Type 2 Diabetes and the Multifaceted Gut-X Axes
Abstract
1. Introduction
2. Methods: Literature Retrieval and Appraisal
3. Gut Homeostasis and T2D Pathophysiology: An Overview
4. Gut–Pancreas Axis
5. Gut–Endocrine Axis (Gut–Brain and Gut–Adipose Crosstalk)
6. Gut–Liver Axis
Intervention | Molecular Target/Mechanism | Key Clinical Findings Study Population, Duration, and Outcomes | Effects on T2D and/or NAFLD |
---|---|---|---|
FXR Agonists, e.g., Obeticholic Acid (OCA) | Activated farnesoid X receptor (FXR) in ileum and liver, inducing FGF19 (ileal hormone) and suppressing CYP7A1 to reduce bile acid synthesis. Promoted hepatic fatty acid oxidation and insulin sensitivity while reducing lipogenesis and inflammation (FXR–FGF19 pathway). | FLINT (Phase II)—72 weeks in NASH (≈50% with T2D): OCA (25 mg) improved NAFLD activity score (steatosis and inflammation) and fibrosis vs. placebo. REGENERATE (Phase III)—18 months in NASH F1–3: fibrosis improvement ≥ 1 stage in 23% OCA vs. 12% placebo (interim analysis). Common side effects: pruritus, increased LDL cholesterol. | Improved liver histology (reduced steatosis and fibrosis) and lowered ALT/AST. In patients with T2D, FXR activation increased insulin sensitivity (with modest HbA1c reduction). Raised LDL levels and may have caused pruritus. |
TGR5 Agonists, e.g., INT-777 (experimental) | Activated G-protein-coupled bile acid receptor TGR5 on enteroendocrine and immune cells. Stimulated GLP-1 and PYY release from L-cells (TGR5–GLP-1 axis) to enhance insulin secretion and satiety; increased energy expenditure in brown adipose and muscle tissues; and exerted anti-inflammatory effects via macrophage TGR5. | Preclinical studies: INT-777 (TGR5 agonist) improved insulin sensitivity and reduced hepatic steatosis in obese mice. A novel agonist (RDX8940) increased GLP-1/PYY and decreased liver fat in diet-induced NAFLD mice. INT-767 (dual FXR/TGR5 agonist) reduced liver fibrosis and inflammation in NASH models. Clinical data: No TGR5-specific agonist has been approved yet; development has been limited by TGR5-mediated gallbladder effects. | Anticipated to improve glycemic control (via incretin release) and reduce NAFLD activity (less steatosis, inflammation, and fibrosis) based on animal models. Human trials are in early phases; efficacy in T2D/NAFLD remains to be confirmed. |
Probiotics Live microbiome therapy | Modulated gut microbiota composition in favor of beneficial bacteria (Lactobacillus, Bifidobacterium, etc.), strengthening the intestinal barrier and reducing endotoxin (LPS) translocation and TLR4 activation. Produced metabolites (e.g., SCFAs) that improved the host’s metabolism and reduced inflammation. May decrease microbial production of hepatotoxins (LPS, ethanol, and TMA) in the gut. | Meta-analysis (2023 [161], 41 RCTs)—Probiotic or synbiotic supplements significantly reduced liver fat (improved ultrasound-detected steatosis), lowered ALT, AST, and GGT, and even improved fibrosis markers in NAFLD. RCT examples: ~6–12-month probiotic regimens in NAFLD have shown decreased ALT/AST and improved insulin resistance (HOMA-IR) compared to a placebo. Generally well-tolerated. | Lowered liver enzymes and liver fat content in NAFLD. Modest improvements in insulin sensitivity and fasting glucose observed in T2D/MetS patients (via reduced systemic inflammation and enhanced GLP-1). Some studies reported reduced inflammatory cytokines, though effects on lipid profiles were minimal. |
Bile Acid Sequestrants, e.g., Colesevelam, Cholestyramine | Non-absorbed resins that bind intestinal bile acids, interrupting enterohepatic circulation. Lower FXR activation in the ileum (disinhibiting CYP7A1), which increases conversion of cholesterol to bile acids and fecal BA excretion. Resultant effects include lowered LDL cholesterol and potentially more bile acids reaching the colon to activate TGR5 (enhancing GLP-1 release). Also, it can alter gut microbiota—reducing LPS-producing bacteria and intestinal permeability. | T2D trials: Colesevelam (add-on in T2D) for 12–26 weeks lowered HbA1c by ~0.5% and fasting glucose vs. placebo, and significantly reduced LDL-C. NAFLD evidence: A Japanese study reported improved liver enzymes and hepatic fat on imaging with colesevelam in NASH patients. However, a placebo-controlled MRI-PDFF study found no significant histological benefit (and even an increase in liver fat in the colesevelam group). A combination of an ASBT inhibitor (elobixibat) with cholestyramine is under investigation for synergistic effects. | Improved glycemic control modestly in T2D (lowered HbA1c and improved hepatic insulin sensitivity). Primarily used to reduce LDL cholesterol. In NAFLD/NASH: may modestly lower ALT and steatosis in some patients, but results are inconsistent. Has shown anti-inflammatory and anti-fibrotic effects in experimental models (via reducing gut LPS signals). |
Dietary Fiber (Prebiotics), e.g., Inulin, Fructooligosaccharides | Fermentable fibers that serve as substrates for beneficial gut bacteria, leading to the production of short-chain fatty acids (SCFAs: butyrate, propionate, and acetate). SCFAs enhance gut hormone release (GLP-1 and PYY via FFAR receptors) and provide energy to enterocytes, strengthening the gut barrier. This reduces endotoxemia (LPS leakage) and liver inflammation. Also, fiber fermentation shifts microbiome composition (e.g., increases Bifidobacteria) and can reduce microbial choline conversion to TMA, mitigating fatty liver. | RCTs in NAFLD: Supplementation with inulin-type fructans (10–20 g/day) for 8–24 weeks (often alongside diet control) significantly reduced serum ALT and AST and lowered fasting insulin levels compared to a placebo. One trial (2020) [162] in NAFLD patients on a low-calorie diet found that adding inulin led to greater ALT reduction than diet alone. However, a recent RCT (2024) [163] with 16 g/day of inulin (and no weight loss regimen) showed improved gut Bifidobacteria but no significant change in liver fat or inflammation markers over 12 weeks. | In NAFLD, increased fiber intake was associated with reduced liver fat and aminotransferases, partly via increased SCFAs and improved insulin sensitivity. SCFAs (especially butyrate) from fiber have anti-inflammatory and insulin-sensitizing effects, aiding glycemic control. Some patients saw improved HOMA-IR and slight HbA1c reductions with fermentable fiber supplementation. Overall, dietary fiber supported weight management and metabolic health, which benefited both T2D and NAFLD. |
Fecal Microbiota Transplant Microbiome transfer (FMT) | Infusion of a healthy donor’s gut microbiota to re-colonize the patient’s intestine. Aims to restore microbial diversity and beneficial commensals, leading to improved bile acid composition and SCFA production, strengthened gut barrier, and reduced production of harmful microbial metabolites (LPS and ethanol). By resetting dysbiosis, FMT targets multiple gut–liver axis pathways simultaneously. | Metabolic syndrome (proof-of-concept): FMT from lean donors improved peripheral insulin sensitivity in obese subjects with metabolic syndrome within 6 weeks. NAFLD RCTs: Short-term FMT in NAFLD showed mixed results—one pilot RCT (21 patients) noted enhanced gut barrier function (decreased intestinal permeability) but no change in liver fat or IR at 6 weeks (Craven et al., 2020 [164]). Another RCT using a lean-vegan-donor FMT reported improved liver inflammation (histological NAS score) and shifts in hepatic inflammatory gene expression vs. autologous transplant. A larger 2022 RCT (75 NAFLD patients) found that FMT safely attenuated fatty liver and aided microbiota “reconstruction”, with improvements in liver fat and enzymes over 12 weeks. | Improved insulin sensitivity (↑ glucose uptake) in T2D/metabolic syndrome recipients following healthy FMT. Potential to reduce hepatic steatosis and inflammation in NAFLD by decreasing endotoxemia and proinflammatory signals. Some patients showed reductions in ALT and liver inflammation after FMT, though effects were variable. Long-term benefits and safety (e.g., durability of microbiome changes) are still under study. |
TLR4 Inhibitors, e.g., JKB-121 (TLR4 antagonist) | Blockade of toll-like receptor 4 on Kupffer cells and other immune cells, preventing activation by LPS (an endotoxin) from the gut. Inhibiting the LPS–TLR4 pathway reduces NF-κB–mediated inflammatory cytokine release and curtails downstream stellate cell activation and fibrogenesis in the liver. The goal is to interrupt gut-derived inflammation, which drives NASH. | Phase II trial (2018 [165]): JKB-121 (oral TLR4 antagonist) in NASH patients (24 weeks) was well-tolerated but showed no significant improvement over placebo in liver fat, ALT, or fibrosis markers. A high placebo response rate was observed, and JKB-121 did not further reduce liver inflammation or steatosis compared to the placebo. Other approaches: A bovine-derived anti-LPS antibody (IMM-124/ASX-100) and gut-selective antibiotics (rifaximin) have been explored to lower endotoxemia; however, clinical efficacy in NASH remains unproven. | Preclinical models demonstrated that TLR4 inhibition can attenuate NASH progression (less inflammation and fibrosis and even reduced HCC development). However, in clinical NASH, direct TLR4 blockade has not yet improved outcomes. No meaningful effect on glycemic control or liver histology was seen with JKB-121. Targeting LPS–TLR4 remains challenging, and combination strategies may be needed for T2D/NAFLD patients. |
7. Gut–Kidney Axis
8. Shared Mechanisms and Integrative Model
9. Clinical and Translational Perspectives
10. Knowledge Gaps and Future Directions
11. Limitations of This Review
12. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Mabhida, S.E.; Ziqubu, K.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hanser, S.; Basson, A.K.; Pheiffer, C.; Kengne, A.P. Pancreatic β-Cell Dysfunction in Type 2 Diabetes: Implications of Inflammation and Oxidative Stress. World J. Diabetes 2023, 14, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Badkas, A.; Pacheco, M.P.; Sauter, T. Network Modeling Approaches for Metabolic Diseases and Diabetes. Curr. Opin. Syst. Biol. 2024, 39, 100530. [Google Scholar] [CrossRef]
- Phatak, S.R.; Saboo, B.; Dwivedi, S.; Zinzuwadia, P.; Panchal, D.; Ganguli, A.; Hasnani, D. Sweetening Sixteen: Beyond the Ominous Octet. J. Diabetol. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Baars, D.P.; Fondevila, M.F.; Meijnikman, A.S.; Nieuwdorp, M. The Central Role of the Gut Microbiota in the Pathophysiology and Management of Type 2 Diabetes. Cell Host Microbe 2024, 32, 1280–1300. [Google Scholar] [CrossRef]
- Abildinova, G.Z.; Benberin, V.V.; Vochshenkova, T.A.; Afshar, A.; Mussin, N.M.; Kaliyev, A.A.; Zhussupova, Z.; Tamadon, A. The Gut-Brain-Metabolic Axis: Exploring the Role of Microbiota in Insulin Resistance and Cognitive Function. Front. Microbiol. 2024, 15, 1463958. [Google Scholar] [CrossRef]
- Li, T.-T.; Chen, X.; Huo, D.; Arifuzzaman, M.; Qiao, S.; Jin, W.-B.; Shi, H.; Li, X.V.; Iliev, I.D.; Artis, D.; et al. Microbiota Metabolism of Intestinal Amino Acids Impacts Host Nutrient Homeostasis and Physiology. Cell Host Microbe 2024, 32, 661–675.e10. [Google Scholar] [CrossRef]
- Nauck, M.A.; Müller, T.D. Incretin Hormones and Type 2 Diabetes. Diabetologia 2023, 66, 1780–1795. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Yu, X.; Novák, P.; Gui, Q.; Yin, K. Enhancing Intestinal Barrier Efficiency: A Novel Metabolic Diseases Therapy. Front. Nutr. 2023, 10, 1120168. [Google Scholar] [CrossRef]
