The Role of Psychological Factors in Young Adult Snacking: Exploring the Intention–Behaviour Gap
Abstract
1. Introduction
1.1. Theory of Planned Behaviour and the Intention–Behaviour Gap
1.2. Factors of Unhealthy Snacking
1.3. The Current Study
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Physical Activity Engagement
2.3.2. Intention
2.3.3. Appetitive Traits
2.3.4. Stress
2.3.5. Unhealthy Snack Consumption
2.4. Data Analysis
3. Results
3.1. Identifying the Factors of Sweet Snack Consumption
3.2. Identifying the Factors of Savoury Snack Consumption
3.3. Identifying the Factors of Sugar-Sweetened Beverage Consumption
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almoraie, N.M.; Saqaan, R.; Alharthi, R.; Alamoudi, A.; Badh, L.; Shatwan, I.M. Snacking patterns throughout the life span: Potential implications on health. Nutr. Res. 2021, 91, 81–94. [Google Scholar] [CrossRef]
- NielsenIQ. State of Snacking: What the Data Shows. 2024. Available online: https://nielseniq.com/global/en/insights/education/2024/state-of-snacking/ (accessed on 9 April 2025).
- Australian Bureau of Statistics. Apparent Consumption of Selected Foodstuffs, Australia. 2024. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/apparent-consumption-selected-foodstuffs-australia/2022-23 (accessed on 9 April 2025).
- Dunford, E.K.; Popkin, B.M. 37 year snacking trends for US children 1977–2014. Pediatr. Obes. 2018, 13, 247–255. [Google Scholar] [CrossRef]
- Chaplin, K.; Smith, A.P. Definitions and perceptions of snacking. Curr. Top. Nutraceuticals Res. 2011, 9, 53–59. [Google Scholar] [CrossRef]
- Hampl, J.S.; Heaton, C.; Taylor, C.A. Snacking patterns influence energy and nutrient intakes but not body mass index. J. Hum. Nutr. Diet. 2003, 16, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Benelam, B.; Stanner, S.A.; Buttriss, J.L. Is snacking good or bad for health: An overview. Nutr. Bull. 2013, 38, 302–322. [Google Scholar] [CrossRef]
- Ejtahed, H.-S.; Mardi, P.; Hejrani, B.; Mahdavi, F.S.; Ghoreshi, B.; Gohari, K.; Heidari-Beni, M.; Qorbani, M. Association between junk food consumption and mental health problems in adults: A systematic review and meta-analysis. BMC Psychiatry 2024, 24, 438. [Google Scholar] [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef]
- ElBarazi, A.; Tikamdas, R. Association between university student junk food consumption and mental health. Nutr. Health 2024, 30, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, M.; Sassi, F.; Lauer, J.A.; Lee, Y.Y.; Guajardo-Barron, V.; Chisholm, D. Tackling of unhealthy diets, physical inactivity, and obesity: Health effects and cost-effectiveness. Lancet 2010, 376, 1775–1784. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, Y.; Jia, P.; Li, N.; Zheng, Z. Global gender disparities in premature death from cardiovascular disease, and their associations with country capacity for noncommunicable disease prevention and control. Int. J. Environ. Res. Public Health 2021, 18, 10389. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Wu, H.; Jian, W.; Wild, S.H.; Gasevic, D. Sex differences in non-communicable disease prevalence in China: A cross-sectional analysis of the China Health and Retirement Longitudinal Study in 2011. BMJ Open 2017, 7, e017450. [Google Scholar] [CrossRef]
- Kiely, K.M.; Brady, B.; Byles, J. Gender, mental health and ageing. Maturitas 2019, 129, 76–84. [Google Scholar] [CrossRef]
