Methylomic Signature and Epigenetic Damage Modulation of Bronte Pistachio (Pistacia vera L.) Hydrophilic Extract in Differentiated CaCo-2 Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Model
2.2. Plant Material
2.3. Extraction Protocol
2.4. Content of Polyphenolic Compounds and Antioxidant Activity of BPHE
2.4.1. Total Polyphenol Content
2.4.2. Total Proanthocyanidin Content
2.4.3. Antioxidant Activity
2.5. Cell Culture, Treatments, and Positive Controls
2.6. Genomic DNA Isolation
2.7. MeSAP-PCR-Based Assessment of Genomic DNA Methylation
2.8. Omic Analyses
2.8.1. Illumina Sequencing and Bioinformatics Processing
2.8.2. Methylation Analysis from Bisulfite-Sequencing
2.8.3. Intersection Analysis
2.8.4. Functional Analysis
2.9. Analysis of Variation in Methylation in Some Structural/Functional Categories of Genes
3. Results
3.1. Content of Polyphenols and Radical Scavenging Activity of BPHE
3.2. PCR-Based Assessment of BPHE-Induced Genomic DNA Methylation
Treatment with BPHE Is Able to Decrease As-Induced DNA Demethylation in CaCo-2 Cells
3.3. Differential Promoter Methylation Analysis of Treated Cells from Omic Data
3.4. Effects of Treatments and Co-Treatments on the Methylation of Structural/Functional Categories of Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-AzaC | 5-Azacytidine |
AA | Antioxidant activity |
As | Arsenic |
BPHE | Bronte pistachio hydrophilic extract |
CC | Cyanidin chloride |
CCE | Cyanidin chloride equivalents |
DD | Double-digested DNA |
FW | Fresh weight |
GA | Gallic acid |
GAE | Gallic acid equivalents |
MD | Mediterranean diet |
MeSAP-PCR | Methylation-sensitive arbitrarily primed PCR |
NGS | Next-generation sequencing |
PAC | Total proanthocyanidin content |
PKGs | Pathway-key genes |
SD | Single-digested DNA |
TE | Trolox equivalent |
TPC | Total polyphenol content |
TSSs | Transcription start sites |
References
- Bordoni, L.; Gabbianelli, R. Primers on Nutrigenetics and Nutri(Epi)Genomics: Origins and Development of Precision Nutrition. Biochimie 2019, 160, 156–171. [Google Scholar] [CrossRef]
- Caradonna, F.; Consiglio, O.; Luparello, C.; Gentile, C. Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Palika, R.; Ismail, A.; Pullakhandam, R.; Reddy, G.B. Nutrigenomics: Opportunities & Challenges for Public Health Nutrition. Indian J. Med. Res. 2018, 148, 632–641. [Google Scholar] [CrossRef]
- Caradonna, F.; Cruciata, I.; Luparello, C. Nutrigenetics, Nutrigenomics and Phenotypic Outcomes of Dietary Low-Dose Alcohol Consumption in the Suppression and Induction of Cancer Development: Evidence from in Vitro Studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 2122–2139. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, M.L.; García-Vigara, A.; Hidalgo-Mora, J.J.; García-Pérez, M.-Á.; Tarín, J.; Cano, A. Mediterranean Diet and Health: A Systematic Review of Epidemiological Studies and Intervention Trials. Maturitas 2020, 136, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Naselli, F.; Tesoriere, L.; Caradonna, F.; Bellavia, D.; Attanzio, A.; Gentile, C.; Livrea, M.A. Anti-Proliferative and pro-Apoptotic Activity of Whole Extract and Isolated Indicaxanthin from Opuntia Ficus-Indica Associated with Re-Activation of the Onco-Suppressor p16INK4a Gene in Human Colorectal Carcinoma (Caco-2) Cells. Biochem. Biophys. Res. Commun. 2014, 450, 652–658. [Google Scholar] [CrossRef]
- Naselli, F.; Belshaw, N.J.; Gentile, C.; Tutone, M.; Tesoriere, L.; Livrea, M.A.; Caradonna, F. Phytochemical Indicaxanthin Inhibits Colon Cancer Cell Growth and Affects the DNA Methylation Status by Influencing Epigenetically Modifying Enzyme Expression and Activity. Lifestyle Genom. 2015, 8, 114–127. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Naselli, F.; Cruciata, I.; Volpes, S.; Schimmenti, C.; Serio, G.; Mauro, M.; Librizzi, M.; Luparello, C.; Chiarelli, R.; et al. Indicaxanthin Induces Autophagy in Intestinal Epithelial Cancer Cells by Epigenetic Mechanisms Involving DNA Methylation. Nutrients 2023, 15, 3495. [Google Scholar] [CrossRef]
- Abbasifard, M.; Jamialahmadi, T.; Reiner, Ž.; Eid, A.H.; Sahebkar, A. The Effect of Nuts Consumption on Circulating Oxidized Low-density Lipoproteins: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phytother. Res. 2023, 37, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Maffei, M.E. Chemical Partitioning and DNA Fingerprinting of Some Pistachio (Pistacia vera L.) Varieties of Different Geographical Origin. Phytochemistry 2019, 160, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.; Tesoriere, L.; Butera, D.; Fazzari, M.; Monastero, M.; Allegra, M.; Livrea, M.A. Antioxidant Activity of Sicilian Pistachio (Pistacia vera L. Var. Bronte) Nut Extract and Its Bioactive Components. J. Agric. Food Chem. 2007, 55, 643–648. [Google Scholar] [CrossRef]