- Donati Zeppa, S.; Gervasi, M.; Bartolacci, A.; Ferrini, F.; Patti, A.; Sestili, P.; Stocchi, V.; Agostini, D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024, 16, 3951. [Google Scholar] [CrossRef]
- Charitos, I.A.; Aliani, M.; Tondo, P.; Venneri, M.; Castellana, G.; Scioscia, G.; Castellaneta, F.; Lacedonia, D.; Carone, M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 2841. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Unraveling the Impaired Incretin Effect in Obesity and Type 2 Diabetes: Key Role of Hyperglycemia-Induced Unscheduled Glycolysis and Glycolytic Overload. Diabetes Res. Clin. Pract. 2024, 217, 111905. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Feng, H.; Mao, X.-L.; Deng, Y.-J.; Wang, X.-B.; Zhang, Q.; Guo, Y.; Xiao, S.-M. The Effects of Probiotics Supplementation on Glycaemic Control among Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. J. Transl. Med. 2023, 21, 442. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Wang, Y.; Han, M.; Liang, R.; Li, S.; Wang, G.; Gang, X. Mechanisms of Bariatric Surgery for Weight Loss and Diabetes Remission. J. Diabetes 2023, 15, 736–752. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef]
- Bae, J.H. SGLT2 Inhibitors and GLP-1 Receptor Agonists in Diabetic Kidney Disease: Evolving Evidence and Clinical Application. Diabetes Metab. J. 2025, 49, 386–402. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Brennan, S.; Akl, E.A.; Hultcrantz, M.; Alonso-Coello, P.; Xia, J.; Davoli, M.; Rojas, M.X.; Meerpohl, J.J.; Flottorp, S.; et al. The Development Methods of Official GRADE Articles and Requirements for Claiming the Use of GRADE—A Statement by the GRADE Guidance Group. J. Clin. Epidemiol. 2023, 159, 79–84. [Google Scholar] [CrossRef]
- Qi, P.; Chen, X.; Tian, J.; Zhong, K.; Qi, Z.; Li, M.; Xie, X. The Gut Homeostasis-Immune System Axis: Novel Insights into Rheumatoid Arthritis Pathogenesis and Treatment. Front. Immunol. 2024, 15, 1482214. [Google Scholar] [CrossRef]
- León, E.D.; Francino, M.P. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front. Microbiol. 2022, 13, 880484. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, M.-T.; Han, J.-H. GPR41 and GPR43: From Development to Metabolic Regulation. Biomed. Pharmacother. 2024, 175, 116735. [Google Scholar] [CrossRef]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 Diabetes Mellitus in Adults: Pathogenesis, Prevention and Therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef]
- Bacha, F.; Hannon, T.S.; Tosur, M.; Pike, J.M.; Butler, A.; Tommerdahl, K.L.; Zeitler, P.S. Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth. Diabetes Care 2024, 47, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Accili, D. Reversing Pancreatic β-Cell Dedifferentiation in the Treatment of Type 2 Diabetes. Exp. Mol. Med. 2023, 55, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Wysham, C.; Shubrook, J. Beta-Cell Failure in Type 2 Diabetes: Mechanisms, Markers, and Clinical Implications. Postgrad. Med. 2020, 132, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; El, K.; Dattaroy, D.; Barella, L.F.; Cui, Y.; Gray, S.M.; Guedikian, C.; Chen, M.; Weinstein, L.S.; Knuth, E.; et al. Intra-Islet α-Cell Gs Signaling Promotes Glucagon Release. Nat. Commun. 2024, 15, 5129. [Google Scholar] [CrossRef]
- Castelli, V.; Kacem, H.; Brandolini, L.; Giorgio, C.; Scenna, M.S.; Allegretti, M.; Cimini, A.; d’Angelo, M. TNFα-CXCR1/2 Partners in Crime in Insulin Resistance Conditions. Cell Death Discov. 2024, 10, 486. [Google Scholar] [CrossRef]
- Del Prato, S.; Gallwitz, B.; Holst, J.J.; Meier, J.J. The Incretin/Glucagon System as a Target for Pharmacotherapy of Obesity. Obes. Rev. 2022, 23, e13372. [Google Scholar] [CrossRef]
- Payahoo, L.; Ghalichi, F.; Fathi, M.; Ehsani, A. A Systematic Review of the Effect of Probiotics, Prebiotics, and Synbiotics on Gut Microbiota in Type 2 Diabetes Mellitus. Endocrinol. Res. Pract. 2025, 29, 267–276. [Google Scholar] [CrossRef]
- Lebrun, L.J.; Pallot, G.; Nguyen, M.; Tavernier, A.; Dusuel, A.; Pilot, T.; Deckert, V.; Dugail, I.; Le Guern, N.; Pais De Barros, J.-P.; et al. Increased Weight Gain and Insulin Resistance in HF-Fed PLTP Deficient Mice Is Related to Altered Inflammatory Response and Plasma Transport of Gut-Derived LPS. Int. J. Mol. Sci. 2022, 23, 13226. [Google Scholar] [CrossRef]
- Fuke, N.; Sawada, S.; Ito-Sasaki, T.; Inoue, K.Y.; Ushida, Y.; Sato, I.; Matsue, T.; Katagiri, H.; Ueda, H.; Suganuma, H. Relationship between Plasma Lipopolysaccharide Concentration and Health Status in Healthy Subjects and Patients with Abnormal Glucose Metabolism in Japan: A Preliminary Cross-Sectional Study. J 2023, 6, 605–626. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, Q.; Hu, R.; Yang, X.; Fang, C.; Yao, L.; Lv, J.; Wang, L.; Shi, M.; Zhang, W.; et al. Effects of Prevotella Copri on Insulin, Gut Microbiota and Bile Acids. Gut Microbes 2024, 16, 2340487. [Google Scholar] [CrossRef]
- McCann, J.R.; Rawls, J.F. Essential Amino Acid Metabolites as Chemical Mediators of Host-Microbe Interaction in the Gut. Annu. Rev. Microbiol. 2023, 77, 479–497. [Google Scholar] [CrossRef]
- Vanweert, F.; Schrauwen, P.; Phielix, E. Role of Branched-Chain Amino Acid Metabolism in the Pathogenesis of Obesity and Type 2 Diabetes-Related Metabolic Disturbances BCAA Metabolism in Type 2 Diabetes. Nutr. Diabetes 2022, 12, 35. [Google Scholar] [CrossRef]
- Xuan, W.; Ou, Y.; Chen, W.; Huang, L.; Wen, C.; Huang, G.; Tang, W.; Zeng, D.; Huang, S.; Xiao, L.; et al. Faecalibacterium Prausnitzii Improves Lipid Metabolism Disorder and Insulin Resistance in Type 2 Diabetic Mice. Br. J. Biomed. Sci. 2023, 80, 10794. [Google Scholar] [CrossRef]
- Hammoud, R.; Drucker, D.J. Beyond the Pancreas: Contrasting Cardiometabolic Actions of GIP and GLP1. Nat. Rev. Endocrinol. 2023, 19, 201–216. [Google Scholar] [CrossRef]
- Ahrén, B. Contribution of GIP and GLP-1 to the Insulin Response to Oral Administration of Glucose in Female Mice. Biomedicines 2023, 11, 591. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Nauck, M.A.; Mantzoros, C.S. Incretin-Based Therapies in 2021—Current Status and Perspectives for the Future. Metabolism 2021, 122, 154843. [Google Scholar] [CrossRef] [PubMed]
- Duca, F.A.; Waise, T.M.Z.; Peppler, W.T.; Lam, T.K.T. The Metabolic Impact of Small Intestinal Nutrient Sensing. Nat. Commun. 2021, 12, 903. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shukla, M.; Wang, W.; Li, S. Unlocking Gut-Liver-Brain Axis Communication Metabolites: Energy Metabolism, Immunity and Barriers. Npj Biofilms Microbiomes 2024, 10, 136. [Google Scholar] [CrossRef]
- Posta, E.; Fekete, I.; Gyarmati, E.; Stündl, L.; Zold, E.; Barta, Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life 2024, 14, 10. [Google Scholar] [CrossRef]
- Cao, N.; Merchant, W.; Gautron, L. Limited Evidence for Anatomical Contacts between Intestinal GLP-1 Cells and Vagal Neurons in Male Mice. Sci. Rep. 2024, 14, 23666. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Manghi, F.C.P.; Landó, L.F.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Kaplan, L.M.; Frias, J.P.; Brouwers, B.; Wu, Q.; Thomas, M.K.; Harris, C.; Schloot, N.C.; Du, Y.; Mather, K.J.; et al. Triple Hormone Receptor Agonist Retatrutide for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Phase 2a Trial. Nat. Med. 2024, 30, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Montoro, J.I.; Damas-Fuentes, M.; Fernández-García, J.C.; Tinahones, F.J. Role of the Gut Microbiome in Beta Cell and Adipose Tissue Crosstalk: A Review. Front. Endocrinol. 2022, 13, 869951. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Carretta, M.D.; Quiroga, J.; López, R.; Hidalgo, M.A.; Burgos, R.A. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Front. Physiol. 2021, 12, 662739. [Google Scholar] [CrossRef]
- Arora, T.; Tremaroli, V. Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Front. Endocrinol. 2021, 12, 761834. [Google Scholar] [CrossRef]
- Mansuy-Aubert, V.; Ravussin, Y. Short Chain Fatty Acids: The Messengers from down Below. Front. Neurosci. 2023, 17, 1197759. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, F.; Ren, J.; Zhang, H.; Jing, C.; Wei, M.; Jiang, Y.; Xie, H. Dietary Intervention Improves Metabolic Levels in Patients with Type 2 Diabetes through the Gut Microbiota: A Systematic Review and Meta-Analysis. Front. Nutr. 2024, 10, 1243095. [Google Scholar] [CrossRef]
- Frias, J.P.; Lee, M.L.; Carter, M.M.; Ebel, E.R.; Lai, R.-H.; Rikse, L.; Washington, M.E.; Sonnenburg, J.L.; Damman, C.J. A Microbiome-Targeting Fibre-Enriched Nutritional Formula Is Well Tolerated and Improves Quality of Life and Haemoglobin A1c in Type 2 Diabetes: A Double-Blind, Randomized, Placebo-Controlled Trial. Diabetes Obes. Metab. 2023, 25, 1203–1212. [Google Scholar] [CrossRef]
- Wu, Y.; Li, T.; Chen, B.; Sun, Y.; Song, L.; Wang, Y.; Bian, Y.; Qiu, Y.; Yang, Z. Tryptophan Indole Derivatives: Key Players in Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2025, 18, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Jiang, M.; Zhao, J.; Song, Y.; Du, W.; Shi, J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front. Endocrinol. 2022, 13, 841703. [Google Scholar] [CrossRef] [PubMed]
- Vangipurapu, J.; Silva, L.F.; Kuulasmaa, T.; Smith, U.; Laakso, M. Microbiota-Related Metabolites and the Risk of Type 2 Diabetes. Diabetes Care 2020, 43, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cen, Z.; Zhao, Z.; Li, Z.; Chen, S. BCAA Dysmetabolism in the Host and Gut Microbiome, a Key Player in the Development of Obesity and T2DM. Med. Microecol. 2023, 16, 100078. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Zhou, L.; Zhang, Q.; Li, M.; Xiao, X. Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Front. Endocrinol. 2022, 13, 905171. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Roach, J.; Hu, Y.; Gunstad, J.; Azcarate-Peril, M.A. Microbial Dipeptidyl Peptidases of the S9B Family as Host-Microbe Isozymes. Sci. Adv. 2025, 11, eads5721. [Google Scholar] [CrossRef]
- Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front. Immunol. 2021, 11, 594150. [Google Scholar] [CrossRef]
- Meier, D.T.; de Paula Souza, J.; Donath, M.Y. Targeting the NLRP3 Inflammasome–IL-1β Pathway in Type 2 Diabetes and Obesity. Diabetologia 2025, 68, 3–16. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, Q.; Jiang, X.; Hu, J.; Jiang, Q.; Sheng, L.; Peng, X.; Wang, S.; Chen, Y.; Wan, Y.; et al. Trimethylamine N-Oxide Impairs β-Cell Function and Glucose Tolerance. Nat. Commun. 2024, 15, 2526. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Lu, X.; Fang, A.; Chen, Y.; Huang, R.; Lin, X.; Huang, Z.; Ma, J.; Huang, B.; et al. Serum Trimethylamine-N-Oxide Is Associated with Incident Type 2 Diabetes in Middle-Aged and Older Adults: A Prospective Cohort Study. J. Transl. Med. 2022, 20, 374. [Google Scholar] [CrossRef]
- Pullicin, A.J.; Glendinning, J.I.; Lim, J. Cephalic Phase Insulin Release: A Review of Its Mechanistic Basis and Variability in Humans. Physiol. Behav. 2021, 239, 113514. [Google Scholar] [CrossRef]
- Liu, Q.K. Mechanisms of Action and Therapeutic Applications of GLP-1 and Dual GIP/GLP-1 Receptor Agonists. Front. Endocrinol. 2024, 15, 1431292. [Google Scholar] [CrossRef]
- Sluga, N.; Križančić Bombek, L.; Kerčmar, J.; Sarikas, S.; Postić, S.; Pfabe, J.; Skelin Klemen, M.; Korošak, D.; Stožer, A.; Slak Rupnik, M. Physiological Levels of Adrenaline Fail to Stop Pancreatic Beta Cell Activity at Unphysiologically High Glucose Levels. Front. Endocrinol. 2022, 13, 1013697. [Google Scholar] [CrossRef]