- Stroud, C.; Walker, L.R.; Davis, M.; Irwin, C.E., Jr. Investing in the health and well-being of young adults. J. Adolesc. Health 2015, 56, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, D.; Sogari, G.; Mora, C. Explaining vegetable consumption among young adults: An application of the theory of planned behaviour. Nutrients 2015, 7, 7633–7650. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.G.; Mann, G.; Partacz, M.; A Jurss, M. Measuring university students’ beliefs toward healthy snack selection. J. Am. Coll. Health 2022, 70, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, A.A.; Gallagher, A.; Devine, L.; Hill, A. University student practices and perceptions on eating behaviours whilst living away from home. Int. J. Educ. Res. 2023, 117, 102133. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Kothe, E.J.; Mullan, B.A.; Butow, P. Promoting fruit and vegetable consumption. Testing an intervention based on the theory of planned behaviour. Appetite 2012, 58, 997–1004. [Google Scholar] [CrossRef]
- Zhang, Q.; Hugh-Jones, S.; O’Connor, D.B. Do British and Chinese adolescents snack for different reasons? A cross-country study using the Theory of Planned Behaviour and eating styles. Appetite 2023, 187, 106591. [Google Scholar] [CrossRef]
- Sajjad, M.; Bhatti, A.; Hill, B.; Al-Omari, B. Using the theory of planned behavior to predict factors influencing fast-food consumption among college students. BMC Public Health 2023, 23, 987. [Google Scholar] [CrossRef] [PubMed]
- Conner, M.; Sparks, P. Theory of planned behaviour and health behaviour. Predict. Health Behav. 2005, 2, 121–162. [Google Scholar]
- Lambert, L.G.; Chang, Y.; Mann, G. College students’ intention to select healthy snacks: An application of the theory of planned behavior. Am. J. Health Educ. 2020, 51, 215–224. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Efficacy of the theory of planned behaviour: A meta-analytic review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef]
- Webb, T.L.; Sheeran, P. Does changing behavioral intentions engender behavior change? A meta-analysis of the experimental evidence. Psychol. Bull. 2006, 132, 249. [Google Scholar] [CrossRef]
- Sheeran, P. Intention—Behavior relations: A conceptual and empirical review. Eur. Rev. Soc. Psychol. 2002, 12, 1–36. [Google Scholar] [CrossRef]
- Hall, P.A.; Fong, G.T. Temporal self-regulation theory: A model for individual health behavior. Health Psychol. Rev. 2007, 1, 6–52. [Google Scholar] [CrossRef]
- Collins, A.; Mullan, B. An extension of the theory of planned behavior to predict immediate hedonic behaviors and distal benefit behaviors. Food Qual. Prefer. 2011, 22, 638–646. [Google Scholar] [CrossRef]
- Elliston, K.G.; Ferguson, S.G.; Schüz, B. Personal and situational predictors of everyday snacking: An application of temporal self-regulation theory. Br. J. Health Psychol. 2017, 22, 854–871. [Google Scholar] [CrossRef]
- Martins, C.; Morgan, L.M.; Bloom, S.R.; Robertson, M.D. Effects of exercise on gut peptides, energy intake and appetite. J. Endocrinol. 2007, 193, 251–258. [Google Scholar] [CrossRef]
- McCaig, D.C.; Hawkins, L.A.; Rogers, P.J. Licence to eat: Information on energy expended during exercise affects subsequent energy intake. Appetite 2016, 107, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Syrad, H.; Johnson, L.; Wardle, J.; Llewellyn, C.H. Appetitive traits and food intake patterns in early life. Am. J. Clin. Nutr. 2016, 103, 231–235. [Google Scholar] [CrossRef]
- Derks, I.P.M.; Nas, Z.; AHarris, H.; Kininmonth, A.R.; Treasure, J.; Jansen, P.W.; Llewellyn, C.H. Early childhood appetitive traits and eating disorder symptoms in adolescence: A 10-year longitudinal follow-up study in the Netherlands and the UK. Lancet Child Adolesc. Health 2024, 8, 270–279. [Google Scholar] [CrossRef]
- Coakley, K.E.; Le, H.; Silva, S.R.; Wilks, A. Anxiety is associated with appetitive traits in university students during the COVID-19 pandemic. Nutr. J. 2021, 20, 45. [Google Scholar] [CrossRef]