- Gentile, C.; Allegra, M.; Angileri, F.; Pintaudi, A.M.; Livrea, M.A.; Tesoriere, L. Polymeric Proanthocyanidins from Sicilian Pistachio (Pistacia vera L.) Nut Extract Inhibit Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Cells. Eur. J. Nutr. 2012, 51, 353–363. [Google Scholar] [CrossRef]
- Gentile, C.; Perrone, A.; Attanzio, A.; Tesoriere, L.; Livrea, M.A. Sicilian Pistachio (Pistacia vera L.) Nut Inhibits Expression and Release of Inflammatory Mediators and Reverts the Increase of Paracellular Permeability in IL-1β-Exposed Human Intestinal Epithelial Cells. Eur. J. Nutr. 2015, 54, 811–821. [Google Scholar] [CrossRef]
- Volpes, S.; Cruciata, I.; Ceraulo, F.; Schimmenti, C.; Naselli, F.; Pinna, C.; Mauro, M.; Picone, P.; Dallavalle, S.; Nuzzo, D.; et al. Nutritional Epigenomic and DNA-Damage Modulation Effect of Natural Stilbenoids. Sci. Rep. 2023, 13, 658. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Patlolla, A.K.; Centeno, J.A. Invited Reviews: Carcinogenic and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review. Toxicol. Pathol. 2003, 31, 575–588. [Google Scholar] [CrossRef]
- Tapio, S.; Grosche, B. Arsenic in the Aetiology of Cancer. Mutat. Res. Mutat. Res. 2006, 612, 215–246. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hsiao, C.K.; Chen, C.-L.; Hsu, L.-I.; Chiou, H.-Y.; Chen, S.-Y.; Hsueh, Y.-M.; Wu, M.-M.; Chen, C.-J. A Review of the Epidemiologic Literature on the Role of Environmental Arsenic Exposure and Cardiovascular Diseases. Toxicol. Appl. Pharmacol. 2007, 222, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.; Langowski, J.L.; Owen-Schaub, L. Mad Dogs, Englishmen and Apoptosis: The Role of Cell Death in UV-Induced Skin Cancer. Apoptosis 2003, 8, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Fekete, E.E.; Wang, A.; Creskey, M.; Cummings, S.E.; Lavoie, J.R.; Ning, Z.; Li, J.; Figeys, D.; Chen, R.; Zhang, X. Multilevel Proteomic Profiling of Colorectal Adenocarcinoma Caco-2 Cell Differentiation to Characterize an Intestinal Epithelial Model. J. Proteome Res. 2024, 23, 2561–2575. [Google Scholar] [CrossRef]
- Caradonna, F.; Cruciata, I.; Schifano, I.; La Rosa, C.; Naselli, F.; Chiarelli, R.; Perrone, A.; Gentile, C. Methylation of Cytokines Gene Promoters in IL-1β-Treated Human Intestinal Epithelial Cells. Inflamm. Res. 2018, 67, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Mannino, G.; Perrone, A.; Campobenedetto, C.; Schittone, A.; Margherita Bertea, C.; Gentile, C. Phytochemical Profile and Antioxidative Properties of Plinia Trunciflora Fruits: A New Source of Nutraceuticals. Food Chem. 2020, 307, 125515. [Google Scholar] [CrossRef] [PubMed]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The Conversion of Procyanidins and Prodelphinidins to Cyanidin and Delphinidin. Phytochemistry 1985, 25, 223–230. [Google Scholar] [CrossRef]
- Fellegrini, N.; Ke, R.; Yang, M.; Rice-Evans, C. [34] Screening of Dietary Carotenoids and Carotenoid-Rich Fruit Extracts for Antioxidant Activities Applying 2,2’-Azinobis(3-Ethylenebenzothiazoline-6-Sulfonic Acid Radical Cation Decolorization Assay. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 379–389. ISBN 978-0-12-182200-2. [Google Scholar]
- Mannino, G.; Serio, G.; Asteggiano, A.; Gatti, N.; Bertea, C.M.; Medana, C.; Gentile, C. Bioactive Compounds and Antioxidant Properties with Involved Mechanisms of Eugenia Involucrata DC Fruits. Antioxidants 2022, 11, 1769. [Google Scholar] [CrossRef]
- Amatori, S.; Mazzoni, L.; Alvarez-Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Errico Provenzano, A.; Persico, G.; Mezzetti, B.; et al. Polyphenol-Rich Strawberry Extract (PRSE) Shows in Vitro and in Vivo Biological Activity against Invasive Breast Cancer Cells. Sci. Rep. 2016, 6, 30917. [Google Scholar] [CrossRef]
- Frisbie, S.H.; Mitchell, E.J. Arsenic in Drinking Water: An Analysis of Global Drinking Water Regulations and Recommendations for Updates to Protect Public Health. PLoS ONE 2022, 17, e0263505. [Google Scholar] [CrossRef]
- Naselli, F.; Catanzaro, I.; Bellavia, D.; Perez, A.; Sposito, L.; Caradonna, F. Role and Importance of Polymorphisms with Respect to DNA Methylation for the Expression of CYP2E1 Enzyme. Gene 2014, 536, 29–39. [Google Scholar] [CrossRef]