- Siopi, E.; Galerne, M.; Rivagorda, M.; Saha, S.; Moigneu, C.; Moriceau, S.; Bigot, M.; Oury, F.; Lledo, P.-M. Gut Microbiota Changes Require Vagus Nerve Integrity to Promote Depressive-like Behaviors in Mice. Mol. Psychiatry 2023, 28, 3002–3012. [Google Scholar] [CrossRef] [PubMed]
- Lannoo, M.; Simoens, C.; Vangoitsenhoven, R.; Gillard, P.; D’Hoore, A.; De Vadder, M.; Mertens, A.; Deleus, E.; Steenackers, N.; Mathieu, C.; et al. Comparative Impact of Roux-En-Y Gastric Bypass, Sleeve Gastrectomy or Diet Alone on Beta-Cell Function in Insulin-Treated Type 2 Diabetes Patients. Sci. Rep. 2024, 14, 8211. [Google Scholar] [CrossRef] [PubMed]
- Koopen, A.M.; Almeida, E.L.; Attaye, I.; Witjes, J.J.; Rampanelli, E.; Majait, S.; Kemper, M.; Levels, J.H.M.; Schimmel, A.W.M.; Herrema, H.; et al. Effect of Fecal Microbiota Transplantation Combined with Mediterranean Diet on Insulin Sensitivity in Subjects with Metabolic Syndrome. Front. Microbiol. 2021, 12, 662159. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Chen, Y.; Cao, Z.; Liu, C.; Bao, R.; Wang, Y.; Huang, S.; Pan, S.; Qin, L.; et al. Akkermansia Muciniphila Supplementation in Patients with Overweight/Obese Type 2 Diabetes: Efficacy Depends on Its Baseline Levels in the Gut. Cell Metab. 2025, 37, 592–605.e6. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Zhang, Y.; Zhang, X.; Han, L.; Zhao, L.; Hao, Y.; Zhai, Z. Heterologous Expression of P9 from Akkermansia Muciniphila Increases the GLP-1 Secretion of Intestinal L Cells. World J. Microbiol. Biotechnol. 2024, 40, 199. [Google Scholar] [CrossRef]
- Barton, J.R.; Londregan, A.K.; Alexander, T.D.; Entezari, A.A.; Covarrubias, M.; Waldman, S.A. Enteroendocrine Cell Regulation of the Gut-Brain Axis. Front. Neurosci. 2023, 17, 1272955. [Google Scholar] [CrossRef]
- Gruber, T.; Lechner, F.; Krieger, J.-P.; García-Cáceres, C. Neuroendocrine Gut-Brain Signaling in Obesity. Trends Endocrinol. Metab. 2025, 36, 42–54. [Google Scholar] [CrossRef]
- Holst, J.J. GLP-1 Physiology in Obesity and Development of Incretin-Based Drugs for Chronic Weight Management. Nat. Metab. 2024, 6, 1866–1885. [Google Scholar] [CrossRef] [PubMed]
- Mauney, E.E.; Wibowo, M.C.; Tseng, Y.-H.; Kostic, A.D. Adipose Tissue-Gut Microbiome Crosstalk in Inflammation and Thermogenesis. Trends Endocrinol. Metab. 2025, 36, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Wågen Hauge, J.; Borgeraas, H.; Birkeland, K.I.; Johnson, L.K.; Hertel, J.K.; Hagen, M.; Gulseth, H.L.; Lindberg, M.; Lorentzen, J.; Seip, B.; et al. Effect of Gastric Bypass versus Sleeve Gastrectomy on the Remission of Type 2 Diabetes, Weight Loss, and Cardiovascular Risk Factors at 5 Years (Oseberg): Secondary Outcomes of a Single-Centre, Triple-Blind, Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2025, 13, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Courcoulas, A.P.; Patti, M.E.; Hu, B.; Arterburn, D.E.; Simonson, D.C.; Gourash, W.F.; Jakicic, J.M.; Vernon, A.H.; Beck, G.J.; Schauer, P.R.; et al. Long-Term Outcomes of Medical Management vs Bariatric Surgery in Type 2 Diabetes. JAMA 2024, 331, 654–664. [Google Scholar] [CrossRef]
- Clarke, G.S.; Page, A.J.; Eldeghaidy, S. The Gut-Brain Axis in Appetite, Satiety, Food Intake, and Eating Behavior: Insights from Animal Models and Human Studies. Pharmacol. Res. Perspect. 2024, 12, e70027. [Google Scholar] [CrossRef]
- Jones, L.A.; Brierley, D.I. GLP-1 and the Neurobiology of Eating Control: Recent Advances. Endocrinology 2025, 166, bqae167. [Google Scholar] [CrossRef]
- Trapp, S.; Brierley, D.I. Brain GLP-1 and the Regulation of Food Intake: GLP-1 Action in the Brain and Its Implications for GLP-1 Receptor Agonists in Obesity Treatment. Br. J. Pharmacol. 2022, 179, 557–570. [Google Scholar] [CrossRef]
- Wilbrink, J.; van Avesaat, M.; Stronkhorst, A.; Troost, F.; le Roux, C.W.; Masclee, A. Peptide YY and Glucagon-like Peptide-1 Secretion in Obesity. Gastrointest. Disord. 2025, 7, 3. [Google Scholar] [CrossRef]
- Oertel, M.; Ziegler, C.G.; Kohlhaas, M.; Nickel, A.; Kloock, S.; Maack, C.; Sequeira, V.; Fassnacht, M.; Dischinger, U. GLP-1 and PYY for the Treatment of Obesity: A Pilot Study on the Use of Agonists and Antagonists in Diet-Induced Rats. Endocr. Connect. 2024, 13, e230398. [Google Scholar] [CrossRef]
- Vijayashankar, U.; Ramashetty, R.; Rajeshekara, M.; Vishwanath, N.; Yadav, A.K.; Prashant, A.; Lokeshwaraiah, R. Leptin and Ghrelin Dynamics: Unraveling Their Influence on Food Intake, Energy Balance, and the Pathophysiology of Type 2 Diabetes Mellitus. J. Diabetes Metab. Disord. 2024, 23, 427–440. [Google Scholar] [CrossRef]
- Xin, X.; Wang, H.; Guo, Y.; Xie, J. Effect of Long-Term Exercise on Circulating Ghrelin in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. Front. Nutr. 2025, 12, 1518143. [Google Scholar] [CrossRef]
- He, Y.-F.; Hu, X.-D.; Liu, J.-Q.; Li, H.-M.; Lu, S.-F. Bariatric Surgery and Diabetes: Current Challenges and Perspectives. World J. Diabetes 2024, 15, 1692–1703. [Google Scholar] [CrossRef]
- Simoneau, M.; McKay, B.; Brooks, E.; Doucet, É.; Baillot, A. Gut Peptides before and Following Roux-En-Y Gastric Bypass: A Systematic Review and Meta-analysis. Obes. Rev. 2024, 25, e13702. [Google Scholar] [CrossRef]
- Li, X.; Aili, A.; Aipire, A.; Maimaitiyusupu, P.; Maimaitiming, M.; Abudureyimu, K. Correlation Analysis between the Changes in Plasma Ghrelin Level and Weight Loss after Sleeve Gastrectomy Combined with Fundoplication. BMC Surg. 2024, 24, 176. [Google Scholar] [CrossRef]
- Mashkoori, N.; Ibrahim, B.; Shahsavan, M.; Shahmiri, S.S.; Pazouki, A.; Amr, B.; Kermansaravi, M. Alterations in Taste Preferences One Year Following Sleeve Gastrectomy, Roux-En-Y Gastric Bypass, and One Anastomosis Gastric Bypass: A Cross-Sectional Study. Sci. Rep. 2024, 14, 25484. [Google Scholar] [CrossRef]
- Balasubaramaniam, V.; Pouwels, S. Remission of Type 2 Diabetes Mellitus (T2DM) after Sleeve Gastrectomy (SG), One-Anastomosis Gastric Bypass (OAGB), and Roux-En-Y Gastric Bypass (RYGB): A Systematic Review. Medicina 2023, 59, 985. [Google Scholar] [CrossRef] [PubMed]
- Çalık Başaran, N.; Dotan, I.; Dicker, D. Post Metabolic Bariatric Surgery Weight Regain: The Importance of GLP-1 Levels. Int. J. Obes. 2025, 49, 412–417. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Gaal, L.F.V.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Panou, T.; Gouveri, E.; Popovic, D.S.; Papanas, N. Amylin Analogs for the Treatment of Obesity without Diabetes: Present and Future. Expert. Rev. Clin. Pharmacol. 2024, 17, 891–899. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L. Triple–Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, H.; Gong, F. Why Does GLP-1 Agonist Combined with GIP and/or GCG Agonist Have Greater Weight Loss Effect than GLP-1 Agonist Alone in Obese Adults without Type 2 Diabetes? Diabetes Obes. Metab. 2025, 27, 1079–1095. [Google Scholar] [CrossRef]
- Turpin, T.; Thouvenot, K.; Gonthier, M.-P. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023, 13, 1692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, R.; Lu, X.; Zhang, Y.; Yang, M.; Su, Y.; Jiang, Y.; Man, C. Lactobacillus Reuteri J1 Prevents Obesity by Altering the Gut Microbiota and Regulating Bile Acid Metabolism in Obese Mice. Food Funct. 2022, 13, 6688–6701. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Chen, H.; Zhou, L.; Chen, B.; Wang, M.; Zhang, D.; Han, T.-L.; Zhang, H. Gut Dysbiosis Contributes to SCFAs Reduction-Associated Adipose Tissue Macrophage Polarization in Gestational Diabetes Mellitus. Life Sci. 2024, 350, 122744. [Google Scholar] [CrossRef]
- Bu, T.; Sun, Z.; Pan, Y.; Deng, X.; Yuan, G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab. J. 2024, 48, 354–372. [Google Scholar] [CrossRef]
- Lin, K.; Dong, C.; Zhao, B.; Zhou, B.; Yang, L. Glucagon-like Peptide-1 Receptor Agonist Regulates Fat Browning by Altering the Gut Microbiota and Ceramide Metabolism. MedComm 2023, 4, e416. [Google Scholar] [CrossRef]
- May, K.S.; den Hartigh, L.J. Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients 2023, 15, 272. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.-P.; Zhang, Y.-N.; Li, Y.; Gu, L.-T.; Sun, H.-H.; Liu, M.-D.; Zhou, H.-L.; Wang, Y.-S.; Xu, Z.-X. Short-Chain Fatty Acids in Diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
- Alzubi, A.; Glowacki, H.X.; Burns, J.L.; Van, K.; Martin, J.L.A.; Monk, J.M. Dose-Dependent Effects of Short-Chain Fatty Acids on 3T3-L1 Adipocyte Adipokine Secretion and Metabolic Function. Nutrients 2025, 17, 571. [Google Scholar] [CrossRef]
- Fang, L.; Ning, J. Recent Advances in Gut Microbiota and Thyroid Disease: Pathogenesis and Therapeutics in Autoimmune, Neoplastic, and Nodular Conditions. Front. Cell. Infect. Microbiol. 2024, 14, 1465928. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, W.; Deng, Y.; Wan, J.; Wang, Y.; Jin, P. Dysbiosis of Gut Microbiota and Decreased Propionic Acid Associated with Metabolic Abnormality in Cushing’s Syndrome. Front. Endocrinol. 2023, 13, 1095438. [Google Scholar] [CrossRef]
- Jain, M.; Anand, A.; Sharma, N.; Shamim, M.A.; Enioutina, E.Y. Effect of Probiotics Supplementation on Cortisol Levels: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 3564. [Google Scholar] [CrossRef]
- Li, J.-X.; Cummins, C.L. Fresh Insights into Glucocorticoid-Induced Diabetes Mellitus and New Therapeutic Directions. Nat. Rev. Endocrinol. 2022, 18, 540–557. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, S.; Ye, C.; Zhao, W. Gut Microbiota Dysbiosis in Polycystic Ovary Syndrome: Mechanisms of Progression and Clinical Applications. Front. Cell. Infect. Microbiol. 2023, 13, 1142041. [Google Scholar] [CrossRef]
- Ziaei, R.; Shahshahan, Z.; Ghasemi-Tehrani, H.; Heidari, Z.; Nehls, M.S.; Ghiasvand, R. Inulin-Type Fructans with Different Degrees of Polymerization Improve Insulin Resistance, Metabolic Parameters, and Hormonal Status in Overweight and Obese Women with Polycystic Ovary Syndrome: A Randomized Double-Blind, Placebo-Controlled Clinical Trial. Food Sci. Nutr. 2024, 12, 2016–2028. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Zeraattalab-Motlagh, S.; Jalilpiran, Y.; Payandeh, N.; Ansari, S.; Mohammadi, H.; Djafarian, K.; Ranjbar, M.; Sadeghi, S.; Taghizadeh, M.; et al. The Effects of Pro-, Pre-, and Synbiotics Supplementation on Polycystic Ovary Syndrome: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Front. Nutr. 2023, 10, 1178842. [Google Scholar] [CrossRef] [PubMed]
- Hägele, F.A.; Herpich, C.; Koop, J.; Grübbel, J.; Dörner, R.; Fedde, S.; Götze, O.; Boirie, Y.; Müller, M.J.; Norman, K.; et al. Short-Term Effects of High-Protein, Lower-Carbohydrate Ultra-Processed Foods on Human Energy Balance. Nat. Metab. 2025, 7, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Quist, J.S.; Pedersen, H.E.; Jensen, M.M.; Clemmensen, K.K.B.; Bjerre, N.; Ekblond, T.S.; Uldal, S.; Størling, J.; Wewer Albrechtsen, N.J.; Holst, J.J.; et al. Effects of 3 Months of 10-h per-Day Time-Restricted Eating and 3 Months of Follow-up on Bodyweight and Cardiometabolic Health in Danish Individuals at High Risk of Type 2 Diabetes: The RESET Single-Centre, Parallel, Superiority, Open-Label, Randomised Controlled Trial. Lancet Healthy Longev. 2024, 5, e314–e325. [Google Scholar] [CrossRef]