- Lopes Cortes, M.; Louzado, J.A.; Oliveira, M.G.; Bezerra, V.M.; Mistro, S.; Medeiros, D.S.; Soares, D.A.; Silva, K.O.; Kochergin, C.N.; Carvalho, V.C.H.d.S.d.; et al. Unhealthy food and psychological stress: The association between ultra-processed food consumption and perceived stress in working-class young adults. Int. J. Environ. Res. Public Health 2021, 18, 3863. [Google Scholar] [CrossRef]
- Hill, D.; Conner, M.; Clancy, F.; Moss, R.; Wilding, S.; Bristow, M.; O’cOnnor, D.B. Stress and eating behaviours in healthy adults: A systematic review and meta-analysis. Health Psychol. Rev. 2022, 16, 280–304. [Google Scholar] [CrossRef]
- Errisuriz, V.L.; Pasch, K.E.; Perry, C.L. Perceived stress and dietary choices: The moderating role of stress management. Eat. Behav. 2016, 22, 211–216. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.H.; Yaroch, A.L.; Blanck, H.M. Reported changes in eating habits related to less healthy foods and beverages during the COVID-19 pandemic among US Adults. Nutrients 2022, 14, 526. [Google Scholar] [CrossRef] [PubMed]
- Gillebaart, M.; Schlinkert, C.; Poelman, M.P.; Benjamins, J.S.; De Ridder, D.T. Snacking for a reason: Detangling effects of socio-economic position and stress on snacking behaviour. BMC Public Health 2022, 22, 2009. [Google Scholar] [CrossRef]
- Kandiah, J.; Yake, M.; Jones, J.; Meyer, M. Stress influences appetite and comfort food preferences in college women. Nutr. Res. 2006, 26, 118–123. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Selya, A.S.; Rose, J.S.; Dierker, L.C.; Hedeker, D.; Mermelstein, R.J. A practical guide to calculating Cohen’s f(2), a measure of local effect Size, from PROC MIXED. Front. Psychol. 2012, 3, 111. [Google Scholar] [CrossRef]
- Li, S.; Carlson, E.; Holm, K. Validation of a single-item measure of usual physical activity. Percept. Mot. Ski. 2000, 91, 593–602. [Google Scholar] [CrossRef]
- Milton, K.; Bull, F.C.; Bauman, A. Reliability and validity testing of a single-item physical activity measure. Br. J. Sports Med. 2011, 45, 203. [Google Scholar] [CrossRef]
- Rose, S.B.; Elley, C.R.; Lawton, B.A.; Dowell, A.C. A single question reliably identifies physically inactive women in primary care. N. Z. Med. J. 2008, 121, U2897. [Google Scholar]
- Ajzen, I. Constructing a Theory of Planned Behavior Questionnaire. 2006. Available online: http://people.umass.edu/~aizen/pdf/tpb.measurement.pdf (accessed on 9 April 2025).
- Charlesworth, J.; Green, A.; Mullan, B. Exploring rational and automatic processes in parents’ snack and beverage provision: The role of self-control, intention, and counter-intentional habit. Appetite 2022, 178, 106185. [Google Scholar] [CrossRef]
- McAlpine, T.; Mullan, B.A. The role of environmental cues in sugar-sweetened beverage consumption using a temporal self-regulation theory framework. Appetite 2022, 169, 105828. [Google Scholar] [CrossRef]
- Hunot, C.; Fildes, A.; Croker, H.; Llewellyn, C.H.; Wardle, J.; Beeken, R.J. Appetitive traits and relationships with BMI in adults: Development of the adult eating behaviour questionnaire. Appetite 2016, 105, 356–363. [Google Scholar] [CrossRef]
- Salminen, S.; Kouvonen, A.; Koskinen, A.; Joensuu, M.; Väänänen, A. Is a single item stress measure independently associated with subsequent severe injury: A prospective cohort study of 16,385 forest industry employees. BMC Public Health 2014, 14, 543. [Google Scholar] [CrossRef]
- Elo, A.-L.; Leppänen, A.; Jahkola, A. Validity of a single-item measure of stress symptoms. Scand. J. Work. Environ. Health 2003, 29, 444–451. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M.; van der Horst, K. Snack frequency: Associations with healthy and unhealthy food choices. Public Health Nutr. 2013, 16, 1487–1496. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Dietary Guidelines. 2013. Available online: https://www.eatforhealth.gov.au/sites/default/files/2022-09/n55_australian_dietary_guidelines.pdf (accessed on 9 April 2025).