- Krueger, F.; Andrews, S.R. Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit: A Comprehensive R Package for the Analysis of Genome-Wide DNA Methylation Profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef]
- Akalin, A.; Franke, V.; Vlahoviček, K.; Mason, C.E.; Schübeler, D. Genomation: A Toolkit to Summarize, Annotate and Visualize Genomic Intervals. Bioinformatics 2015, 31, 1127–1129. [Google Scholar] [CrossRef]
- Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J. Software for Computing and Annotating Genomic Ranges. PLoS Comput. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Gentile, C.; Nicosia, A.; Costa, S.; Volpes, S.; Greco, L.; Naselli, F.; Caradonna, F. Epigenetic Remodeling of Regulatory Regions by Indicaxanthin Suggests a Shift in Cell Identity Programs in Colorectal Cancer Cells. Int. J. Mol. Sci. 2025, 26, 6072. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Shahhosseini, A.; Bourova-Flin, E.; Derakhshan, S.; Aminishakib, P.; Goudarzi, A. High Levels of Histone H3 K27 Acetylation and Tri-Methylation Are Associated with Shorter Survival in Oral Squamous Cell Carcinoma Patients. BioMedicine 2023, 13, 22–38. [Google Scholar] [CrossRef]
- Muranova, L.K.; Vostrikova, V.M.; Shatov, V.M.; Sluchanko, N.N.; Gusev, N.B. Interaction of the C-Terminal Immunoglobulin-like Domains (Ig 22–24) of Filamin C with Human Small Heat Shock Proteins. Biochimie 2024, 219, 146–154. [Google Scholar] [CrossRef]
- Cao, D.-L.; Ma, L.-J.; Jiang, B.-C.; Gu, Q.; Gao, Y.-J. Cytochrome P450 26A1 Contributes to the Maintenance of Neuropathic Pain. Neurosci. Bull. 2024, 40, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Sternisha, S.M.; Miller, B.G. Molecular and Cellular Regulation of Human Glucokinase. Arch. Biochem. Biophys. 2019, 663, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J. WARP: A Unique Extracellular Matrix Component of Cartilage, Muscle, and Endothelial Cell Basement Membranes. Anat. Rec. 2020, 303, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Lee, H.Y. Rab25 and RCP in Cancer Progression. Arch. Pharm. Res. 2019, 42, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Pihlström, S.; Richardt, S.; Määttä, K.; Pekkinen, M.; Olkkonen, V.M.; Mäkitie, O.; Mäkitie, R.E. SGMS2 in Primary Osteoporosis with Facial Nerve Palsy. Front. Endocrinol. 2023, 14, 1224318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Teng, Z.; Wang, Z.; Zhu, P.; Wang, Z.; Liu, F.; Liu, X. Human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs) Alleviate Paclitaxel-Induced Spermatogenesis Defects and Maintain Male Fertility. Biol. Res. 2023, 56, 47. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tan, Z.; Li, Q.; Fan, W.; Chen, G.; Bin, Y.; Zhou, Y.; Yi, J.; Luo, X.; Tan, J.; et al. Combined Analysis of Expression Profiles in a Mouse Model and Patients Identified BHMT2 as a New Regulator of Lipid Metabolism in Metabolic-Associated Fatty Liver Disease. Front. Cell Dev. Biol. 2021, 9, 741710. [Google Scholar] [CrossRef]
- Catalanotto, M.; Vaz, J.M.; Abshire, C.; Youngblood, R.; Chu, M.; Levine, H.; Jolly, M.K.; Dragoi, A.-M. Dual Role of CASP8AP2/FLASH in Regulating Epithelial-to-Mesenchymal Transition Plasticity (EMP). Transl. Oncol. 2024, 39, 101837. [Google Scholar] [CrossRef]
- Tolleson, C.; Claassen, D. The Function of Tyrosine Hydroxylase in the Normal and Parkinsonian Brain. CNS Neurol. Disord—Drug Targets 2012, 11, 381–386. [Google Scholar] [CrossRef]
- Ju, H.; Lim, B.; Kim, M.; Kim, Y.S.; Kim, W.H.; Ihm, C.; Noh, S.-M.; Han, D.S.; Yu, H.-J.; Choi, B.Y.; et al. A Regulatory Polymorphism at Position -309 in PTPRCAP Is Associated with Susceptibility to Diffuse-Type Gastric Cancer and Gene Expression. Neoplasia 2009, 11, 1340–1347. [Google Scholar] [CrossRef]
- Janssen, W.J.M.; Grobarova, V.; Leleux, J.; Jongeneel, L.; Van Gijn, M.; Van Montfrans, J.M.; Boes, M. Proline-Serine-Threonine Phosphatase Interacting Protein 1 (PSTPIP1) Controls Immune Synapse Stability in Human T Cells. J. Allergy Clin. Immunol. 2018, 142, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Noh, E.J.; Lim, D.-S.; Lee, J.-S. A Novel Role for Methyl CpG-Binding Domain Protein 3, a Component of the Histone Deacetylase Complex, in Regulation of Cell Cycle Progression and Cell Death. Biochem. Biophys. Res. Commun. 2009, 378, 332–337. [Google Scholar] [CrossRef]
- Žižić, M.; Atlagić, K.; Karaman, M.; Živić, M.; Stanić, M.; Maksimović, V.; Zakrzewska, J. Uptake of Vanadium and Its Intracellular Metabolism by Coprinellus truncorum Mycelial Biomass. J. Trace Elem. Med. Biol. 2024, 83, 127381. [Google Scholar] [CrossRef]
