Association Between Adherence to the Mediterranean Diet and Metabolic Syndrome and Its Components Among Polish Postmenopausal Women: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Metabolic Syndrome Definition
2.3. Dietary Assessment
2.4. Anthropometry
2.5. Biochemistry
2.6. Physical Activity Assessment
2.7. Mediterranean Diet Adherence
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lau, B.H.P.; Tang, C.S.K.; Holroyd, E.; Wong, W.C.W. Challenges and Implications for Menopausal Health and Help-Seeking Behaviors in Midlife Women from the United States and China in Light of the COVID-19 Pandemic: Web-Based Panel Surveys. JMIR Public Health Surveill. 2024, 10, e46538. [Google Scholar] [CrossRef]
- Davis, S.R.; Pinkerton, J.; Santoro, N.; Simoncini, T. Menopause—Biology, Consequences, Supportive Care, and Therapeutic Options. Cell 2023, 186, 4038–4058. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic Syndrome—A New Definition and Management Guidelines. Arter. Hypertens. 2022, 26, 99–121. [Google Scholar] [CrossRef]
- Jeong, H.G.; Park, H. Metabolic Disorders in Menopause. Metabolites 2022, 12, 954. [Google Scholar] [CrossRef]
- Di Daniele, N.; Noce, A.; Vidiri, M.F.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterranean Diet on Metabolic Syndrome, Cancer and Longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef]
- Godos, J.; Zappalà, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the Mediterranean Diet Is Inversely Associated with Metabolic Syndrome Occurrence: A Meta-Analysis of Observational Studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef]
- Leone, A.; De Amicis, R.; Battezzati, A.; Bertoli, S. Adherence to the Mediterranean Diet and Risk of Metabolically Unhealthy Obesity in Women: A Cross-Sectional Study. Front. Nutr. 2022, 9, 858206. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean Diet and Incidence of and Mortality from Coronary Heart Disease and Stroke in Women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-Related Disorders: What Is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Nissensohn, M.; Román-Viñas, B.; Sánchez-Villegas, A.; Piscopo, S.; Serra-Majem, L. The Effect of the Mediterranean Diet on Hypertension: A Systematic Review and Meta-Analysis. J. Nutr. Educ. Behav. 2016, 48, 42–53.e1. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A Review of Recent Evidence in Human Studies of N-3 and n-6 PUFA Intake on Cardiovascular Disease, Cancer, and Depressive Disorders: Does the Ratio Really Matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Harvey, D.J.; Pond, C.M.; Newsholme, E.A. Site-specific Differences in the Fatty Acid Composition of Human Adipose Tissue. Lipids 1992, 27, 716–720. [Google Scholar] [CrossRef]
- Mantzioris, E.; Muhlhausler, B.S.; Villani, A. Impact of the Mediterranean Dietary Pattern on N-3 Fatty Acid Tissue Levels–A Systematic Review. Prostaglandins Leukot. Essent. Fatty Acids 2022, 176, 102387. [Google Scholar] [CrossRef]