- Fadel, M.G.; Fehervari, M.; Das, B.; Soleimani-Nouri, P.; Ashrafian, H. Vagal Nerve Therapy in the Management of Obesity: A Systematic Review and Meta-Analysis. Eur. Surg. Res. 2023, 64, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.G.; Lo, K.R.; Pahl, M.C.; Shin, H.S.; Lang, C.; Wohlers, M.W.; Poppitt, S.D.; Sutton, K.H.; Ingram, J.R. An Extract of Hops (Humulus lupulus L.) Modulates Gut Peptide Hormone Secretion and Reduces Energy Intake in Healthy-Weight Men: A Randomized, Crossover Clinical Trial. Am. J. Clin. Nutr. 2022, 115, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; de Gregório, L.H.; Zagury, R.; Ahrén, B.; Neutel, J.; Darimont, C.; Corthesy, J.; Grzywinski, Y.; Perrin, E.; von Eynatten, M.; et al. A Randomized, Placebo-Controlled, Single-Center, Crossover Study to Evaluate the Effects of Pre-Meal Whey Protein Microgel on Post-Prandial Glucometabolic and Amino Acid Response in People with Type 2 Diabetes and Overweight or Obesity. Metabolites 2025, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Mande, S.S. Host-Microbiome Interactions: Gut-Liver Axis and Its Connection with Other Organs. NPJ Biofilms Microbiomes 2022, 8, 89. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef]
- Larabi, A.B.; Masson, H.L.P.; Bäumler, A.J. Bile Acids as Modulators of Gut Microbiota Composition and Function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef]
- Fang, J.; Yu, C.-H.; Li, X.-J.; Yao, J.-M.; Fang, Z.-Y.; Yoon, S.-H.; Yu, W.-Y. Gut Dysbiosis in Nonalcoholic Fatty Liver Disease: Pathogenesis, Diagnosis, and Therapeutic Implications. Front. Cell. Infect. Microbiol. 2022, 12, 997018. [Google Scholar] [CrossRef]
- Stojic, J.; Kukla, M.; Grgurevic, I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics 2023, 13, 2960. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Mazumder, P.M. The Gut-Liver Axis: Emerging Mechanisms and Therapeutic Approaches for Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Naunyn Schmiedeberg’s Arch. Pharmacol. 2024, 397, 8421–8443. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Yi, Q.; Luo, L.; Xiong, Y. Regulation of Bile Acids and Their Receptor FXR in Metabolic Diseases. Front. Nutr. 2024, 11, 1447878. [Google Scholar] [CrossRef] [PubMed]
- Lun, W.; Yan, Q.; Guo, X.; Zhou, M.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Mechanism of Action of the Bile Acid Receptor TGR5 in Obesity. Acta Pharm. Sin. B 2024, 14, 468–491. [Google Scholar] [CrossRef]
- Tang, B.; Tang, L.; Li, S.; Liu, S.; He, J.; Li, P.; Wang, S.; Yang, M.; Zhang, L.; Lei, Y.; et al. Gut Microbiota Alters Host Bile Acid Metabolism to Contribute to Intrahepatic Cholestasis of Pregnancy. Nat. Commun. 2023, 14, 1305. [Google Scholar] [CrossRef]
- Katafuchi, T.; Makishima, M. Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int. J. Mol. Sci. 2022, 23, 6046. [Google Scholar] [CrossRef]
- Almeqdadi, M.; Gordon, F.D. Farnesoid X Receptor Agonists: A Promising Therapeutic Strategy for Gastrointestinal Diseases. Gastro Hep Adv. 2023, 3, 344–352. [Google Scholar] [CrossRef]
- Li, Y.; Dai, C.; Yang, H.; Zeng, H.; Ruan, Y.; Dai, M.; Hao, J.; Wang, L.; Yan, X.; Ji, F. Cross-Sectional and Mendelian Randomization Study of Fibroblast Growth Factor 19 Reveals Causal Associations with Metabolic Diseases. J. Gastroenterol. Hepatol. 2024, 39, 2872–2879. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, H.; Shen, C.; Zhang, M.; Wang, X.; Yuan, M.; Yuan, M.; Jia, S.; Cao, Z.; Wu, C.; et al. Gut Microbiota Regulates Postprandial GLP-1 Response via Ileal Bile Acid-TGR5 Signaling. Gut Microbes 2023, 15, 2274124. [Google Scholar] [CrossRef]
- Shi, Y.; Su, W.; Zhang, L.; Shi, C.; Zhou, J.; Wang, P.; Wang, H.; Shi, X.; Wei, S.; Wang, Q.; et al. TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation. Front. Immunol. 2021, 11, 609060. [Google Scholar] [CrossRef]
- Fogelson, K.A.; Dorrestein, P.C.; Zarrinpar, A.; Knight, R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023, 164, 1069–1085. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Brumbaugh, A.; Sjöland, W.; Olsson, L.; Wu, H.; Henricsson, M.; Lundqvist, A.; Makki, K.; Hazen, S.L.; Bergström, G.; et al. Production of Deoxycholic Acid by Low-Abundant Microbial Species Is Associated with Impaired Glucose Metabolism. Nat. Commun. 2024, 15, 4276. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.; Kanno, K.; Pham, Q.T.; Kikuchi, Y.; Kakimoto, M.; Kobayashi, T.; Otani, Y.; Kishikawa, N.; Miyauchi, M.; Arihiro, K.; et al. Senescent Hepatic Stellate Cells Caused by Deoxycholic Acid Modulates Malignant Behavior of Hepatocellular Carcinoma. J. Cancer Res. Clin. Oncol. 2020, 146, 3255–3268. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-Y.; Liao, Y.-C.; Yang, Y.-C.; Hung, Y.-W.; Huang, L.-R.; Peng, Y.-C. Ursodeoxycholic Acid Modulates the Interaction of miR-21 and Farnesoid X Receptor and NF-κB Signaling. Biomedicines 2024, 12, 1236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, B.; Zhang, K.; Zhu, Z. The Effect and Safety of Obeticholic Acid for Patients with Nonalcoholic Steatohepatitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine 2024, 103, e37271. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, J.; Caussy, C.; Teng, G.-J.; Loomba, R. Epidemiology, Screening, and Co-Management of Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease. Hepatology 2024. online ahead of print. [Google Scholar] [CrossRef]
- An, L.; Wirth, U.; Koch, D.; Schirren, M.; Drefs, M.; Koliogiannis, D.; Nieß, H.; Andrassy, J.; Guba, M.; Bazhin, A.V.; et al. The Role of Gut-Derived Lipopolysaccharides and the Intestinal Barrier in Fatty Liver Diseases. J. Gastrointest. Surg. 2022, 26, 671–683. [Google Scholar] [CrossRef]
- Xu, G.-X.; Wei, S.; Yu, C.; Zhao, S.-Q.; Yang, W.-J.; Feng, Y.-H.; Pan, C.; Yang, K.-X.; Ma, Y. Activation of Kupffer Cells in NAFLD and NASH: Mechanisms and Therapeutic Interventions. Front. Cell Dev. Biol. 2023, 11, 1199519. [Google Scholar] [CrossRef]
- Brandt, A.; Csarmann, K.; Hernández-Arriaga, A.; Baumann, A.; Staltner, R.; Halilbasic, E.; Trauner, M.; Camarinha-Silva, A.; Bergheim, I. Antibiotics Attenuate Diet-Induced Nonalcoholic Fatty Liver Disease without Altering Intestinal Barrier Dysfunction. J. Nutr. Biochem. 2024, 123, 109495. [Google Scholar] [CrossRef]
- Ecton, K.E.; Graham, E.L.; Risk, B.D.; Brown, G.D.; Stark, G.C.; Wei, Y.; Trikha, S.R.J.; Weir, T.L.; Gentile, C.L. Toll-like Receptor 4 Deletion Partially Protects Mice from High Fat Diet-Induced Arterial Stiffness despite Perturbation to the Gut Microbiota. Front. Microbiomes 2023, 2, 109599. [Google Scholar] [CrossRef]
- Gkolfakis, P.; Tziatzios, G.; Leite, G.; Papanikolaou, I.S.; Xirouchakis, E.; Panayiotides, I.G.; Karageorgos, A.; Millan, M.J.; Mathur, R.; Weitsman, S.; et al. Prevalence of Small Intestinal Bacterial Overgrowth Syndrome in Patients with Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: A Cross-Sectional Study. Microorganisms 2023, 11, 723. [Google Scholar] [CrossRef]
- Mbaye, B.; Magdy Wasfy, R.; Borentain, P.; Tidjani Alou, M.; Mottola, G.; Bossi, V.; Caputo, A.; Gerolami, R.; Million, M. Increased Fecal Ethanol and Enriched Ethanol-Producing Gut Bacteria Limosilactobacillus Fermentum, Enterocloster Bolteae, Mediterraneibacter Gnavus and Streptococcus Mutans in Nonalcoholic Steatohepatitis. Front. Cell. Infect. Microbiol. 2023, 13, 1279354. [Google Scholar] [CrossRef]
- Nian, F.; Chen, Y.; Xia, Q.; Zhu, C.; Wu, L.; Lu, X. Gut Microbiota Metabolite Trimethylamine N-Oxide Promoted NAFLD Progression by Exacerbating Intestinal Barrier Disruption and Intrahepatic Cellular Imbalance. Int. Immunopharmacol. 2024, 142, 113173. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Shi, G.; Li, Y.; Shi, H. Trimethylamine N-Oxide, Choline and Its Metabolites Are Associated with the Risk of Non-Alcoholic Fatty Liver Disease. Br. J. Nutr. 2024, 131, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Moradzad, M.; Ghaderi, D.; Abdi, M.; Sheikh Esmaili, F.; Rahmani, K.; Vahabzadeh, Z. Gut Microbiota Dysbiosis Contributes to Choline Unavailability and NAFLD Development. J. Diabetes Metab. Disord. 2025, 24, 37. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Xie, C.; Huang, W.; Young, R.L.; Jones, K.L.; Horowitz, M.; Rayner, C.K.; Sun, Z.; Wu, T. Serum Bile Acid Response to Oral Glucose Is Attenuated in Patients with Early Type 2 Diabetes and Correlates with 2-Hour Plasma Glucose in Individuals without Diabetes. Diabetes Obes. Metab. 2022, 24, 1132–1142. [Google Scholar] [CrossRef]
- Pant, K.; Venugopal, S.K.; Lorenzo Pisarello, M.J.; Gradilone, S.A. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. Am. J. Pathol. 2023, 193, 1455–1467. [Google Scholar] [CrossRef]
- Wang, G.Y.; Qin, S.L.; Zheng, Y.N.; Geng, H.J.; Chen, L.; Yao, J.H.; Deng, L. Propionate Promotes Gluconeogenesis by Regulating Mechanistic Target of Rapamycin (mTOR) Pathway in Calf Hepatocytes. Anim. Nutr. 2023, 15, 88–98. [Google Scholar] [CrossRef]
- Pham, N.H.T.; Joglekar, M.V.; Wong, W.K.M.; Nassif, N.T.; Simpson, A.M.; Hardikar, A.A. Short-Chain Fatty Acids and Insulin Sensitivity: A Systematic Review and Meta-Analysis. Nutr. Rev. 2024, 82, 193–209. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, Y.; Wu, J.; Zhou, H.; Yang, C. Efficacy of Probiotics, Prebiotics, and Synbiotics on Liver Enzymes, Lipid Profiles, and Inflammation in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Gastroenterol. 2024, 24, 283. [Google Scholar] [CrossRef]
- Silva-Sperb, A.S.; Moraes, H.A.; Barcelos, S.T.A.; de Moura, B.C.; Longo, L.; Michalczuk, M.T.; Cerski, C.T.S.; Uribe-Cruz, C.; da Silveira, T.R.; Álvares-da-Silva, M.R.; et al. Probiotic Supplementation for 24 Weeks in Patients with Non-Alcoholic Steatohepatitis: The PROBILIVER Randomized Clinical Trial. Front. Nutr. 2024, 11, 1362694. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, H.; Zhang, Y.; Rao, S.; Mo, Y.; Zhang, H.; Liang, S.; Zhang, Z.; Yang, W. Dietary Fiber Intake and Non-Alcoholic Fatty Liver Disease: The Mediating Role of Obesity. Front. Public Health 2023, 10, 1038435. [Google Scholar] [CrossRef]
- Koutoukidis, D.A.; Yen, S.; Gomez Castro, P.; Misheva, M.; Jebb, S.A.; Aveyard, P.; Tomlinson, J.W.; Mozes, F.E.; Cobbold, J.F.; Johnson, J.S.; et al. Changes in Intestinal Permeability and Gut Microbiota Following Diet-Induced Weight Loss in Patients with Metabolic Dysfunction-Associated Steatohepatitis and Liver Fibrosis. Gut Microbes 2024, 16, 2392864. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Cell. Infect. Microbiol. 2022, 12, 759306. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Ratziu, V.; Loomba, R.; Anstee, Q.M.; Kowdley, K.V.; Rinella, M.E.; Sheikh, M.Y.; Trotter, J.F.; Knapple, W.; Lawitz, E.J.; et al. Results from a New Efficacy and Safety Analysis of the REGENERATE Trial of Obeticholic Acid for Treatment of Pre-Cirrhotic Fibrosis Due to Non-Alcoholic Steatohepatitis. J. Hepatol. 2023, 79, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.S.; Brown, R.E.; Jiandani, D.; Venn, K.; Al-Asaad, H.; Khandwala, H.; Steen, O.; Abdel-Salam, S.; Aronson, R. Goal Achievement of HbA1c and LDL-Cholesterol in a Randomized Trial Comparing Colesevelam with Ezetimibe: GOAL-RCT. Diabetes Obes. Metab. 2020, 22, 1722–1728. [Google Scholar] [CrossRef]
- Ortiz-López, N.; Fuenzalida, C.; Dufeu, M.S.; Pinto-León, A.; Escobar, A.; Poniachik, J.; Roblero, J.P.; Valenzuela-Pérez, L.; Beltrán, C.J. The Immune Response as a Therapeutic Target in Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 954869. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, L.; Wang, M.; Zhou, S.; Lu, Y.; Cui, H.; Racanelli, A.C.; Zhang, L.; Ye, T.; Ding, B.; et al. Targeting Fibrosis: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2022, 7, 206. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, Q.; Xie, P.; Wang, J.; Lv, W. Immunomodulation in Non-Alcoholic Fatty Liver Disease: Exploring Mechanisms and Applications. Front. Immunol. 2024, 15, 1336493. [Google Scholar] [CrossRef]