- IBM Corporation. SPSS Statistics; IBM Corporation: Armonk, NY, USA, 2022. [Google Scholar]
- Sim, M.; Kim, S.-Y.; Suh, Y. Sample size requirements for simple and complex mediation models. Educ. Psychol. Meas. 2022, 82, 76–106. [Google Scholar] [CrossRef]
- Gunzler, D.; Chen, T.; Wu, P.; Zhang, H. Introduction to mediation analysis with structural equation modeling. Shanghai Arch. Psychiatry 2013, 25, 390–394. [Google Scholar]
- Reily, N.M.; Pinkus, R.T.; Vartanian, L.R.; Faasse, K.; Kubis, H.-P. Compensatory eating after exercise in everyday life: Insights from daily diary studies. PLoS ONE 2023, 18, e0282501. [Google Scholar] [CrossRef]
- Beaulieu, K.; Hopkins, M.; Blundell, J.; Finlayson, G. Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiol. Behav. 2018, 192, 23–29. [Google Scholar] [CrossRef]
- Dimmock, J.A.; Guelfi, K.J.; West, J.S.; Masih, T.; Jackson, B. Does motivation for exercise influence post-exercise snacking behavior? Nutrients 2015, 7, 4804–4816. [Google Scholar] [CrossRef]
- Dominguez Garcia, A.; Mullan, B.; Dorina, I. Predicting discretionary food consumption using temporal self-regulation theory and food reward sensitivity. Appetite 2023, 190, 107010. [Google Scholar] [CrossRef]
- Moran, A.; Mullan, B. Exploring temporal self-regulation theory to predict sugar-sweetened beverage consumption. Psychol. Health 2021, 36, 334–350. [Google Scholar] [CrossRef]
- McDermott, M.S.; Oliver, M.; Svenson, A.; Simnadis, T.; Beck, E.J.; Coltman, T.; Iverson, D.; Caputi, P.; Sharma, R. The theory of planned behaviour and discrete food choices: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 162. [Google Scholar] [CrossRef]
- McAlpine, T.; Mullan, B.A.; Dorina, I. Comparison of approach/avoidance intentions for alcohol and vegetable consumption under a temporal self-regulation theory framework. Psychol. Health, 2024; online ahead of print. [Google Scholar]
- Dorina, I.; Mullan, B.; Boyes, M.; Liddelow, C. Utility of temporal self-regulation theory in health and social behaviours: A meta-analysis. Br. J. Health Psychol. 2023, 28, 397–438. [Google Scholar] [CrossRef]
- Gardner, B.; Corbridge, S.; McGowan, L. Do habits always override intentions? Pitting unhealthy snacking habits against snack-avoidance intentions. BMC Psychol. 2015, 3, 8. [Google Scholar] [CrossRef]
- Robinson, E.; Blissett, J.; Higgs, S. Changing memory of food enjoyment to increase food liking, choice and intake. Br. J. Nutr. 2012, 108, 1505–1510. [Google Scholar] [CrossRef]
- Jacob, R.; Provencher, V.; Panahi, S.; Tremblay, A.; Drapeau, V. Eating behaviour traits mediate the association between satiety responsiveness and energy intake among individuals with overweight and obesity. Appetite 2023, 180, 106373. [Google Scholar] [CrossRef]