- Yang, M.; Hu, X.; Tang, B.; Deng, F. Exploring the Interplay between Methylation Patterns and Non-Coding RNAs in Non-Small Cell Lung Cancer: Implications for Pathogenesis and Therapeutic Targets. Heliyon 2024, 10, e24811. [Google Scholar] [CrossRef]
- Zhang, S.; Huangfu, H.; Zhao, Q.; Li, Y.; Wu, L. Downregulation of Long Noncoding RNA HCP5/miR-216a-5p/ZEB1 Axis Inhibits the Malignant Biological Function of Laryngeal Squamous Cell Carcinoma Cells. Front. Immunol. 2022, 13, 1022677. [Google Scholar] [CrossRef]
- Xiao, Y.; Wei, R.; Yuan, Z.; Lan, X.; Kuang, J.; Hu, D.; Song, Y.; Luo, J. Rutin Suppresses FNDC1 Expression in Bone Marrow Mesenchymal Stem Cells to Inhibit Postmenopausal Osteoporosis. Am. J. Transl. Res. 2019, 11, 6680–6690. [Google Scholar] [PubMed]
- Nagamani, S.C.S.; Erez, A.; Lee, B. Argininosuccinate Lyase Deficiency. In GeneReviews; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Yi, C.; Cai, C.; Cheng, Z.; Zhao, Y.; Yang, X.; Wu, Y.; Wang, X.; Jin, Z.; Xiang, Y.; Jin, M.; et al. Genome-Wide CRISPR-Cas9 Screening Identifies the CYTH2 Host Gene as a Potential Therapeutic Target of Influenza Viral Infection. Cell Rep. 2022, 38, 110559. [Google Scholar] [CrossRef]
- Banci, L.; Bertini, I.; Calderone, V.; Ciofi-Baffoni, S.; Giachetti, A.; Jaiswal, D.; Mikolajczyk, M.; Piccioli, M.; Winkelmann, J. Molecular View of an Electron Transfer Process Essential for Iron–Sulfur Protein Biogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 7136–7141. [Google Scholar] [CrossRef]
- Cui, M.; Yamano, K.; Yamamoto, K.; Yamamoto-Imoto, H.; Minami, S.; Yamamoto, T.; Matsui, S.; Kaminishi, T.; Shima, T.; Ogura, M.; et al. HKDC1, a Target of TFEB, Is Essential to Maintain Both Mitochondrial and Lysosomal Homeostasis, Preventing Cellular Senescence. Proc. Natl. Acad. Sci. USA 2024, 121, e2306454120. [Google Scholar] [CrossRef]
- Wu, Y.; Lee, Y.; Li, W.; Hsu, W.; Lin, H.; Chang, L.; Huang, A.; Jhan, J.; Wu, W.; Li, C.; et al. High Transaldolase 1 Expression Predicts Poor Survival of Patients with Upper Tract Urothelial Carcinoma. Pathol. Int. 2021, 71, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ye, R.D. Serum Amyloid A1: Structure, Function and Gene Polymorphism. Gene 2016, 583, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Uyama, T.; Inoue, M.; Okamoto, Y.; Shinohara, N.; Tai, T.; Tsuboi, K.; Inoue, T.; Tokumura, A.; Ueda, N. Involvement of Phospholipase A/Acyltransferase-1 in N-Acylphosphatidylethanolamine Generation. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids 2013, 1831, 1690–1701. [Google Scholar] [CrossRef]
- Nagata, M.; Arakawa, S.; Yamaguchi, H.; Torii, S.; Endo, H.; Tsujioka, M.; Honda, S.; Nishida, Y.; Konishi, A.; Shimizu, S. Dram1 Regulates DNA Damage-Induced Alternative Autophagy. Cell Stress 2018, 2, 55–65. [Google Scholar] [CrossRef]
- Lin, T.; Zhang, L.; Wu, M.; Jiang, D.; Li, Z.; Yang, Z. Repair of Hypoxanthine in DNA Revealed by DNA Glycosylases and Endonucleases from Hyperthermophilic Archaea. Front. Microbiol. 2021, 12, 736915. [Google Scholar] [CrossRef]
- Amai, K.; Fukami, T.; Ichida, H.; Watanabe, A.; Nakano, M.; Watanabe, K.; Nakajima, M. Quantitative Analysis of mRNA Expression Levels of Aldo-Keto Reductase and Short-Chain Dehydrogenase/Reductase Isoforms in Human Livers. Drug Metab. Pharmacokinet. 2020, 35, 539–547. [Google Scholar] [CrossRef]
- Hong, B.; Wu, Y.; Li, W.; Wang, X.; Wen, Y.; Jiang, S.; Dimitrov, D.S.; Ying, T. In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires. Front. Immunol. 2018, 9, 128. [Google Scholar] [CrossRef]
- Shuptrine, C.W.; Perez, V.M.; Selitsky, S.R.; Schreiber, T.H.; Fromm, G. Shining a LIGHT on Myeloid Cell Targeted Immunotherapy. Eur. J. Cancer 2023, 187, 147–160. [Google Scholar] [CrossRef]
- Xia, L.; Wu, L.; Bao, J.; Li, Q.; Chen, X.; Xia, H.; Xia, R. Circular RNA Circ-CBFB Promotes Proliferation and Inhibits Apoptosis in Chronic Lymphocytic Leukemia through Regulating miR-607/FZD3/Wnt/β-Catenin Pathway. Biochem. Biophys. Res. Commun. 2018, 503, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, J.G.; Castagnino, J.P.; Aidar, O.; Musella, R.M.; Frías, A.; Visca, M.; Nogueras, M.; Costa, L.; Perez, A.; Caradonna, F.; et al. Effect of Gene–Gene and Gene–Environment Interactions Associated with Antituberculosis Drug-Induced Hepatotoxicity. Pharmacogenet. Genom. 2017, 27, 363–371. [Google Scholar] [CrossRef]