- Fan, B.; Meng, L.; Zheng, X.; Bai, L.; Du, Y.; Ding, H.; Chen, Y.; Zhang, Y. Liraglutide Inhibits the Proliferation of Rat Hepatic Stellate Cells under High Glucose Conditions by Suppressing the ERK Signaling Pathway. Sci. Rep. 2025, 15, 13360. [Google Scholar] [CrossRef]
- Wang, M.-W.; Lu, L.-G. Current Status of Glucagon-like Peptide-1 Receptor Agonists in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Clinical Perspective. J. Clin. Transl. Hepatol. 2025, 13, 47–61. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- Rong, L.; Ch’ng, D.; Jia, P.; Tsoi, K.F.; Wong, S.H.; Sung, J.J.Y. Use of probiotics, prebi-otics, and synbiotics in non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2023, 38, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.Y.L.; Orr, D.; Plank, L.D.; Vatanen, T.; O’Sullivan, J.M.; Murphy, R. Randomised Double-Blind Placebo-Controlled Trial of Inulin with Metronidazole in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2020, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Reshef, N.; Gophna, U.; Reshef, L.; Konikoff, F.; Gabay, G.; Zornitzki, T.; Knobler, H.; Maor, Y. Prebiotic Treatment in Patients with Nonalcoholic Fatty Liver Disease (NAFLD)—A Randomized Pilot Trial. Nutrients 2024, 16, 1571. [Google Scholar] [CrossRef] [PubMed]
- Craven, L.; Rahman, A.; Nair Parvathy, S.; Beaton, M.; Silverman, J.; Qumosani, K.; Hramiak, I.; Hegele, R.; Joy, T.; Meddings, J.; et al. Allogenic Fecal Microbiota Transplantation in Patients with Nonalcoholic Fatty Liver Disease Improves Abnormal Small Intestinal Permeability: A Randomized Control Trial. Am. J. Gastroenterol. 2020, 115, 1055–1065. [Google Scholar] [CrossRef]
- Diehl, A.M.; Harrison, S.; Caldwell, S.; Rinella, M.; Paredes, A.; Moylan, C.; Guy, C.; Bashir, M.; Wang, Y.; Miller, L.; et al. JKB-121 in patients with nonalcoholic steatohepatitis: A phase 2 double-blind randomized placebo-control study. J. Hepatol. 2018, 68 (Suppl. S1), S103. [Google Scholar] [CrossRef]
- Tsuji, K.; Uchida, N.; Nakanoh, H.; Fukushima, K.; Haraguchi, S.; Kitamura, S.; Wada, J. The Gut–Kidney Axis in Chronic Kidney Diseases. Diagnostics 2024, 15, 21. [Google Scholar] [CrossRef]
- Hotait, Z.S.; Lo Cascio, J.N.; Choos, E.N.D.; Shepard, B.D. The Sugar Daddy: The Role of the Renal Proximal Tubule in Glucose Homeostasis. Am. J. Physiol. Cell Physiol. 2022, 323, C791–C803. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Zha, W.; Fang, S.; Shen, J.; Li, L.; Jiang, H.; Tian, P. Impact of Gut Microbiota in Chronic Kidney Disease: Natural Polyphenols as Beneficial Regulators. Ren. Fail. 2025, 47, 2506810. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Wu, W.-K.; Hung, S.-C. High Interindividual Variability of Indoxyl Sulfate Production Identified by an Oral Tryptophan Challenge Test. npj Biofilms Microbiomes 2025, 11, 15. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Liu, W.; Luo, Z.; Zhou, J.; Sun, B. Gut Microbiota and Antidiabetic Drugs: Perspectives of Personalized Treatment in Type 2 Diabetes Mellitus. Front. Cell. Infect. Microbiol. 2022, 12, 85377. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Lopez-Trevino, S.; Kankanamalage, H.R.; Jha, J.C. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Liu, T.; Qiao, Y.; Liu, D.; Yang, L.; Mao, H.; Ma, F.; Wang, Y.; Peng, L.; Zhan, Y. Oxidative Stress and Inflammation in Diabetic Nephropathy: Role of Polyphenols. Front. Immunol. 2023, 14, 1185317. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, G.; Vanholder, R.; Van Biesen, W.; Pletinck, A.; Schepers, E.; Neirynck, N.; Speeckaert, M.; De Bacquer, D.; Verbeke, F. Free P-Cresyl Sulfate Shows the Highest Association with Cardiovascular Outcome in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2021, 36, 998–1005. [Google Scholar] [CrossRef]
- Corradi, V.; Caprara, C.; Barzon, E.; Mattarollo, C.; Zanetti, F.; Ferrari, F.; Husain-Syed, F.; Giavarina, D.; Ronco, C.; Zanella, M. A Possible Role of P-Cresyl Sulfate and Indoxyl Sulfate as Biomarkers in the Prediction of Renal Function According to the GFR (G) Categories. Integr. Med. Nephrol. Androl. 2024, 11, e24. [Google Scholar] [CrossRef]
- Hung, T.-W.; Hsieh, Y.-H.; Lee, H.-L.; Ting, Y.-H.; Lin, C.-L.; Chao, W.-W. Renoprotective Effect of Rosmarinic Acid by Inhibition of Indoxyl Sulfate-Induced Renal Interstitial Fibrosis via the NLRP3 Inflammasome Signaling. Int. Immunopharmacol. 2024, 135, 112314. [Google Scholar] [CrossRef]
- Graboski, A.L.; Kowalewski, M.E.; Simpson, J.B.; Cao, X.; Ha, M.; Zhang, J.; Walton, W.G.; Flaherty, D.P.; Redinbo, M.R. Mechanism-Based Inhibition of Gut Microbial Tryptophanases Reduces Serum Indoxyl Sulfate. Cell Chem. Biol. 2023, 30, 1402–1413.e7. [Google Scholar] [CrossRef]
- Altunkaynak, H.O.; Karaismailoglu, E.; Massy, Z.A. The Ability of AST-120 to Lower the Serum Indoxyl Sulfate Level Improves Renal Outcomes and the Lipid Profile in Diabetic and Nondiabetic Animal Models of Chronic Kidney Disease: A Meta-Analysis. Toxins 2024, 16, 544. [Google Scholar] [CrossRef]
- Lee, C.-L.; Liu, W.-J.; Tsai, S.-F. Effects of AST-120 on Mortality in Patients with Chronic Kidney Disease Modeled by Artificial Intelligence or Traditional Statistical Analysis. Sci. Rep. 2024, 14, 738. [Google Scholar] [CrossRef]
- Su, P.-Y.; Lee, Y.-H.; Kuo, L.-N.; Chen, Y.-C.; Chen, C.; Kang, Y.-N.; Chang, E.H. Efficacy of AST-120 for Patients with Chronic Kidney Disease: A Network Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 676345. [Google Scholar] [CrossRef]
- Gao, B.; Jose, A.; Alonzo-Palma, N.; Malik, T.; Shankaranarayanan, D.; Regunathan-Shenk, R.; Raj, D.S. Butyrate Producing Microbiota Are Reduced in Chronic Kidney Diseases. Sci. Rep. 2021, 11, 23530. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.; Merckelbach, E.; Noels, H.; Vohra, A.; Jankowski, J. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins 2022, 14, 648. [Google Scholar] [CrossRef] [PubMed]
- Wakino, S.; Hasegawa, K.; Tamaki, M.; Minato, M.; Inagaki, T. Kidney-Gut Axis in Chronic Kidney Disease: Therapeutic Perspectives from Microbiota Modulation and Nutrition. Nutrients 2025, 17, 1961. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ma, J.; Li, R. Alterations of Gut Microbiota in Biopsy-Proven Diabetic Nephropathy and a Long History of Diabetes without Kidney Damage. Sci. Rep. 2023, 13, 12150. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Yang, H.; Gu, L.; Ni, Z.; Mou, S.; Shen, J.; Che, X. Sodium Glucose Co-Transporter 2 (SGLT2) Inhibition via Dapagliflozin Improves Diabetic Kidney Disease (DKD) over Time Associatied with Increasing Effect on the Gut Microbiota in Db/Db Mice. Front. Endocrinol. 2023, 14, 1026040. [Google Scholar] [CrossRef]
- Martinussen, C.; Veedfald, S.; Dirksen, C.; Bojsen-Møller, K.N.; Svane, M.S.; Wewer Albrechtsen, N.J.; van Hall, G.; Kristiansen, V.B.; Fenger, M.; Holst, J.J.; et al. The Effect of Acute Dual SGLT1/SGLT2 Inhibition on Incretin Release and Glucose Metabolism after Gastric Bypass Surgery. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E956–E964. [Google Scholar] [CrossRef]
- Papaetis, G.S. Empagliflozin Therapy and Insulin Resistance-Associated Disorders: Effects and Promises beyond a Diabetic State. Arch. Med. Sci. Atheroscler. Dis. 2021, 6, e57–e78. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, J.; Xia, L.; Wei, T.; Cui, X.; Wang, D.; Jin, Z.; Lin, X.; Li, F.; Yang, K.; et al. Gut Microbiota-Tryptophan Metabolism-GLP-1 Axis Participates in β-Cell Regeneration Induced by Dapagliflozin. Diabetes 2024, 73, 926–940. [Google Scholar] [CrossRef]
- Badve, S.V.; Bilal, A.; Lee, M.M.Y.; Sattar, N.; Gerstein, H.C.; Ruff, C.T.; McMurray, J.J.V.; Rossing, P.; Bakris, G.; Mahaffey, K.W.; et al. Effects of GLP-1 Receptor Agonists on Kidney and Cardiovascular Disease Outcomes: A Meta-Analysis of Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2025, 13, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Rroji, M.; Spasovski, G. Transforming Diabetes Care: The Molecular Pathways through Which GLP1-RAs Impact the Kidneys in Diabetic Kidney Disease. Biomedicines 2024, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Kodama, G.; Taguchi, K.; Ito, S.; Nishino, Y.; Mori, K.; Taguchi, S.; Mitsuishi, Y.; Yamashita, Y.; Yamagishi, S.; Fukami, K. Glucagon like Peptide-1 Modulates Urinary Sodium Excretion in Diabetic Kidney Disease via ENaC Activation. Sci. Rep. 2025, 15, 11486. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Bain, S.C.; Mosenzon, O.; Heerspink, H.J.L.; Mann, J.F.E.; Pratley, R.; Raz, I.; Idorn, T.; Rasmussen, S.; von Scholten, B.J.; et al. Changes in Albuminuria Predict Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Post Hoc Analysis of the LEADER Trial. Diabetes Care 2021, 44, 1020–1026. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Bosch-Traberg, H.; Cherney, D.Z.I.; Hadjadj, S.; Lawson, J.; Mosenzon, O.; Rasmussen, S.; Bain, S.C. Post Hoc Analysis of SUSTAIN 6 and PIONEER 6 Trials Suggests That People with Type 2 Diabetes at High Cardiovascular Risk Treated with Semaglutide Experience More Stable Kidney Function Compared with Placebo. Kidney Int. 2023, 103, 772–781. [Google Scholar] [CrossRef]
- Mehdi, S.F.; Pusapati, S.; Anwar, M.S.; Lohana, D.; Kumar, P.; Nandula, S.A.; Nawaz, F.K.; Tracey, K.; Yang, H.; LeRoith, D.; et al. Glucagon-like Peptide-1: A Multi-Faceted Anti-Inflammatory Agent. Front. Immunol. 2023, 14, 1148209. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, Y.; Zhang, P.; Wu, X.; Zhao, Z.; Deng, X.; Yang, L.; Wang, D.; Yuan, G. Gut Microbiota Mediates Positive Effects of Liraglutide on Dyslipidemia in Mice Fed a High-Fat Diet. Front. Nutr. 2022, 9, 1048693. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- Neuen, B.L.; Fletcher, R.A.; Heath, L.; Perkovic, A.; Vaduganathan, M.; Badve, S.V.; Tuttle, K.R.; Pratley, R.; Gerstein, H.C.; Perkovic, V.; et al. Cardiovascular, Kidney, and Safety Outcomes with GLP-1 Receptor Agonists Alone and in Combination with SGLT2 Inhibitors in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Circulation 2024, 150, 1781–1790. [Google Scholar] [CrossRef]
- Jhu, J.-Y.; Fang, Y.-W.; Huang, C.-Y.; Liou, H.-H.; Chen, M.-T.; Tsai, M.-H. Enhanced Renoprotective Effects of Combined Glucagon-like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors in Type 2 Diabetes Mellitus: Real-World Evidence. J. Diabetes Investig. 2025, 16, 204–214. [Google Scholar] [CrossRef]
- Koureta, E.; Cholongitas, E. Combination Therapies in Nonalcoholic Fatty Liver Disease Using Antidiabetic and Disease-Specific Drugs. Ann. Gastroenterol. 2023, 36, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tang, W.H.W.; Li, X.S.; de Oliveira Otto, M.C.; Lee, Y.; Lemaitre, R.N.; Fretts, A.; Nemet, I.; Sotoodehnia, N.; Sitlani, C.M.; et al. The Gut Microbial Metabolite Trimethylamine N -Oxide, Incident CKD, and Kidney Function Decline. J. Am. Soc. Nephrol. 2024, 35, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.-S.; Wu, P.-H.; Hung, W.-W.; Lin, M.-Y.; Zhen, Y.-Y.; Hung, W.-C.; Chang, J.-M.; Tsai, J.-R.; Chiu, Y.-W.; Hwang, S.-J.; et al. Association Between Trimethylamine N-Oxide and Adverse Kidney Outcomes and Overall Mortality in Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2024, 109, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Hobson, S.; Qureshi, A.R.; Ripswedan, J.; Wennberg, L.; de Loor, H.; Ebert, T.; Söderberg, M.; Evenepoel, P.; Stenvinkel, P.; Kublickiene, K. Phenylacetylglutamine and Trimethylamine N-Oxide: Two Uremic Players, Different Actions. Eur. J. Clin. Investig. 2023, 53, e14074. [Google Scholar] [CrossRef]