- Dalton, M.; Hollingworth, S.; Blundell, J.; Finlayson, G. Weak satiety responsiveness is a reliable trait associated with hedonic risk factors for overeating among women. Nutrients 2015, 7, 7421–7436. [Google Scholar] [CrossRef]
- Stribiţcaia, E.; Evans, C.E.L.; Gibbons, C.; Blundell, J.; Sarkar, A. Food texture influences on satiety: Systematic review and meta-analysis. Sci. Rep. 2020, 10, 12929. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Chambers, L.; McCrickerd, K.; Yeomans, M.R. Optimising foods for satiety. Trends Food Sci. Technol. 2015, 41, 149–160. [Google Scholar] [CrossRef]
- Rahim, A.S.A.; Hamirudin, A.H. Types of snack intake associated with stress among adults: A scoping review. Int. J. Allied Health Sci. 2022, 6, 2780–2801. [Google Scholar]
- Mohamed, B.A.; Mahfouz, M.S.; Badr, M.F. Food selection under stress among undergraduate students in Riyadh, Saudi Arabia. Psychol. Res. Behav. Manag. 2020, 13, 211–221. [Google Scholar] [CrossRef]
- De Vet, E.; Stok, F.M.; De Wit, J.B.F.; De Ridder, D.T.D. The habitual nature of unhealthy snacking: How powerful are habits in adolescence? Appetite 2015, 95, 182–187. [Google Scholar] [CrossRef]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef]
- Whitney, S.; Bedard, C.; Mielke, J.; Browne, D.T.; Ferro, M.A. Do subjective and objective measures of stress agree in a clinical sample of youth and their parents? Compr. Psychoneuroendocrinol. 2022, 11, 100155. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Jeyakumar, D.T.; Jayawardena, R.; Chourdakis, M. The impact of COVID-19 lockdown on snacking habits, fast-food and alcohol consumption: A systematic review of the evidence. Clin. Nutr. 2022, 41, 3038–3045. [Google Scholar] [CrossRef]
- Liu, F.; Dai, L.; Cai, Y.; Chen, X.; Li, J.; Shi, L. Psychological state and its correlates of local college students in Wuhan during COVID-19 pandemic. Psychol. Sch. 2023, 60, 1477–1487. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Puviani, M.B.; Nasi, M.; Farinetti, A. COVID-19 pandemic: The effects of quarantine on cardiovascular risk. Eur. J. Clin. Nutr. 2020, 74, 852–855. [Google Scholar] [CrossRef]
- Zhou, C.; Li, R.; Yang, M.; Duan, S.; Yang, C. Psychological status of high school students 1 year after the COVID-19 emergency. Front. Psychiatry 2021, 12, 729930. [Google Scholar] [CrossRef]
- Kesmodel, U.S. Cross-sectional studies—What are they good for? Acta Obstet. Gynecol. Scand. 2018, 97, 388–393. [Google Scholar] [CrossRef]
- Corno, G.; Paquette, A.; Monthuy-Blanc, J.; Ouellet, M.; Bouchard, S. The relationship between women’s negative body image and disordered eating behaviors during the COVID-19 pandemic: A cross-sectional study. Front. Psychol. 2022, 13, 856933. [Google Scholar] [CrossRef]
N | % | |
---|---|---|
Gender | ||
Woman | 304 | 94.1 |
Man | 19 | 5.9 |
Australian state of residence | ||
Western Australia | 155 | 48.0 |
Victoria | 54 | 16.7 |
New South Wales | 51 | 15.8 |
Queensland | 30 | 9.3 |