- Saghaeian Jazi, M.; Samaei, N.M.; Mowla, S.J.; Arefnezhad, B.; Kouhsar, M. SOX2OT Knockdown Derived Changes in Mitotic Regulatory Gene Network of Cancer Cells. Cancer Cell Int. 2018, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Christians, E.S.; Ishiwata, T.; Benjamin, I.J. Small Heat Shock Proteins in Redox Metabolism: Implications for Cardiovascular Diseases. Int. J. Biochem. Cell Biol. 2012, 44, 1632–1645. [Google Scholar] [CrossRef]
- Padilla, J.; Lee, J. A Novel Therapeutic Target, BACH1, Regulates Cancer Metabolism. Cells 2021, 10, 634. [Google Scholar] [CrossRef]
- Kalafatakis, I.; Savvaki, M.; Velona, T.; Karagogeos, D. Implication of Contactins in Demyelinating Pathologies. Life 2021, 11, 51. [Google Scholar] [CrossRef]
- Baker, N.E. Founding the Wnt Gene Family: How Wingless Was Found to Be a Positional Signal and Oncogene Homolog. BioEssays 2024, 46, 2300156. [Google Scholar] [CrossRef]
- Cristofani, R.; Piccolella, M.; Crippa, V.; Tedesco, B.; Montagnani Marelli, M.; Poletti, A.; Moretti, R.M. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells 2021, 10, 335. [Google Scholar] [CrossRef]
- Kitazawa, T.; Kaiya, H. Motilin Comparative Study: Structure, Distribution, Receptors, and Gastrointestinal Motility. Front. Endocrinol. 2021, 12, 700884. [Google Scholar] [CrossRef] [PubMed]
- Kappé, G.; Verschuure, P.; Philipsen, R.L.A.; Staalduinen, A.A.; Van De Boogaart, P.; Boelens, W.C.; De Jong, W.W. Characterization of Two Novel Human Small Heat Shock Proteins: Protein Kinase-Related HspB8 and Testis-Specific HspB9. Biochim. Biophys. Acta BBA—Gene Struct. Expr. 2001, 1520, 1–6. [Google Scholar] [CrossRef]
- Li, G.; Cai, Z.; Ma, X.; Sun, M.; Li, J.; Sun, W.; Hua, Y. Screening of serum marker proteins in osteosarcoma and preliminary bioinformatic analysis on POLR3F. Zhonghua Zhong Liu Za Zhi 2011, 33, 836–841. [Google Scholar] [PubMed]
- Berger, J.; Berger, S.; Li, M.; Currie, P.D. Myo18b Is Essential for Sarcomere Assembly in Fast Skeletal Muscle. Hum. Mol. Genet. 2017, 26, ddx025. [Google Scholar] [CrossRef]
- Taub, M.; Springate, J.E.; Cutuli, F. Targeting of Renal Proximal Tubule Na,K-ATPase by Salt-Inducible Kinase. Biochem. Biophys. Res. Commun. 2010, 393, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Skariah, N.; James, O.J.; Swamy, M. Signalling Mechanisms Driving Homeostatic and Inflammatory Effects of Interleukin-15 on Tissue Lymphocytes. Discov. Immunol. 2024, 3, kyae002. [Google Scholar] [CrossRef]
- Shindo, S.; Shioya, A.; Watanabe, M.; Sasaki, T.; Suzuki, H.; Kumagai, T.; Hwang, G.-W.; Nagata, K. Development of an Adenovirus-Mediated Reporter Assay System to Detect a Low Concentration of Retinoic Acid in MCF-7 Cells. J. Toxicol. Sci. 2022, 47, 249–255. [Google Scholar] [CrossRef]
- Chotiner, J.Y.; Wolgemuth, D.J.; Wang, P.J. Functions of Cyclins and CDKs in Mammalian Gametogenesis. Biol. Reprod. 2019, 101, 591–601. [Google Scholar] [CrossRef]
- Fard, D.; Testa, E.; Panzeri, V.; Rizzolio, S.; Bianchetti, G.; Napolitano, V.; Masciarelli, S.; Fazi, F.; Maulucci, G.; Scicchitano, B.M.; et al. SEMA6C: A Novel Adhesion-Independent FAK and YAP Activator, Required for Cancer Cell Viability and Growth. Cell. Mol. Life Sci. 2023, 80, 111. [Google Scholar] [CrossRef]
- Nawaz, S.; Hussain, S.; Bilal, M.; Syed, N.; Liaqat, K.; Ullah, I.; Akil, A.A.; Fakhro, K.A.; Ahmad, W. A Variant in Sperm-specific Glycolytic Enzyme Enolase 4 (ENO4) Causes Human Male Infertility. J. Gene Med. 2024, 26, e3583. [Google Scholar] [CrossRef]
- Taheri, M.; Shirvani-Farsani, Z.; Harsij, A.; Fathi, M.; Khalilian, S.; Ghafouri-Fard, S.; Baniahmad, A. A Review on the Role of KCNQ1OT1 lncRNA in Human Disorders. Pathol.-Res. Pract. 2024, 255, 155188. [Google Scholar] [CrossRef]
- Li, D.; Peng, W.; Wu, B.; Liu, H.; Zhang, R.; Zhou, R.; Yao, L.; Ye, L. Metallothionein MT1M Suppresses Carcinogenesis of Esophageal Carcinoma Cells through Inhibition of the Epithelial-Mesenchymal Transition and the SOD1/PI3K Axis. Mol. Cells 2021, 44, 267–278. [Google Scholar] [CrossRef]
- Mota, G.A.F.; De Souza, S.L.B.; Vileigas, D.F.; Da Silva, V.L.; Sant’Ana, P.G.; Costa, L.C.D.S.; Padovani, C.R.; Zanatti Bazan, S.G.; Buzalaf, M.A.R.; Santos, L.D.D.; et al. Myocardial Proteome Changes in Aortic Stenosis Rats Subjected to Long-term Aerobic Exercise. J. Cell. Physiol. 2024, 239, e31199. [Google Scholar] [CrossRef]
- Lv, Q.; Shi, J.; Miao, D.; Tan, D.; Zhao, C.; Xiong, Z.; Zhang, X. miR-1182-Mediated ALDH3A2 Inhibition Affects Lipid Metabolism and Progression in ccRCC by Activating the PI3K-AKT Pathway. Transl. Oncol. 2024, 40, 101835. [Google Scholar] [CrossRef]
- Manning, A.L.; Ganem, N.J.; Bakhoum, S.F.; Wagenbach, M.; Wordeman, L.; Compton, D.A. The Kinesin-13 Proteins Kif2a, Kif2b, and Kif2c/MCAK Have Distinct Roles during Mitosis in Human Cells. Mol. Biol. Cell 2007, 18, 2970–2979. [Google Scholar] [CrossRef]