- Bauset, C.; Martínez-Aspas, A.; Smith-Ballester, S.; García-Vigara, A.; Monllor-Tormos, A.; Kadi, F.; Nilsson, A.; Cano, A. Nuts and Metabolic Syndrome: Reducing the Burden of Metabolic Syndrome in Menopause. Nutrients 2022, 14, 1677. [Google Scholar] [CrossRef]
- Cubas-Basterrechea, G.; Elío, I.; Sumalla-Cano, S.; Aparicio-Obregón, S.; González-Antón, C.T.; Muñoz-Cacho, P. The Regular Consumption of Nuts Is Associated with a Lower Prevalence of Abdominal Obesity and Metabolic Syndrome in Older People from the North of Spain. Int. J. Environ. Res. Public. Health 2022, 19, 1256. [Google Scholar] [CrossRef]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Mendivil, C.O. Fish Consumption: A Review of Its Effects on Metabolic and Hormonal Health. Nutr. Metab. Insights 2021, 14, 11786388211022378. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Xun, P.; Iribarren, C.; Van Horn, L.; Steffen, L.; Daviglus, M.L.; Siscovick, D.; Liu, K.; He, K. Intake of Fish and Long-Chain Omega-3 Polyunsaturated Fatty Acids and Incidence of Metabolic Syndrome among American Young Adults: A 25-Year Follow-up Study. Eur. J. Nutr. 2016, 55, 1707–1716. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Chinchilli, V.M.; Liao, D.; Richie, J.P.; Al-Shaar, L. Red and Processed Meat Consumption and Food Insecurity Are Associated with Hypertension; Analysis of the National Health and Nutrition Examination Survey Data, 2003–2016. J. Hypertens. 2022, 40, 553–560. [Google Scholar] [CrossRef]
- Oude Griep, L.M.; Seferidi, P.; Stamler, J.; Van Horn, L.; Chan, Q.; Tzoulaki, I.; Steffen, L.M.; Miura, K.; Ueshima, H.; Okuda, N.; et al. Relation of Unprocessed, Processed Red Meat and Poultry Consumption to Blood Pressure in East Asian and Western Adults. J. Hypertens. 2016, 34, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.I.F.; Mendonça, R.D.D.; Aprelini, C.M.D.O.; Molina, M.D.C.B. Consumption of Processed Meat but Not Red Meat Is Associated with the Incidence of Hypertension: ELSA-Brasil Cohort. Nutrition 2024, 127, 112529. [Google Scholar] [CrossRef]
- Allen, T.S.; Bhatia, H.S.; Wood, A.C.; Momin, S.R.; Allison, M.A. State-of-the-Art Review: Evidence on Red Meat Consumption and Hypertension Outcomes. Am. J. Hypertens. 2022, 35, 679–687. [Google Scholar] [CrossRef]
- Poll, B.G.; Cheema, M.U.; Pluznick, J.L. Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO. Physiology 2020, 35, 275–284. [Google Scholar] [CrossRef]
- Romaguera, D.; Norat, T.; Mouw, T.; May, A.M.; Bamia, C.; Slimani, N.; Travier, N.; Besson, H.; Luan, J.; Wareham, N.; et al. Adherence to the Mediterranean Diet Is Associated with Lower Abdominal Adiposity in European Men and Women. J. Nutr. 2009, 139, 1728–1737. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Tian, L.; Zhang, X.; Liu, S.; Zhu, Z.; Wang, W.; Shi, D.; He, M.; Shang, X. Healthy Lifestyle Habits, Educational Attainment, and the Risk of 45 Age-Related Health and Mortality Outcomes in the UK: A Prospective Cohort Study. J. Nutr. Health Aging 2025, 29, 100525. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Moslehi, N.; Mahmoudof, H.; Sadeghi, M.; Azizi, F. A Longitudinal Study of Adherence to the Mediterranean Dietary Pattern and Metabolic Syndrome in a Non-Mediterranean Population. Int. J. Endocrinol. Metab. 2015, 13, e26128. [Google Scholar] [CrossRef]
