. Nutrients, 17(17), 2726. https://doi.org/10.3390/nu17172726