- Kolijn, P.M.; Huijser, E.; Wahadat, M.J.; Van Helden-Meeuwsen, C.G.; Van Daele, P.L.A.; Brkic, Z.; Rijntjes, J.; Hebeda, K.M.; Groenen, P.J.T.A.; Versnel, M.A.; et al. Extranodal Marginal Zone Lymphoma Clonotypes Are Detectable Prior to eMZL Diagnosis in Tissue Biopsies and Peripheral Blood of Sjögren’s Syndrome Patients through Immunogenetics. Front. Oncol. 2023, 13, 1130686. [Google Scholar] [CrossRef]
- Steele, E.J.; Franklin, A.; Lindley, R.A. Somatic Mutation Patterns at Ig and Non-Ig Loci. DNA Repair 2024, 133, 103607. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, H.; Yan, W. Fank1 Is a Testis-Specific Gene Encoding a Nuclear Protein Exclusively Expressed during the Transition from the Meiotic to the Haploid Phase of Spermatogenesis. Gene Expr. Patterns 2007, 7, 777–783. [Google Scholar] [CrossRef]
- Hong, S.N.; Park, J.-Y.; Yang, S.-Y.; Lee, C.; Kim, Y.-H.; Joung, J.-G. Reduced Diversity of Intestinal T-Cell Receptor Repertoire in Patients with Crohn’s Disease. Front. Cell. Infect. Microbiol. 2022, 12, 932373. [Google Scholar] [CrossRef]
- Yuan, J.; Jia, J.; Wu, T.; Du, Z.; Chen, Q.; Zhang, J.; Wu, Z.; Yuan, Z.; Zhao, X.; Liu, J.; et al. Long Intergenic Non-Coding RNA DIO3OS Promotes Osteosarcoma Metastasis via Activation of the TGF-β Signaling Pathway: A Potential Diagnostic and Immunotherapeutic Target for Osteosarcoma. Cancer Cell Int. 2023, 23, 215. [Google Scholar] [CrossRef]
- Gnanagobal, H.; Cao, T.; Hossain, A.; Dang, M.; Hall, J.R.; Kumar, S.; Van Cuong, D.; Boyce, D.; Santander, J. Lumpfish (Cyclopterus lumpus) Is Susceptible to Renibacterium Salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Front. Immunol. 2021, 12, 733266. [Google Scholar] [CrossRef]
- Guo, Y.; Miao, Q.; Zhang, Y.; Wang, C.; Liang, M.; Li, X.; Qiu, W.; Shi, G.; Zhai, Q.; Chen, Z. A Novel Missense Creatine Mutant of CaBP4, c.464G>A (p.G155D), Associated with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE), Reduces the Expression of CaBP4. Transl. Pediatr. 2022, 11, 396–402. [Google Scholar] [CrossRef]
- Adhikari, S.; Üren, A.; Roy, R. Excised Damaged Base Determines the Turnover of Human N-Methylpurine-DNA Glycosylase. DNA Repair 2009, 8, 1201–1206. [Google Scholar] [CrossRef]
- Petrungaro, C.; Zimmermann, K.M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca2+ Uptake. Cell Metab. 2015, 22, 721–733. [Google Scholar] [CrossRef]
- Bou-Nader, C.; Barraud, P.; Pecqueur, L.; Pérez, J.; Velours, C.; Shepard, W.; Fontecave, M.; Tisné, C.; Hamdane, D. Molecular Basis for Transfer RNA Recognition by the Double-Stranded RNA-Binding Domain of Human Dihydrouridine Synthase 2. Nucleic Acids Res. 2019, 47, 3117–3126. [Google Scholar] [CrossRef]
- Saunders, A.S.; Bender, D.E.; Ray, A.L.; Wu, X.; Morris, K.T. Colony-Stimulating Factor 3 Signaling in Colon and Rectal Cancers: Immune Response and CMS Classification in TCGA Data. PLoS ONE 2021, 16, e0247233. [Google Scholar] [CrossRef]
- Xie, J.; Lan, T.; Zheng, D.-L.; Ding, L.-C.; Lu, Y.-G. CDH4 Inhibits Ferroptosis in Oral Squamous Cell Carcinoma Cells. BMC Oral Health 2023, 23, 329. [Google Scholar] [CrossRef]
- Piórkowska, K.; Żukowski, K.; Nowak, J.; Połtowicz, K.; Ropka-Molik, K.; Gurgul, A. Genome-wide RNA -Seq Analysis of Breast Muscles of Two Broiler Chicken Groups Differing in Shear Force. Anim. Genet. 2016, 47, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Rivedal, M.; Mikkelsen, H.; Marti, H.-P.; Liu, L.; Kiryluk, K.; Knoop, T.; Bjørneklett, R.; Haaskjold, Y.L.; Furriol, J.; Leh, S.; et al. Glomerular Transcriptomics Predicts Long Term Outcome and Identifies Therapeutic Strategies for Patients with Assumed Benign IgA Nephropathy. Kidney Int. 2024, 105, 717–730. [Google Scholar] [CrossRef]
- Ortega, M.A.; De Leon-Oliva, D.; Garcia-Montero, C.; Fraile-Martinez, O.; Boaru, D.L.; Del Val Toledo Lobo, M.; García-Tuñón, I.; Royuela, M.; García-Honduvilla, N.; Bujan, J.; et al. Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease. Genes 2023, 14, 915. [Google Scholar] [CrossRef]
- Miller, P.P.; Caza, T.; Larsen, C.P.; Charu, V. EXT1 and NCAM1-Associated Membranous Lupus Nephritis in a Cohort of Patients Undergoing Repeat Kidney Biopsies. Nephrol. Dial. Transplant. 2023, 38, 396–404. [Google Scholar] [CrossRef]
- Nowrasteh, G.; Zand, A.; Raposa, L.B.; Szabó, L.; Tomesz, A.; Molnár, R.; Kiss, I.; Orsós, Z.; Gerencsér, G.; Gyöngyi, Z.; et al. Fruit Extract, Rich in Polyphenols and Flavonoids, Modifies the Expression of DNMT and HDAC Genes Involved in Epigenetic Processes. Nutrients 2023, 15, 1867. [Google Scholar] [CrossRef]