- Boujelbane, M.A.; Ammar, A.; Salem, A.; Kerkeni, M.; Trabelsi, K.; Bouaziz, B.; Masmoudi, L.; Heydenreich, J.; Schallhorn, C.; Müller, G.; et al. Regional Variations in Mediterranean Diet Adherence: A Sociodemographic and Lifestyle Analysis across Mediterranean and Non-Mediterranean Regions within the MEDIET4ALL Project. Front. Public Health 2025, 13, 1596681. [Google Scholar] [CrossRef] [PubMed]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean Diet among Adults in Mediterranean Countries: A Systematic Literature Review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Bajerska, J.; Chmurzynska, A.; Muzsik, A.; Krzyżanowska, P.; Mądry, E.; Malinowska, A.M.; Walkowiak, J. Author Correction: Weight Loss and Metabolic Health Effects from Energy-Restricted Mediterranean and Central-European Diets in Postmenopausal Women: A Randomized Controlled Trial. Sci. Rep. 2019, 9, 16077. [Google Scholar] [CrossRef] [PubMed]
- Duś-Żuchowska, M.; Bajerska, J.; Krzyżanowska, P.; Chmurzyńska, A.; Miśkiewicz-Chotnicka, A.; Muzsik, A.; Walkowiak, J. The Central European Diet as an Alternative to the Mediterranean Diet in Atherosclerosis Prevention in Postmenopausal Obese Women with a High Risk of Metabolic Syndrome—A Randomized Nutrition-al Trial. Acta Sci. Pol. Technol. Aliment. 2018, 17, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Hutchins-Wiese, H.L.; Bales, C.W.; Porter Starr, K.N. Mediterranean Diet Scoring Systems: Understanding the Evolution and Applications for Mediterranean and Non-Mediterranean Countries. Br. J. Nutr. 2022, 128, 1371–1392. [Google Scholar] [CrossRef] [PubMed]
Participants by Mediterranean Diet Adherence Score | |||||
---|---|---|---|---|---|
Variables | All (n = 312) | T1: 0–3 (n = 149) | T2: 4 (n = 74) | T3: 5–9 (n = 90) | p-value * |
Median (1st–3rd quartile) | Median (1st–3rd quartile) | Median (1st–3rd quartile) | Median (1st–3rd quartile) | ||
Sociodemographic and Anthropometric Data | |||||
Age [y] | 58.0 (53.0–63.0) | 58.0 (53.0–62.0) | 58.0 (54.0–63.0) | 57.0 (52.0–62.0) | 0.594 |
Years since menopause [y] | 6.0 (2.0–11.0) | 7.0 (2.0–11.0) | 6.0 (2.0–12.0) | 5.0 (2.0–11.0) | 0.616 |
Duration of education [y] | 17.0 (17.0–17.0) | 12.0 (12.0–17.0) | 17.0 (12.0–17.0) | 17.0 (17.0–17.0) | <0.001 |
Current or former smoker (n, %) | 64 (20.5) | 38 (26) | 13 (18) | 38 (14) | 0.099 |
Body weight [kg] | 78.6 (68.2–88.5) | 79.7 (72.4–88.6) | 79.8 (70.7–88.6) | 73.9 (63.6–87.0) | 0.057 |
FAT [kg] | 36.0 (27.6–44.2) | 37.0 (30.8–44.3) | 36.4 (28.5–44.0) | 32.7 (24.0–44.0) | 0.100 |
FFM [%] | 54.3 (49.2–59.3) | 53.7 (48.9–58.3) | 54.5 (49.8–59.9) | 54.9 (49.5–61.6) | 0.188 |
WHtR | 0.62 (0.58–0.68) | 0.63 (0.59–0.68) | 0.62 (0.58–0.68) | 0.62 (0.54–0.68) | 0.100 |
Dietary Intake | |||||
Vegetables [g/d] | 318.8 (202.0–452.4) | 232.5 (158.4–361.8) | 378.2 (259.7–453.6) | 402.2 (321.4–520.6) | <0.001 |
Legumes [g/d] | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–10.0) | <0.001 |