- Xie, C.; Qi, C.; Zhang, J.; Wang, W.; Meng, X.; Aikepaer, A.; Lin, Y.; Su, C.; Liu, Y.; Feng, X.; et al. When Short-Chain Fatty Acids Meet Type 2 Diabetes Mellitus: Revealing Mechanisms, Envisioning Therapies. Biochem. Pharmacol. 2025, 233, 116791. [Google Scholar] [CrossRef]
- Anachad, O.; Taouil, A.; Taha, W.; Bennis, F.; Chegdani, F. The Implication of Short-Chain Fatty Acids in Obesity and Diabetes. Microbiol. Insights 2023, 16, 11786361231162720. [Google Scholar] [CrossRef]
- Al Mahri, S.; Malik, S.S.; Al Ibrahim, M.; Haji, E.; Dairi, G.; Mohammad, S. Free Fatty Acid Receptors (FFARs) in Adipose: Physiological Role and Therapeutic Outlook. Cells 2022, 11, 750. [Google Scholar] [CrossRef]
- Chao, J.; Coleman, R.A.; Keating, D.J.; Martin, A.M. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology 2025, 166, bqaf004. [Google Scholar] [CrossRef]
- Tan, J.; Taitz, J.; Sun, S.M.; Langford, L.; Ni, D.; Macia, L. Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Front. Nutr. 2022, 9, 878382. [Google Scholar] [CrossRef]
- Cook, T.M.; Gavini, C.K.; Jesse, J.; Aubert, G.; Gornick, E.; Bonomo, R.; Gautron, L.; Layden, B.T.; Mansuy-Aubert, V. Vagal Neuron Expression of the Microbiota-Derived Metabolite Receptor, Free Fatty Acid Receptor (FFAR3), Is Necessary for Normal Feeding Behavior. Mol. Metab. 2021, 54, 101350. [Google Scholar] [CrossRef]
- Bakshi, J.; Mishra, K.P. Sodium Butyrate Prevents Lipopolysaccharide Induced Inflammation and Restores the Expression of Tight Junction Protein in Human Epithelial Caco-2 Cells. Cell Immunol. 2025, 408, 104912. [Google Scholar] [CrossRef] [PubMed]
- Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; et al. The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43. Nat. Commun. 2013, 4, 1829. [Google Scholar] [CrossRef] [PubMed]
- Aslamy, A.; Wood, A.C.; Jensen, E.T.; Bertoni, A.G.; Sheridan, P.A.; Wong, K.E.; Ramesh, G.; Rotter, J.I.; Chen, Y.-D.I.; Goodarzi, M.O. Increased Plasma Branched Short-Chain Fatty Acids and Improved Glucose Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Diabetes 2023, 73, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Y.; He, L.-H.; Xu, L.-J.; Li, S.-B. Short-Chain Fatty Acids: Bridges between Diet, Gut Microbiota, and Health. J. Gastroenterol. Hepatol. 2024, 39, 1728–1736. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short Chain Fatty Acids: Microbial Metabolites for Gut-Brain Axis Signalling. Mol. Cell Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef]
- Liu, J.; An, Y.; Yang, N.; Xu, Y.; Wang, G. Longitudinal Associations of Dietary Fiber and Its Source with 48-Week Weight Loss Maintenance, Cardiometabolic Risk Factors and Glycemic Status under Metformin or Acarbose Treatment: A Secondary Analysis of the March Randomized Trial. Nutr. Diabetes 2024, 14, 81. [Google Scholar] [CrossRef]
- Ecklu-Mensah, G.; Choo-Kang, C.; Maseng, M.G.; Donato, S.; Bovet, P.; Viswanathan, B.; Bedu-Addo, K.; Plange-Rhule, J.; Oti Boateng, P.; Forrester, T.E.; et al. Gut Microbiota and Fecal Short Chain Fatty Acids Differ with Adiposity and Country of Origin: The METS-Microbiome Study. Nat. Commun. 2023, 14, 5160. [Google Scholar] [CrossRef]
- Liang, H.; Sathavarodom, N.; Colmenares, C.; Gelfond, J.; Espinoza, S.E.; Ganapathy, V.; Musi, N. Effect of Acute TLR4 Inhibition on Insulin Resistance in Humans. J. Clin. Investig. 2022, 132, e162291. [Google Scholar] [CrossRef]
- Jobe, M.; Agbla, S.C.; Todorcevic, M.; Darboe, B.; Danso, E.; de Barros, J.-P.P.; Lagrost, L.; Karpe, F.; Prentice, A.M. Possible Mediators of Metabolic Endotoxemia in Women with Obesity and Women with Obesity-Diabetes in The Gambia. Int. J. Obes. 2022, 46, 1892–1900. [Google Scholar] [CrossRef]
- Akiba, Y.; Maruta, K.; Takajo, T.; Narimatsu, K.; Said, H.; Kato, I.; Kuwahara, A.; Kaunitz, J.D. Lipopolysaccharides Transport during Fat Absorption in Rodent Small Intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G1070–G1087. [Google Scholar] [CrossRef]
- Yan, S.; Santoro, A.; Niphakis, M.J.; Pinto, A.M.; Jacobs, C.L.; Ahmad, R.; Suciu, R.M.; Fonslow, B.R.; Herbst-Graham, R.A.; Ngo, N.; et al. Inflammation Causes Insulin Resistance in Mice via Interferon Regulatory Factor 3 (IRF3)-Mediated Reduction in FAHFA Levels. Nat. Commun. 2024, 15, 4605. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.N.; McGillicuddy, F.C.; Anderson, P.D.; Hinkle, C.C.; Shah, R.; Pruscino, L.; Tabita-Martinez, J.; Sellers, K.F.; Rickels, M.R.; Reilly, M.P. Experimental Endotoxemia Induces Adipose Inflammation and Insulin Resistance in Humans. Diabetes 2009, 59, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Huwart, S.J.P.; Fayt, C.; Gangarossa, G.; Luquet, S.; Cani, P.D.; Everard, A. TLR4-Dependent Neuroinflammation Mediates LPS-Driven Food-Reward Alterations during High-Fat Exposure. J. Neuroinflamm. 2024, 21, 305. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, Q.; Du, Z.; Yin, L.; Li, J.; Meng, X.; Xue, D. The Trigger for Pancreatic Disease: NLRP3 Inflammasome. Cell Death Discov. 2023, 9, 246. [Google Scholar] [CrossRef]
- Moser, B.; Moore, D.; Khadka, B.; Lyons, C.; Foxall, T.; Andam, C.P.; Parker, C.J.; Ochin, C.; Garelnabi, M.; Sevigny, J.; et al. Association between Inflammation, Lipopolysaccharide Binding Protein, and Gut Microbiota Composition in a New Hampshire Bhutanese Refugee Population with a High Burden of Type 2 Diabetes. Front. Nutr. 2022, 9, 1059163. [Google Scholar] [CrossRef]
- Cruden, K.; Wilkinson, K.; Mukaz, D.K.; Plante, T.B.; Zakai, N.A.; Long, D.L.; Cushman, M.; Olson, N.C. Soluble CD14 and Incident Diabetes Risk: The REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. J. Endocr. Soc. 2024, 8, bvae097. [Google Scholar] [CrossRef]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Vetter, W.; Delzenne, N.M.; Kiechle, M.; Bischoff, S.C. Effect of the Mediterranean Diet on the Faecal Long-Chain Fatty Acid Composition and Intestinal Barrier Integrity: An Exploratory Analysis of the Randomised Controlled LIBRE Trial. Br. J. Nutr. 2024, 132, 1152–1160. [Google Scholar] [CrossRef]
- Hamamah, S.; Hajnal, A.; Covasa, M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024, 16, 1071. [Google Scholar] [CrossRef]
- Beisner, J.; Filipe Rosa, L.; Kaden-Volynets, V.; Stolzer, I.; Günther, C.; Bischoff, S.C. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front. Immunol. 2021, 12, 678360. [Google Scholar] [CrossRef]
- Rodrigues, V.F.; Elias-Oliveira, J.; Pereira, Í.S.; Pereira, J.A.; Barbosa, S.C.; Machado, M.S.G.; Carlos, D. Akkermansia Muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Front. Immunol. 2022, 13, 934695. [Google Scholar] [CrossRef]
- Seo, S.-K.; Kwon, B. Immune Regulation through Tryptophan Metabolism. Exp. Mol. Med. 2023, 55, 1371–1379. [Google Scholar] [CrossRef]
- Mar, J.S.; Ota, N.; Pokorzynski, N.D.; Peng, Y.; Jaochico, A.; Sangaraju, D.; Skippington, E.; Lekkerkerker, A.N.; Rothenberg, M.E.; Tan, M.-W.; et al. IL-22 Alters Gut Microbiota Composition and Function to Increase Aryl Hydrocarbon Receptor Activity in Mice and Humans. Microbiome 2023, 11, 47. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Sun, S.; Xie, Y.; Pan, C.; Li, M.; Li, C.; Liu, Y.; Xu, Z.; Liu, W.; et al. Indolepropionic Acid Reduces Obesity-Induced Metabolic Dysfunction through Colonic Barrier Restoration Mediated via Tuft Cell-Derived IL-25. FEBS J. 2022, 289, 5985–6004. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, M.; Wu, Q.; Tan, X.; Jiang, C.; Teng, F.; Chen, J.; Zhang, F.; Ma, X.; Li, X.; et al. Gut Microbiota-Derived Indole-3-Propionic Acid Alleviates Diabetic Kidney Disease through Its Mitochondrial Protective Effect via Reducing Ubiquitination Mediated-Degradation of SIRT1. J. Adv. Res. 2024, 73, 607–630. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, M.; Si, H.; Ma, J. Gut Microbiota-Mediated IL-22 Alleviates Metabolic Inflammation. Life Sci. 2023, 334, 122229. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ko, B.; Kim, D.J.; Tak, J.; Han, C.Y.; Cho, J.-Y.; Kim, W.; Kim, S.G. Induction of the Hepatic Aryl Hydrocarbon Receptor by Alcohol Dysregulates Autophagy and Phospholipid Metabolism via PPP2R2D. Nat. Commun. 2022, 13, 6080. [Google Scholar] [CrossRef]
- Xu, X.; Sun, S.; Liang, L.; Lou, C.; He, Q.; Ran, M.; Zhang, L.; Zhang, J.; Yan, C.; Yuan, H.; et al. Role of the Aryl Hydrocarbon Receptor and Gut Microbiota-Derived Metabolites Indole-3-Acetic Acid in Sulforaphane Alleviates Hepatic Steatosis in Mice. Front. Nutr. 2021, 8, 756565. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, M.; Lv, X.; He, C.; Yin, J.; Ma, J. AhR Governs Lipid Metabolism: The Role of Gut Microbiota. Front. Microbiol. 2025, 16, 1442282. [Google Scholar] [CrossRef]
- Krause, F.F.; Mangold, K.I.; Ruppert, A.-L.; Leister, H.; Hellhund-Zingel, A.; Lopez Krol, A.; Pesek, J.; Watzer, B.; Winterberg, S.; Raifer, H.; et al. Clostridium Sporogenes-Derived Metabolites Protect Mice against Colonic Inflammation. Gut Microbes 2024, 16, 2412669. [Google Scholar] [CrossRef]
- Gaudino, S.J.; Singh, A.; Huang, H.; Padiadpu, J.; Jean-Pierre, M.; Kempen, C.; Bahadur, T.; Shiomitsu, K.; Blumberg, R.; Shroyer, K.R.; et al. Intestinal IL-22RA1 Signaling Regulates Intrinsic and Systemic Lipid and Glucose Metabolism to Alleviate Obesity-Associated Disorders. Nat. Commun. 2024, 15, 1597. [Google Scholar] [CrossRef]
- Morze, J.; Wittenbecher, C.; Schwingshackl, L.; Danielewicz, A.; Rynkiewicz, A.; Hu, F.B.; Guasch-Ferré, M. Metabolomics and Type 2 Diabetes Risk: An Updated Systematic Review and Meta-Analysis of Prospective Cohort Studies. Diabetes Care 2022, 45, 1013–1024. [Google Scholar] [CrossRef]
- Choi, B.H.; Hyun, S.; Koo, S.-H. The Role of BCAA Metabolism in Metabolic Health and Disease. Exp. Mol. Med. 2024, 56, 1552–1559. [Google Scholar] [CrossRef]
- Hornero-Ramirez, H.; Morisette, A.; Marcotte, B.; Penhoat, A.; Lecomte, B.; Panthu, B.; Lessard Lord, J.; Thirion, F.; Van-Den-Berghe, L.; Blond, E.; et al. Multifunctional Dietary Approach Reduces Intestinal Inflammation in Relation with Changes in Gut Microbiota Composition in Subjects at Cardiometabolic Risk: The SINFONI Project. Gut Microbes 2025, 17, 2438823. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Di Marzo, V. The Gut Microbiome, Endocannabinoids and Metabolic Disorders. J. Endocrinol. 2021, 248, R83–R97. [Google Scholar] [CrossRef]
- Vijay, A.; Kouraki, A.; Gohir, S.; Turnbull, J.; Kelly, A.; Chapman, V.; Barrett, D.A.; Bulsiewicz, W.J.; Valdes, A.M. The Anti-Inflammatory Effect of Bacterial Short Chain Fatty Acids Is Partially Mediated by Endocannabinoids. Gut Microbes 2021, 13, 1997559. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Mao, Z.; Chen, Y. Symphony of the Gut Microbiota and Endocannabinoidome: A Molecular and Functional Perspective. Front. Cell. Infect. Microbiol. 2025, 15, 1566290. [Google Scholar] [CrossRef]
- de Wouters d’Oplinter, A.; Huwart, S.J.P.; Cani, P.D.; Everard, A. Gut Microbes and Food Reward: From the Gut to the Brain. Front. Neurosci. 2022, 16, 947240. [Google Scholar] [CrossRef]
- Wachsmuth, H.R.; Weninger, S.N.; Duca, F.A. Role of the Gut–Brain Axis in Energy and Glucose Metabolism. Exp. Mol. Med. 2022, 54, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Aukan, M.I.; Nymo, S.; Haagensli Ollestad, K.; Akersveen Boyesen, G.; DeBenedictis, J.N.; Rehfeld, J.F.; Coutinho, S.; Martins, C. Differences in Gastrointestinal Hormones and Appetite Ratings among Obesity Classes. Appetite 2022, 171, 105940. [Google Scholar] [CrossRef] [PubMed]