- Del Saz-Lara, A.; López De Las Hazas, M.-C.; Visioli, F.; Dávalos, A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv. Nutr. 2022, 13, 2039–2060. [Google Scholar] [CrossRef]
- Sciandrello, G.; Mauro, M.; Catanzaro, I.; Saverini, M.; Caradonna, F.; Barbata, G. Long-lasting Genomic Instability Following Arsenite Exposure in Mammalian Cells: The Role of Reactive Oxygen Species. Environ. Mol. Mutagen. 2011, 52, 562–568. [Google Scholar] [CrossRef]
- Mauro, M.; Caradonna, F.; Klein, C.B. Dysregulation of DNA Methylation Induced by Past Arsenic Treatment Causes Persistent Genomic Instability in Mammalian Cells. Environ. Mol. Mutagen. 2016, 57, 137–150. [Google Scholar] [CrossRef]
- Davis, C.D.; Uthus, E.O.; Finley, J.W. Dietary Selenium and Arsenic Affect DNA Methylation In Vitro in Caco-2 Cells and In Vivo in Rat Liver and Colon. J. Nutr. 2000, 130, 2903–2909. [Google Scholar] [CrossRef]
- Kovalenko, T.F.; Morozova, K.V.; Pavlyukov, M.S.; Anufrieva, K.S.; Bobrov, M.Y.; Gamisoniya, A.M.; Ozolinya, L.A.; Dobrokhotova, Y.E.; Shakhparonov, M.I.; Patrushev, L.I. Methylation of the PTENP1 Pseudogene as Potential Epigenetic Marker of Age-Related Changes in Human Endometrium. PLoS ONE 2021, 16, e0243093. [Google Scholar] [CrossRef]
- Rodrigues, M.F.S.D.; Esteves, C.M.; Xavier, F.C.A.; Nunes, F.D. Methylation Status of Homeobox Genes in Common Human Cancers. Genomics 2016, 108, 185–193. [Google Scholar] [CrossRef]
Treatment Acronym | Treatment | Co-Treatment | Incubation Time (h) |
---|---|---|---|
BPHE10 | BPHE [10 µg GAE/mL] | - | 3 |
BPHE20 | BPHE [20 µg GAE/mL] | - | 3 |
BPHE30 | BPHE [30 µg GAE/mL] | - | 3 |
As | NaAsO2 [10 µg/L] | - | 72 |
As + BPHE10 | NaAsO2 [10 µg/L] | BPHE [10 µg GAE/mL] | 72 (3) |
As + BPHE20 | NaAsO2 [10 µg/L] | BPHE [20 µg GAE/mL] | 72 (3) |
As + BPHE30 | NaAsO2 [10 µg/L] | BPHE [30 µg GAE/mL] | 72 (3) |
AZA | 5-AzaC [10 µM] | - | 48 |
AZA + BPHE10 | 5-AzaC [10 µM] | BPHE [10 µg GAE/mL] | 48 (3) |
AZA + BPHE20 | 5-AzaC [10 µM] | BPHE [20 µg GAE/mL] | 48 (3) |
AZA + BPHE30 | 5-AzaC [10 µM] | BPHE [30 µg GAE/mL] | 48 (3) |
TPC | 704.41 ± 68.14 mg GAE/100 g FW |
PAC | 132.83 ± 7.23 mg CCE/100 g FW |
AA | 3.01 ± 0.07 mmol TE/100 g FW |
Treatment vs. Untreated Control | Total | Hyper-Methylated | Hypo-Methylated |
---|---|---|---|
BPHE30 | 745 | 614 | 131 |
As | 465 | 377 | 88 |
As + BPHE30 | 894 | 746 | 148 |
AZA | 705 | 414 | 291 |
AZA + BPHE30 | 823 | 676 | 147 |
Gene Name | Gene Description | Principal Function of the Gene Product | |
---|---|---|---|
Hyper-methylated | HSPB7 | Heat-shock protein family B small member 7 | Regulation of cytoskeleton integrity [41] |
CYP26B1 | Cytochrome P450 family 26 subfamily B member 1 | Oxidative metabolism of retinoic acid [42] | |
GCK | Glucokinase | Glucose metabolism [43] | |
Hypo-methylated | VWA1 | von Willebrand factor A domain-containing 1 | Unknown-function orphan extracellular matrix protein [44] |
RAB25 | RAB25, member RAS oncogene family | Member of Rab-GTPase family implicated in cancer progression [45] | |
SGMS2 | Sphingomyelin synthase 2 | Production of sphingomyelin [46] | |
HSPA4L | Heat-shock protein family A (Hsp70) member 4-like | Fertility-related proteins in testes [47] | |
BHMT2 | Betaine-homocysteine S-methyltransferase 2 | Regulation of lipid metabolism in metabolic-associated fatty liver disease pathogenesis [48] | |
CASP8AP2 | Caspase-8-associated protein 2 | Regulation of epithelial-to-mesenchymal transition plasticity [49] | |
TH | Tyrosine hydroxylase | Biosynthesis of dopamine and other catecholamines [50] | |
PTPRCAP | Protein tyrosine phosphatase receptor-type-C associated protein | Positive regulation of protein tyrosine phosphatase CD45, which activates Src family kinases implicated in tumorigenesis [51] | |
PSTPIP1 | Proline–serine–threonine phosphatase-interacting protein 1 | T-cell activation, differentiation, migration, cell adhesion, and cytoskeleton managing [52] | |
MBD3L3 | Methyl-CpG-binding domain protein 3 like-3 | Component of the histone deacetylase complex, in regulation of cell-cycle progression and cell death [53] |
Gene Name | Gene Description | Principal Function of the Gene Product | |
---|---|---|---|
Hyper-methylated | PGM2 | Phosphoglucomutase 2 | Glycolysis and glycogen metabolism [54] |
SGMS2 | Sphingomyelin synthase 2 | Natural killer cell recruitment, immune landscape and genomic instability [55] | |