Fruit [g/d] | 224.6 (109.2–378.8) | 160.7 (81.3–269.2) | 271.9 (132.5–440.3) | 322.2 (184.8–423.0) | <0.001 |
Nuts [g/d] | 0.0 (0.0–4.1) | 0.0 (0.0–0.0) | 0.0 (0.0–4.0) | 2.5 (0.0–10.0) | <0.001 |
Whole grains [g/d] | 76.3 (36.5–121.7) | 53.3 (17.9–110.0) | 86.3 (47.0–121.6) | 100.0 (63.3–136.7) | <0.001 |
Red and processed meats [g/d] | 60.2 (28.6–107.6) | 75.0 (41.9–121.5) | 54.3 (30.0–96.6) | 38.0 (12.8–77.5) | <0.001 |
Fish [g/d] | 0.0 (0.0–30.0) | 0.0 (0.0–0.0) | 0.0 (0.0–36.7) | 24.5 (0.0–50.0) | <0.001 |
MUFA:SFA | 1.0 (0.82–1.22) | 0.98 (0.82–1.26) | 0.99 (0.82–1.18) | 1.1 (0.84–1.26) | 0.302 |
Alcohol intake [g/d] | 0.0 (0.0–2.8) | 0.0 (0.0–0.0) | 0.0 (0.0–3.9) | 0.0 (0.0–5.6) | 0.004 |
Alcohol intake 5–15 g/day (n, %) | 46 (15) | 10 (7) | 12 (16) | 24 (27) | <0.001 |
Energy intake [kcal/d] | 1596.8 (1311.7–1946.3) | 1544.9 (1268.2–1904.5) | 1498.5 (1291.7–1953.8) | 1731.5 (1453.8–2015.2) | 0.035 |
%E protein | 16.4 (14.0–18.8) | 16.7 (14.4–19.1) | 15.9 (13.6–18.8) | 15.6 (13.6–18.5) | 0.125 |
%E fat | 22.9 (12.9–32.8) | 22.0 (13.8–33.2) | 19.0 (11.2–30.0) | 27.5 (13.5–32.9) | 0.088 |
%E carbohydrate | 53.3 (45.8–60.4) | 51.7 (44.8–59.7) | 53.0 (48.4–63.6 | 52.1 (46.4–58.6) | 0.165 |
Dietary fiber [g/d] | 21.4 (15.9–26.8) | 18.3 (13.3–23.7) | 22.9 (17.2–28.1) | 24.6 (19.9–30.1) | <0.001 |
Physical Activity | |||||
Low < 600 MET/min/wk (n, %) | 64 (20.5) | 28 (19) | 21 (28) | 15 (17) | 0.148 |
Moderate 600–1499 MET/min/wk (n, %) | 222 (71) | 112 (75) | 45 (61) | 65 (72) | |
High > 1499 MET/min/wk (n, %) | 26 (8.0) | 9 (6) | 8 (11) | 10 (11) | |
MetS and Its Components | |||||
BMI [kg/m2] | 30.3 (26.2–34.5) | 30.7 (27.6–34.6) | 30.4 (26.3–34.0) | 28.5 (23.2–34.9) | 0.024 |
Obesity ≥ 30 kg/m2 (n, %) | 162 (52) | 84 (56) | 39 (93) | 40 (44) | 0.196 |
Waist circumference [cm] | 101.0 (93.8–109.2) | 102.0 (96.0–109.0) | 101.0 (94.5–109.0) | 99.3 (87.5–110.0) | 0.209 |
Central obesity ≥ 88 cm (n, %) | 273 (76) | 137 (92) | 69 (95) | 67 (74) | <0.001 |
Systolic blood pressure [mmHg] | 133.5 (124.7–147.0) | 134.0 (129.7–147.0) | 137.0 (121–154.0) | 130.0 (122–140.0) | 0.118 |
Diastolic blood pressure [mmHg] | 83.8 (79.0–92.0) | 84.0 (79.7–91.0) | 86.0 (78.3–94.7) | 81.5 (79.0–90.0) | 0.319 |
Hypertension ≥ 130/85 mmHg (n, %) | 208 (66.7) | 112 (75) | 45 (62) | 51 (57) | 0.008 |
Blood glucose [mg/dL] | 94.7 (86.0–100.8) | 94.1 (87.0–102.0) | 94.9 (86.0–100.0) | 94.5 (85.0–100.0) | 0.830 |
Blood glucose ≥ 100 mg/dL (n, %) | 87 (28) | 47 (33) | 18 (26) | 23 (27) | 0.431 |
Triglycerides [mg/dL] | 126.0 (86.8–170.0) | 128.3 (91.0–167.6) | 125.5 (89.0–167.0) | 118.9 (79.0–178.3) | 0.447 |
Total Cholesterol [mg/dL] | 227.0 (198.2–255.0) | 226.0 (201.0–252.0) | 227.5 (196.3–253.3) | 227.5 (196.0–260.8) | 0.995 |
HDL-C [mg/dL] | 58.0 (48.0–68.0) | 56.6 (47.0–66.0) | 60.5 (49.9–70.0) | 58.0 (50.0–69.0) | 0.256 |
non-HDL [mg/dL] | 166.5 (136.0–196.0) | 169.2 (140.0–198.0) | 161.0 (135.0–195.7) | 160.4 (134.0–195.0) | 0.734 |
Non-HDL ≥ 130 mg/dL (n, %) | 243 (78) | 117 (82) | 57 (81) | 69 (80) | 0.919 |
LDL-C [mg/dL] | 139.0 (114.0–162.9) | 139.0 (115.3–165.0) | 137.5 (112.0–159.4) | 141.0 (110.0–162.9) | 0.899 |