- Castorina, S.; Barresi, V.; Luca, T.; Privitera, G.; De Geronimo, V.; Lezoche, G.; Cosentini, I.; Di Vincenzo, A.; Barbatelli, G.; Giordano, A.; et al. Gastric Ghrelin Cells in Obese Patients Are Hyperactive. Int. J. Obes. 2021, 45, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.; Peters, T.M.; Eisenberg, M.J. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am. J. Med. 2025, 138, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xie, W.; Zhang, X.; Wu, W.; Li, G.; Wang, L. Sodium Butyrate Regulates Macrophage Polarization by TGR5/β-Arrestin2 in Vitro. Mol. Med. 2025, 31, 31. [Google Scholar] [CrossRef]
- Han, Z.; Fu, J.; Gong, A.; Ren, W. Bacterial Indole-3-Propionic Acid Inhibits Macrophage IL-1β Production through Targeting Methionine Metabolism. Sci. China Life Sci. 2025, 68, 1118–1131. [Google Scholar] [CrossRef]
- Lobato, T.B.; Santos, E.S.d.S.; Iser-Bem, P.N.; Falcão, H.d.S.; Gimenes, G.M.; Pauferro, J.R.B.; Rodrigues, G.T.; Correa, I.S.; Pereira, A.C.G.; Passos, M.E.P.; et al. Omega-3 Fatty Acids Weaken Lymphocyte Inflammatory Features and Improve Glycemic Control in Nonobese Diabetic Goto-Kakizaki Rats. Nutrients 2024, 16, 4106. [Google Scholar] [CrossRef]
- Garcia-Martinez, I.; Alen, R.; Pereira, L.; Povo-Retana, A.; Astudillo, A.M.; Hitos, A.B.; Gomez-Hurtado, I.; Lopez-Collazo, E.; Boscá, L.; Francés, R.; et al. Saturated Fatty Acid-Enriched Small Extracellular Vesicles Mediate a Crosstalk Inducing Liver Inflammation and Hepatocyte Insulin Resistance. JHEP Rep. 2023, 5, 100756. [Google Scholar] [CrossRef]
- Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef]
- Nitzke, D.; Czermainski, J.; Rosa, C.; Coghetto, C.; Fernandes, S.A.; Carteri, R.B. Increasing Dietary Fiber Intake for Type 2 Diabetes Mellitus Management: A Systematic Review. World J. Diabetes 2024, 15, 1001–1010. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Facilitating Positive Health Behaviors and Well-Being to Improve Health Outcomes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47, S77–S110. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Speranza, B.; Racioppo, A.; Santillo, A.; Albenzio, M.; Derossi, A.; Caporizzi, R.; Francavilla, M.; Racca, D.; Flagella, Z.; et al. Ultra-Processed Food and Gut Microbiota: Do Additives Affect Eubiosis? A Narrative Review. Nutrients 2025, 17, 2. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, P.; Gao, J.; Suo, H.; Guo, X.; Han, M.; Zan, X.; Chen, C.; Lyu, X.; Wang, H.; et al. Probiotic Supplementation Contributes to Glycemic Control in Adults with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Nutr. Res. 2025, 136, 133–152. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Pasteurised Akkermansia Muciniphila as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06780. [Google Scholar] [CrossRef]
- Baba, Y.; Azuma, N.; Saito, Y.; Takahashi, K.; Matsui, R.; Takara, T. Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study. Nutrients 2024, 16, 2345. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, A.; Karis, G.; Killpartrick, A.; Ulu-Kilic, A.; Nalbantoglu, O.U. A Shotgun Metagenomics Investigation into Labeling Inaccuracies in Widely Sold Probiotic Supplements in the USA. Mol. Nutr. Food Res. 2024, 68, e2300780. [Google Scholar] [CrossRef]
- Microbiome Therapeutics Innovation Group; Barberio, D. Navigating Regulatory and Analytical Challenges in Live Biotherapeutic Product Development and Manufacturing. Front. Microbiomes 2024, 3, 1441290. [Google Scholar] [CrossRef]
- Perraudeau, F.; McMurdie, P.; Bullard, J.; Cheng, A.; Cutcliffe, C.; Deo, A.; Eid, J.; Gines, J.; Iyer, M.; Justice, N.; et al. Improvements to Postprandial Glucose Control in Subjects with Type 2 Diabetes: A Multicenter, Double Blind, Randomized Placebo-Controlled Trial of a Novel Probiotic Formulation. BMJ Open Diabetes Res. Care 2020, 8, e001319. [Google Scholar] [CrossRef]
- Cha, R.R.; Sonu, I. Fecal Microbiota Transplantation: Present and Future. Clin. Endosc. 2025, 58, 352–359. [Google Scholar] [CrossRef]
- Vassallo, G.A.; Dionisi, T.; De Vita, V.; Augello, G.; Gasbarrini, A.; Pitocco, D.; Addolorato, G. The Role of Fecal Microbiota Transplantation in Diabetes. Acta Diabetol. 2025, 62, 977–981. [Google Scholar] [CrossRef]
- da Ponte Neto, A.M.; Clemente, A.C.O.; Rosa, P.W.; Ribeiro, I.B.; Funari, M.P.; Nunes, G.C.; Moreira, L.; Sparvoli, L.G.; Cortez, R.; Taddei, C.R.; et al. Fecal Microbiota Transplantation in Patients with Metabolic Syndrome and Obesity: A Randomized Controlled Trial. World J. Clin. Cases 2023, 11, 4612–4624. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, B.; Chen, F.; Xia, R.; Zhu, D.; Chen, B.; Lin, A.; Zheng, C.; Hou, D.; Li, X.; et al. Fecal Microbiota Transplantation Reverses Insulin Resistance in Type 2 Diabetes: A Randomized, Controlled, Prospective Study. Front. Cell. Infect. Microbiol. 2022, 12, 1089991. [Google Scholar] [CrossRef]
- Sehgal, K.; Berry, P.; Cho, J.; Saffouri, G.; Dierkhising, R.A.; Battaglioli, E.; Kashyap, P.C.; Pardi, D.; Khanna, S. Body Mass Index Changes after Fecal Microbiota Transplantation for Recurrent Clostridioides Difficile Infection. Ther. Adv. Gastroenterol. 2025, 18, 17562848251321121. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lou, X.; Jiang, C.; Ji, X.; Tao, X.; Sun, J.; Bao, Z. Gut Microbiota Is Correlated with Gastrointestinal Adverse Events of Metformin in Patients with Type 2 Diabetes. Front. Endocrinol. 2022, 13, 1044030. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Guigas, B.; Viollet, B. Metformin: Update on Mechanisms of Action and Repurposing Potential. Nat. Rev. Endocrinol. 2023, 19, 460–476. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Kozłowska, M.; Krekora, J.; Śliwińska, A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals 2025, 18, 55. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Grant, I.D.; Ozanne, S.E.; Reynolds, R.M.; Aiken, C.E. Efficacy and Side Effect Profile of Different Formulations of Metformin: A Systematic Review and Meta-Analysis. Diabetes Ther. 2021, 12, 1901–1914. [Google Scholar] [CrossRef]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- The Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium; Baigent, C.; Emberson, J.R.; Haynes, R.; Herrington, W.G.; Judge, P.; Landray, M.J.; Mayne, K.J.; Ng, S.Y.A.; et al. Impact of Diabetes on the Effects of Sodium Glucose Co-Transporter-2 Inhibitors on Kidney Outcomes: Collaborative Meta-Analysis of Large Placebo-Controlled Trials. Lancet 2022, 400, 1788–1801. [Google Scholar] [CrossRef]
- Hinrichs, G.R.; Hovind, P.; Asmar, A. The GLP-1-Mediated Gut-Kidney Cross Talk in Humans: Mechanistic Insight. Am. J. Physiol. Cell Physiol. 2024, 326, C567–C572. [Google Scholar] [CrossRef]
- Lékó, A.H.; Gregory-Flores, A.; Marchette, R.C.N.; Gomez, J.L.; Vendruscolo, J.C.M.; Repunte-Canonigo, V.; Choung, V.; Deschaine, S.L.; Whiting, K.E.; Jackson, S.N.; et al. Genetic or Pharmacological GHSR Blockade Has Sexually Dimorphic Effects in Rodents on a High-Fat Diet. Commun. Biol. 2024, 7, 632. [Google Scholar] [CrossRef]
- Nogueiras, R.; Nauck, M.A.; Tschöp, M.H. Gut Hormone Co-Agonists for the Treatment of Obesity: From Bench to Bedside. Nat. Metab. 2023, 5, 933–944. [Google Scholar] [CrossRef]
- Jin, W.; Zheng, M.; Chen, Y.; Xiong, H. Update on the Development of TGR5 Agonists for Human Diseases. Eur. J. Med. Chem. 2024, 271, 116462. [Google Scholar] [CrossRef]
- Ramirez-Velez, I.; Belardi, B. Storming the Gate: New Approaches for Targeting the Dynamic Tight Junction for Improved Drug Delivery. Adv. Drug Deliv. Rev. 2023, 199, 114905. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, Y.; Kaji, K.; Kitade, M.; Kaya, D.; Kitagawa, K.; Ozutsumi, T.; Fujinaga, Y.; Takaya, H.; Kawaratani, H.; Namisaki, T.; et al. Bile Acid Sequestrant, Sevelamer Ameliorates Hepatic Fibrosis with Reduced Overload of Endogenous Lipopolysaccharide in Experimental Nonalcoholic Steatohepatitis. Microorganisms 2020, 8, 925. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Balaji, S.; Rotter, J.I.; Wood, A.C. Metabolomic Data May Support the Development of Personalized Nutrition Approaches to Type 2 Diabetes Management. Nutr. Rev. 2025, 83, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liu, D.; Yang, S.; Huang, Y.; Wei, X.; Zhang, P.; Lin, J.; Xu, B.; Liu, Y.; Guo, D.; et al. Effect of Time-Restricted Eating Regimen on Weight Loss Is Mediated by Gut Microbiome. iScience 2024, 27, 110202. [Google Scholar] [CrossRef]
- Jian, C.; Silvestre, M.P.; Middleton, D.; Korpela, K.; Jalo, E.; Broderick, D.; de Vos, W.M.; Fogelholm, M.; Taylor, M.W.; Raben, A.; et al. Gut Microbiota Predicts Body Fat Change Following a Low-Energy Diet: A PREVIEW Intervention Study. Genome Med. 2022, 14, 54. [Google Scholar] [CrossRef]
- Wang, T.; Holscher, H.D.; Maslov, S.; Hu, F.B.; Weiss, S.T.; Liu, Y.-Y. Predicting Metabolite Response to Dietary Intervention Using Deep Learning. Nat. Commun. 2025, 16, 815. [Google Scholar] [CrossRef]
- Ben-Yacov, O.; Godneva, A.; Rein, M.; Shilo, S.; Lotan-Pompan, M.; Weinberger, A.; Segal, E. Gut Microbiome Modulates the Effects of a Personalised Postprandial-Targeting (PPT) Diet on Cardiometabolic Markers: A Diet Intervention in Pre-Diabetes. Gut 2023, 72, 1486–1496. [Google Scholar] [CrossRef]
- Sanz, Y.; Cryan, J.F.; Deschasaux-Tanguy, M.; Elinav, E.; Lambrecht, R.; Veiga, P. The Gut Microbiome Connects Nutrition and Human Health. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 534–555. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Y.; Huang, W.; Zhou, H.; Zhang, W. Drug-Microbiota Interactions: An Emerging Priority for Precision Medicine. Signal Transduct. Target. Ther. 2023, 8, 386. [Google Scholar] [CrossRef]
- Elbere, I.; Orlovskis, Z.; Ansone, L.; Silamikelis, I.; Jagare, L.; Birzniece, L.; Megnis, K.; Leskovskis, K.; Vaska, A.; Turks, M.; et al. Gut Microbiome Encoded Purine and Amino Acid Pathways Present Prospective Biomarkers for Predicting Metformin Therapy Efficacy in Newly Diagnosed T2D Patients. Gut Microbes 2024, 16, 2361491. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.B.; Walker, M.E.; Sekela, J.J.; Ivey, S.M.; Jariwala, P.B.; Storch, C.M.; Kowalewski, M.E.; Graboski, A.L.; Lietzan, A.D.; Walton, W.G.; et al. Gut Microbial β-Glucuronidases Influence Endobiotic Homeostasis and Are Modulated by Diverse Therapeutics. Cell Host Microbe 2024, 32, 925–944.e10. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Lu, H.-C.; Chou, Y.-H.; Liu, P.-Y.; Chen, H.-Y.; Huang, M.-C.; Lin, C.-H.; Tsai, C.-N. Gut Microbial Signatures for Glycemic Responses of GLP-1 Receptor Agonists in Type 2 Diabetic Patients: A Pilot Study. Front. Endocrinol. 2022, 12, 814770. [Google Scholar] [CrossRef] [PubMed]
- Kirtipal, N.; Seo, Y.; Son, J.; Lee, S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab. J. 2024, 48, 821–836. [Google Scholar] [CrossRef]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; et al. Emerging Issues in Probiotic Safety: 2023 Perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Spacova, I.; Binda, S.; Ter Haar, J.A.; Henoud, S.; Legrain-Raspaud, S.; Dekker, J.; Espadaler-Mazo, J.; Langella, P.; Martín, R.; Pane, M.; et al. Comparing Technology and Regulatory Landscape of Probiotics as Food, Dietary Supplements and Live Biotherapeutics. Front. Microbiol. 2023, 14, 1272754. [Google Scholar] [CrossRef]
- Kullar, R.; Goldstein, E.J.C.; Johnson, S.; McFarland, L.V. Lactobacillus Bacteremia and Probiotics: A Review. Microorganisms 2023, 11, 896. [Google Scholar] [CrossRef]
- Hoffmann, D.E.; Javitt, G.H.; Kelly, C.R.; Keller, J.J.; Baunwall, S.M.D.; Hvas, C.L. Fecal Microbiota Transplantation: A Tale of Two Regulatory Pathways. Gut Microbes 2025, 17, 2493901. [Google Scholar] [CrossRef]