Australian Capital Territory | 14 | 4.3 |
South Australia | 14 | 4.3 |
Tasmania | 5 | 1.5 |
Physical activity engagement | ||
Never/less than once per week | 58 | 18.0 |
One day | 65 | 20.2 |
Two days | 57 | 17.7 |
Three days | 48 | 14.9 |
Four days | 33 | 10.2 |
Five days | 24 | 7.5 |
Six days | 20 | 6.2 |
Daily | 17 | 5.3 |
COVID-19 restrictions | ||
Yes | 122 | 37.8 |
No | 201 | 62.2 |
COVID-19 measures (N = 122) * | ||
Full lockdown | 91 | 74.6 |
Some restrictions | 31 | 25.4 |
M (SD) | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Gender | - | - | 0.03 | 0.11 | 0.06 | 0.00 | −0.04 | −0.15 ** | −0.20 ** | −0.15 ** | −0.08 |
2. Age | 24.73 (3.23) | - | 0.06 | −0.06 | 0.19 ** | 0.01 | −0.07 | −0.11 * | −0.09 | −0.06 | |
3. Physical activity engagement | 2.53 (2.05) | - | 0.03 | −0.05 | −0.00 | −0.10 | −0.19 ** | −0.22 ** | −0.15 ** | ||
4. Intention to avoid unhealthy snacking | 4.90 (1.53) | - | 0.04 | 0.02 | −0.01 | −0.07 | −0.08 | 0.02 | |||
5. Enjoyment of food | 4.24 (0.81) | - | −0.31 ** | −0.10 | −0.04 | 0.01 | −0.04 | ||||
6. Satiety responsiveness | 2.81 (0.90) | - | 0.07 | 0.09 | 0.07 | 0.19 ** | |||||
7. Stress | 7.06 (2.11) | - | 0.15 ** | 0.10 | 0.11 ** | ||||||
8. Sweet snack consumption | 5.36 (1.29) | - | 0.48 ** | 0.31 ** | |||||||
9. Savoury snack consumption | 4.82 (1.41) | - | 0.24 ** | ||||||||
10. Sugar-sweetened beverage consumption | 4.03 (1.80) | - |
Step | Predictor | B [95% CI] | SE | β | sr2 | R2 | ΔR2 | F (df) | ΔF (df) |
---|---|---|---|---|---|---|---|---|---|
1 | Physical activity engagement | −0.12 [−0.19, −0.05] ** | 0.04 | −0.19 | −0.04 | 0.04 | 0.04 | 11.86 (1, 320) | 11.86 (1, 320) |
2 | Physical activity engagement | −0.12 [−0.19, −0.05] ** | 0.04 | −0.19 | −0.03 | 0.04 | 0.00 | 6.58 (2, 319) | 1.29 (1, 319) |
Intention | −0.05 [−0.14, 0.04] | 0.05 | −0.06 | −0.00 | |||||
3 | Physical activity engagement | −0.12 [−0.19, −0.05] ** | 0.04 | −0.19 | −0.04 | 0.05 | 0.01 | 4.06 (4, 317) | 1.52 (2, 317) |
Intention | −0.05 [−0.14, 0.04] | 0.05 | −0.06 | −0.00 | |||||
Enjoyment of food | −0.03 [−0.21, 0.16] | 0.09 | −0.02 | −0.00 | |||||
Satiety responsiveness | 0.13 [−0.04, 0.29] | 0.08 | 0.09 | 0.01 | |||||
4 | Physical activity engagement | −0.11 [−0.18, −0.04] * | 0.04 | −0.18 | −0.03 | 0.06 | 0.02 | 4.31 (5, 316) | 5.11 (1, 316) |
Intention | −0.05 [−0.14, 0.04] | 0.05 | −0.06 | −0.00 | |||||
Enjoyment of food | −0.01 [−0.19, 0.17] | 0.09 | −0.01 | −0.00 | |||||
Satiety responsiveness | 0.12 [−0.04, 0.28] | 0.08 | 0.08 | 0.00 | |||||
Stress | 0.08 [0.10, 0.14] * | 0.03 | 0.12 | 0.02 |
Step | Predictor | B [95% CI] | SE | β | sr2 | R2 | ΔR2 | F (df) | ΔF (df) |
---|---|---|---|---|---|---|---|---|---|
1 | Physical activity engagement | −0.15 [−0.23, −0.08] ** | 0.04 | −0.22 | −0.05 | 0.05 | 0.05 | 16.18 (1, 320) | 16.18 (1, 320) |