Metabolic syndrome (yes, %) | 191 (61) | 104 (70) | 42 (58) | 45 (50) | 0.007 |
Variables | OR | 95% CI | p-Value |
---|---|---|---|
Obesity ≥ 30 kg/m2 | |||
Crude model | 0.848 | 0.730; 0.986 | 0.032 |
Adjusted model | 0.904 | 0.760; 1.074 | 0.250 |
Central obesity ≥ 88 cm | |||
Crude model | 0.633 | 0.500; 0.803 | <0.001 |
Adjusted model | 0.669 | 0.518; 0.866 | 0.002 |
Hypertension ≥ 130/85 mmHg | |||
Crude model | 0.779 | 0.663; 0.915 | 0.002 |
Adjusted model | 0.817 | 0.689; 0.969 | 0.020 |
Non-HDL-C levels ≥ 130 mg/dL | |||
Crude model | 1.080 | 0.887; 1.316 | 0.443 |
Adjusted model | 1.086 | 0.879; 1.342 | 0.444 |
Blood glucose ≥ 100 mg/dL | |||
Crude model | 0.851 | 0.717; 1.009 | 0.064 |
Adjusted model | 0.875 | 0.726; 1.055 | 0.163 |
Presence of MetS (yes) | |||
Crude model | 0.810 | 0.693; 0.945 | 0.008 |
Adjusted model | 0.863 | 0.730; 1.019 | 0.082 |
Variables | Central Obesity | Hypertension | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Vegetables [g/d] | 0.998 | 0.996; 1.000 | 0.059 | 0.999 | 0.998; 1.000 | 0.137 |
Legumes [g/d] | 1.011 | 0.979; 1.045 | 0.503 | 1.002 | 0.989; 1.016 | 0.725 |
Fruit [g/d] | 0.999 | 0.998; 1.001 | 0.537 | 0.999 | 0.998; 1.001 | 0.290 |
Nuts [g/d] | 0.972 | 0.950; 0.995 | 0.016 | 0.994 | 0.975; 1.014 | 0.558 |
Whole grains [g/d] | 0.996 | 0.991; 1.002 | 0.203 | 1.003 | 0.999; 1.007 | 0.194 |
Red and processed meats [g/d] | 1.004 | 0.998; 1.011 | 0.192 | 1.004 | 1.000; 1.008 | 0.048 |
Fish [g/d] | 0.989 | 0.979; 1.000 | 0.043 | 0.995 | 0.987; 1.003 | 0.186 |
MUFA:SFA | 1.070 | 0.314; 3.644 | 0.914 | 1.315 | 0.593; 2.919 | 0.500 |
Alcohol intake [g/d] | 1.004 | 0.950; 1.061 | 0.891 | 0.994 | 0.954; 1.036 | 0.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajerska, J.; Skoczek-Rubińska, A.; Dębińska-Kubiak, M.; Stanisławska, W.; Walkowiak, J. Association Between Adherence to the Mediterranean Diet and Metabolic Syndrome and Its Components Among Polish Postmenopausal Women: A Cross-Sectional Study. Nutrients 2025, 17, 2727. https://doi.org/10.3390/nu17172727
Bajerska J, Skoczek-Rubińska A, Dębińska-Kubiak M, Stanisławska W, Walkowiak J. Association Between Adherence to the Mediterranean Diet and Metabolic Syndrome and Its Components Among Polish Postmenopausal Women: A Cross-Sectional Study. Nutrients. 2025; 17(17):2727. https://doi.org/10.3390/nu17172727
Chicago/Turabian StyleBajerska, Joanna, Aleksandra Skoczek-Rubińska, Magdalena Dębińska-Kubiak, Wiktoria Stanisławska, and Jarosław Walkowiak. 2025. "Association Between Adherence to the Mediterranean Diet and Metabolic Syndrome and Its Components Among Polish Postmenopausal Women: A Cross-Sectional Study" Nutrients 17, no. 17: 2727. https://doi.org/10.3390/nu17172727
APA StyleBajerska, J., Skoczek-Rubińska, A., Dębińska-Kubiak, M., Stanisławska, W., & Walkowiak, J. (2025). Association Between Adherence to the Mediterranean Diet and Metabolic Syndrome and Its Components Among Polish Postmenopausal Women: A Cross-Sectional Study. Nutrients, 17(17), 2727. https://doi.org/10.3390/nu17172727