- Hohmann, E.L. Faecal Microbiota Transplantation: More Screening for Old and New Pathogens. Lancet Infect. Dis. 2021, 21, 587–589. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Bloom, P.P.; Soto, M.T.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.-B.; Hohmann, E.L. Drug-Resistant E. Coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef]
- Hartikainen, A.K.; Jalanka, J.; Lahtinen, P.; Ponsero, A.J.; Mertsalmi, T.; Finnegan, L.; Crispie, F.; Cotter, P.D.; Arkkila, P.; Satokari, R. Fecal Microbiota Transplantation Influences Microbiota without Connection to Symptom Relief in Irritable Bowel Syndrome Patients. npj Biofilms Microbiomes 2024, 10, 73. [Google Scholar] [CrossRef]
- Jiang, L.; Shang, M.; Yu, S.; Liu, Y.; Zhang, H.; Zhou, Y.; Wang, M.; Wang, T.; Li, H.; Liu, Z.; et al. A High-Fiber Diet Synergizes with Prevotella Copri and Exacerbates Rheumatoid Arthritis. Cell. Mol. Immunol. 2022, 19, 1414–1424. [Google Scholar] [CrossRef]
- Rodriguez, J.; Cordaillat-Simmons, M.; Pot, B.; Druart, C. The Regulatory Framework for Microbiome-Based Therapies: Insights into European Regulatory Developments. Npj Biofilms Microbiomes 2025, 11, 53. [Google Scholar] [CrossRef]
- Byndloss, M.; Devkota, S.; Duca, F.; Niess, J.H.; Nieuwdorp, M.; Orho-Melander, M.; Sanz, Y.; Tremaroli, V.; Zhao, L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications—2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024, 67, 1760–1782. [Google Scholar] [CrossRef]
- Wei, S.; Brejnrod, A.D.; Trivedi, U.; Mortensen, M.S.; Johansen, M.Y.; Karstoft, K.; Vaag, A.A.; Ried-Larsen, M.; Sørensen, S.J. Impact of Intensive Lifestyle Intervention on Gut Microbiota Composition in Type 2 Diabetes: A Post-Hoc Analysis of a Randomized Clinical Trial. Gut Microbes 2022, 14, 2005407. [Google Scholar] [CrossRef]
- Rodriguez, J.; Hassani, Z.; Alves Costa Silva, C.; Betsou, F.; Carraturo, F.; Fasano, A.; Israelsen, M.; Iyappan, A.; Krag, A.; Metwaly, A.; et al. State of the Art and the Future of Microbiome-Based Biomarkers: A Multidisciplinary Delphi Consensus. Lancet Microbe 2025, 6, 100948. [Google Scholar] [CrossRef]
Intervention/Mechanism | Study Design/Model | Key Findings | Relevance to T2D |
---|---|---|---|
GLP-1 receptor agonists (GLP-1 RAs) (incretin hormone analogs) | Multiple RCTs in T2D patients | Exogenous GLP-1 mimetics have been shown to stimulate insulin secretion and lower blood glucose in T2D, achieving ~0.9–1.0% HbA1c reduction on average (noting this depends on the baseline HbA1c) with associated weight loss. Furthermore, newer potent agents (e.g., high-dose semaglutide or tirzepatide) often produce >2.0% HbA1c declines, and over 50% of patients can attain non-diabetic HbA1c levels (e.g., >50% of tirzepatide (15 mg) patients reached <5.7%). | Established therapy leveraging the incretin effect; effective only when functional β-cells are present, demonstrating that harnessing the gut–pancreas axis can significantly improve glycemic control in T2D. |
GIP hormone and dual agonists (incretin-based co-agonism) | Human physiological studies; Phase 3 trial of tirzepatide (dual GIP/GLP-1 agonist) | Endogenous GIP’s insulinotropic effect is impaired in T2D (“incretin resistance”), despite normal or high GIP levels. However, a dual GLP-1/GIP agonist (tirzepatide) produced greater HbA1c reduction and weight loss than GLP-1 therapy alone, but its superior efficacy likely reflects its higher dose rather than GIP per se—the added value of GIP remains debated. | Reveals selective incretin resistance in T2D; new dual-agonist therapies exploit the GIP pathway to further enhance insulin secretion and glycemic control. |
Short-chain fatty acids (SCFAs) (butyrate and propionate—microbial metabolites) | Preclinical (gut L-cell assays and rodent models); dietary fiber RCT in T2D patients | SCFAs produced by fiber-fermenting gut bacteria engage FFAR2/3 receptors on L-cells, but whether this significantly increases GLP-1 secretion in vivo (especially in humans) is unclear. In a high-fiber diet trial, T2D patients showed expansion of butyrate-producing microbes, elevated fasting GLP-1 levels, and improved HbA1c, though the GLP-1 rise was modest, and causality remains unproven. | Suggests that altering the microbiota through diet may influence incretin pathways and improve glucose regulation in T2D, though this remains largely hypothetical. |
Indole-3-propionic acid (IPA) (tryptophan-derived microbial metabolite) | Prospective cohort analysis (Finnish DPS); mechanistic in vitro studies | Higher levels of circulating IPA—a gut microbial tryptophan metabolite—were associated with lower T2D risk and better β-cell function (associative evidence). Mechanistically, IPA is hypothesized to act as an antioxidant/anti-inflammatory protector of β-cells (unconfirmed). | Identifies a beneficial microbiota-derived metabolite linked to diabetes prevention; suggests such metabolites could serve as biomarkers or therapeutic targets for preserving β-cell function. |
Branched-chain amino acids (BCAAs) (microbial amino acid metabolism) | Human metabolomic studies; germ-free mouse colonization experiment | Excessive BCAA production by certain gut microbes correlates with insulin resistance and β-cell workload. Elevated BCAA levels are linked to impaired insulin sensitivity and β-cell stress. Colonizing mice with a BCAA-overproducing bacterium (Prevotella copri) worsened glucose tolerance and raised circulating BCAA levels, suggesting a causal microbiome influence. | Links gut microbiota composition (BCAA-producing species) to β-cell dysfunction and metabolic impairment in T2D; implies that modulating microbial amino acid metabolism might alleviate insulin resistance and β-cell overload. |
Microbial inflammatory factors (LPS endotoxin and TMAO) | Animal models (LPS infusion and gene knockout); observational human studies | Gut-derived LPS (a bacterial endotoxin) triggers chronic low-grade inflammation via NLRP3 inflammasome activation, contributing to β-cell injury and dysfunction. Likewise, the microbial metabolite TMAO (from dietary choline metabolism) impairs insulin secretion and induces islet inflammation through NLRP3; TMAO levels are elevated in T2D and predict future diabetes. In diabetic mice, blocking TMAO production (FMO3 inhibition) restored insulin secretion and improved glycemic control. | Implicates gut dysbiosis-induced inflammation in T2D pathogenesis; interventions that reduce endotoxin leakage or TMAO formation (e.g., diet or drugs) may protect β-cells and improve metabolic outcomes in T2D. |
Vagal neural reflexes (parasympathetic gut–brain–islet signaling) | Physiological studies in humans and rodents (vagal stimulation/blockade) | Nutrient ingestion activates vagal afferents in the gut, provoking a “cephalic-phase” insulin release even before blood glucose rises. Gut hormones (e.g., GLP-1) can also act via vagal pathways to prime β-cells, enhancing early-phase insulin secretion after meals. | Shows that neural signals from the gut acutely augment insulin secretion; this autonomic gut–pancreas reflex is an integral part of the postprandial insulin response and could be targeted to improve early insulin release in T2D. |
Sympathetic nervous system (adrenergic signals to islets) | Clinical observations (metabolic syndrome); autonomic intervention studies | Heightened sympathetic activity (common in obesity/metabolic syndrome) inhibits insulin secretion via α-adrenergic receptors on β-cells. This increased sympathetic tone can blunt β-cell response to glucose, exacerbating hyperglycemia under insulin-resistant conditions. | Highlights that autonomic imbalance in T2D (excess sympathetic drive) negatively modulates insulin release. Reducing sympathetic overactivity (via lifestyle or pharmacological means) could thus help to un-inhibit β-cells and improve glycemic control. |
Bariatric surgery (Roux-en-Y gastric bypass and similar procedures) | Clinical outcome studies in T2D patients; comparative trials vs. medical therapy | Surgical rerouting of nutrients (e.g., gastric bypass) dramatically improves glycemic control and β-cell function within days post-operatively, often before significant weight loss. The altered GI anatomy enhances distal gut nutrient delivery and incretin release (the so-called “hindgut” effect, actually a mid-gut mechanism), consistently producing an invariably exaggerated GLP-1 response that contributes to T2D remission in ~50–80% of cases. | Provides clinical proof that modifying gut physiology can send powerful diabetes-remitting signals to the pancreas. Bariatric procedures leverage the gut–pancreas axis (especially incretins) to restore euglycemia, making them among the most effective interventions for T2D. |
Fecal microbiota transplant (FMT) (microbiome replacement therapy) | Randomized controlled trial in humans with metabolic syndrome (to improve insulin resistance) | Transfer of stool from lean donors to obese insulin-resistant patients led to improved insulin sensitivity at 6 weeks. Notably, in a rigorous study, only ~50% of the FMT recipients showed metabolic benefit (others did not), suggesting a responder vs. non-responder phenomenon. The benefit correlated with increased butyrate-producing bacteria. However, improvements waned by 18 weeks without diet change, indicating the microbiota shift was transient. Donor microbiome factors (“super-donors”) and concurrent diet likely influence FMT success, so its benefits are not uniform. | Proof-of-concept that modulating the gut microbiome can directly influence the host’s glucose metabolism and insulin sensitivity. Suggests that sustained microbiome-targeted therapies (possibly alongside diet) could complement T2D management by enhancing the gut–pancreas functional axis. |
Probiotics (e.g., A. muciniphila) (beneficial bacterial supplementation) | Meta-analysis of 30 RCTs (1800+ patients); strain-specific RCT in T2D | Pooled RCT data show probiotic supplements yield modest but significant improvements in glycemic control (∼0.2% HbA1c reduction) and insulin sensitivity (HOMA-IR). Notably, a 12-week trial of pasteurized Akkermansia muciniphila in overweight T2D patients improved insulin sensitivity and lowered fasting insulin levels. Mechanistic links include enhanced GLP-1 secretion observed with certain probiotics, suggesting direct gut–endocrine benefits. | Supports the idea that optimizing gut flora can aid T2D therapy. While effects are modest, probiotics (including next-generation strains, like A. muciniphila) offer a safe adjunct to improve metabolic parameters, potentially by boosting incretin release and reducing inflammation in the gut–pancreas axis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Pan, L.; Wu, Q.; Wang, L.; Huang, Z.; Wang, J.; Wang, L.; Fang, X.; Dong, S.; Zhu, Y.; et al. Type 2 Diabetes and the Multifaceted Gut-X Axes. Nutrients 2025, 17, 2708. https://doi.org/10.3390/nu17162708
Guo H, Pan L, Wu Q, Wang L, Huang Z, Wang J, Wang L, Fang X, Dong S, Zhu Y, et al. Type 2 Diabetes and the Multifaceted Gut-X Axes. Nutrients. 2025; 17(16):2708. https://doi.org/10.3390/nu17162708
Chicago/Turabian StyleGuo, Hezixian, Liyi Pan, Qiuyi Wu, Linhao Wang, Zongjian Huang, Jie Wang, Li Wang, Xiang Fang, Sashuang Dong, Yanhua Zhu, and et al. 2025. "Type 2 Diabetes and the Multifaceted Gut-X Axes" Nutrients 17, no. 16: 2708. https://doi.org/10.3390/nu17162708
APA StyleGuo, H., Pan, L., Wu, Q., Wang, L., Huang, Z., Wang, J., Wang, L., Fang, X., Dong, S., Zhu, Y., & Liao, Z. (2025). Type 2 Diabetes and the Multifaceted Gut-X Axes. Nutrients, 17(16), 2708. https://doi.org/10.3390/nu17162708