2 | Physical activity engagement | −0.15 [−0.22, −0.08] ** | 0.04 | −0.22 | −0.05 | 0.05 | 0.01 | 8.88 (2, 319) | 1.55 (1, 319) |
Intention | −0.06 [−0.16, 0.04] | 0.05 | −0.07 | −0.00 | |||||
3 | Physical activity engagement | −0.15 [−0.22, −0.08] ** | 0.04 | −0.22 | −0.05 | 0.06 | 0.01 | 5.05 (4, 317) | 1.22 (2, 317) |
Intention | −0.07 [−0.16, 0.03] | 0.05 | −0.07 | −0.00 | |||||
Enjoyment of food | 0.04 [−0.16, 0.24] | 0.10 | 0.02 | 0.00 | |||||
Satiety responsiveness | 0.14 [−0.04, 0.32] | 0.09 | 0.09 | 0.01 | |||||
4 | Physical activity engagement | −0.14 [−0.22, −0.07] ** | 0.04 | −0.21 | −0.04 | 0.07 | 0.01 | 4.48 (5, 316) | 2.11 (1, 316) |
Intention | −0.06 [−0.16, 0.03] | 0.05 | −0.07 | −0.00 | |||||
Enjoyment of food | 0.05 [−0.14, 0.25] | 0.10 | 0.03 | 0.00 | |||||
Satiety responsiveness | 0.14 [−0.04, 0.31] | 0.09 | 0.09 | 0.01 | |||||
Stress | 0.05 [−0.02, 0.13] | 0.04 | 0.08 | 0.01 |
Step | Predictor | B [95% CI] | SE | β | sr2 | R2 | ΔR2 | F (df) | ΔF (df) |
---|---|---|---|---|---|---|---|---|---|
1 | Physical activity engagement | −0.13 [−0.23, −0.03] * | 0.05 | −0.15 | −0.02 | 0.02 | 0.02 | 7.13 (1, 320) | 7.13 (1, 320) |
2 | Physical activity engagement | −0.13 [−0.23, −0.03] * | 0.05 | −0.15 | −0.02 | 0.02 | 0.00 | 3.59 (2, 319) | 0.07 (1, 319) |
Intention | 0.02 [−0.11, 0.15] | 0.07 | 0.02 | 0.00 | |||||
3 | Physical activity engagement | −0.13 [−0.22, −0.03] * | 0.05 | −0.15 | −0.02 | 0.06 | 0.03 | 4.59 (4, 317) | 5.49 (2, 317) |
Intention | 0.01 [−0.11, 0.15] | 0.07 | 0.01 | 0.00 | |||||
Enjoyment of food | 0.04 [−0.22, 0.29] | 0.13 | 0.02 | 0.00 | |||||
Satiety responsiveness | 0.37 [0.14, 0.60] * | 0.12 | 0.19 | 0.04 | |||||
4 | Physical activity engagement | −0.12 [−0.22, −0.03] * | 0.05 | −0.14 | −0.02 | 0.06 | 0.01 | 4.19 (5, 316) | 2.49 (1, 316) |
Intention | 0.01 [−0.11, 0.14] | 0.06 | 0.01 | 0.00 | |||||
Enjoyment of food | 0.05 [−0.20, 0.30] | 0.13 | 0.02 | 0.00 | |||||
Satiety responsiveness | 0.36 [0.14, 0.59] * | 0.12 | 0.18 | 0.03 | |||||
Stress | 0.07 [−0.02, 0.16] | 0.05 | 0.09 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Green, A.; Mullan, B.; Dorina, I. The Role of Psychological Factors in Young Adult Snacking: Exploring the Intention–Behaviour Gap. Nutrients 2025, 17, 2681. https://doi.org/10.3390/nu17162681
Green A, Mullan B, Dorina I. The Role of Psychological Factors in Young Adult Snacking: Exploring the Intention–Behaviour Gap. Nutrients. 2025; 17(16):2681. https://doi.org/10.3390/nu17162681
Chicago/Turabian StyleGreen, Astrid, Barbara Mullan, and Indita Dorina. 2025. "The Role of Psychological Factors in Young Adult Snacking: Exploring the Intention–Behaviour Gap" Nutrients 17, no. 16: 2681. https://doi.org/10.3390/nu17162681
APA StyleGreen, A., Mullan, B., & Dorina, I. (2025). The Role of Psychological Factors in Young Adult Snacking: Exploring the Intention–Behaviour Gap. Nutrients, 17(16), 2681. https://doi.org/10.3390/nu17162681