HCP5 | HLA complex P5 | Oncogene-accelerating cancer-cell growth, invasion, metastasis, vascularization, and drug resistance in renal cell carcinoma [56] | |
FNDC1 | Fibronectin type III domain-containing 1 | Bone-metabolism-related factor [57] | |
ASL | Argininosuccinate lyase | Cleavage of argininosuccinic acid to produce arginine and fumarate in the fourth step of the urea cycle [58] | |
NANS | N-acetylneuraminate synthase | Sialic acid biosynthesis and transportation [59] | |
NDOR1 | NADPH-dependent diflavin oxidoreductase 1 | Biogenesis of iron–sulfur cluster proteins [60] | |
HKDC1 | Hexokinase domain-containing 1 | Mitochondrial and lysosomal homeostasis [61] | |
TALDO1 | Transaldolase 1 | Pentose phosphate pathway [62] | |
SAA1 | Serum amyloid A1 | Lipid metabolism, regulation of inflammation, and tumor pathogenesis [63] | |
PLAAT2 | Phospholipase A and acyltransferase 2 | Dysfunction of peroxisomes [64] | |
DRAM1 | DNA-damage-regulated autophagy modulator 1 | Genotoxic-stress-induced alternative autophagy by closure of isolation membranes downstream of p53 [65] | |
UNG | Uracil DNA glycosylase | Excision of hypoxanthine from DNA, thus triggering a base excision repair (BER) process [66] | |
DHRS4 | Dehydrogenase/reductase 4 | Reduction in compounds containing aldehyde, ketone, and quinone groups, as well in humans, in xenobiotics [67] | |
IGHD3–10 | Immunoglobulin-heavy diversity 3–10 | VDJ gene most frequently used in immunoglobulin synthesis [68] | |
TNFSF14 | TNF superfamily member 14 | Tumor necrosis superfamily ligand with a broad range of adaptive and innate immune activities [69] | |
Hypo-methylated | FZD3 | Frizzled class receptor 3 | Regulation of cell growth, death, differentiation, and cell cycle [70] |
Gene Name | Gene Description | Principal Function of the Gene Product | |
---|---|---|---|
Hyper-methylated | CYP2E1 | Cytochrome P450 family 2 subfamily E member 1 | Hepatic MEOS metabolizer enzyme, particularly polymorphic in humans [71] |
CDK2AP2 | Cyclin-dependent kinase 2 associated protein 2 | Regulation of cell cycle and mitosis [72] | |
HSPB2 | Heat-shock protein family B (small) member 2 | Redox metabolism with implications in cardiovascular diseases [73] | |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | Aerobic glycolysis [74] | |
CNTN1 | Contactin 1 | Cell-adhesion molecules implicated in myelinated axon organization [75] | |
WNT1 | Wnt family member 1 | Oncogenesis and cell–cell signals in development [76] | |
HSPB8 | Heat-shock protein family B (small) member 8 | Chaperone-assisted selective autophagy [77] | |
MLNR | Motilin receptor | Regulation of gastrointestinal motility; function not well understood in humans [78] | |
HSPB9 | Heat-shock protein family B (small) member 9 | Specifically expressed in testis, notably in the spermatogenic cells, with a sex-related role [79] | |
POLR3F | RNA polymerase III subunit F | RNA polymerase III polypeptide F [80] | |
Hypo-methylated | MYO18B | Myosin XVIIIB | Sarcomere assembly in fast skeletal muscle [81] |
Gene Name | Gene Description | Principal Function of the Gene Product | |
---|---|---|---|
Hyper-methylated | ATP1B1 | ATPase Na+/K+ transporting subunit beta 1 | Regulation of the uptake of solutes and establishment of an appropriate Na+ gradient [82] |
IL15 | Interleukin 15 | Inflammation and homeostasis of the immune system [83] | |
CYP26C1 | Cytochrome P450 family 26 subfamily C member 1 | Regulation of the concentration of retinoic acid in cells [84] | |
CCNA1 | Cyclin A1 | Regulation of the cell cycle [85] | |
Hypo-methylated | SEMA6C | Semaphorin 6C | Signaling molecules controlling axonal wiring and embryo development; support of viability and growth of cancer cells [86] |
ENO4 | Enolase 4 | Motility and organization of the sperm flagellum [87] | |
KCNQ1 | Potassium voltage-gated channel subfamily Q member 1 | The lncRNA within its gene sequence participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions [88] | |
MT1M | Metallothionein 1M | Cysteine-rich cytosolic protein reported to be a tumor suppressor gene in multiple cancers [89] | |
COX4I1 | Cytochrome c oxidase subunit 4I1 | Mitochondrial biogenesis [90] | |
ALDH3A2 | Aldehyde dehydrogenase 3 family member A2 | Tumor-suppressive role, influencing epithelial–mesenchymal transition [91] | |
KIF2B | Kinesin family member 2B | Spindle assembly, chromosome movement, and microtubule depolymerase activities [92] |
Gene Name | Gene Description | Principal Function of the Gene Product | |
---|---|---|---|
Hyper-methylated | IGHJ5 | Immunoglobulin heavy joining 5 | Clonotypes in IGHV gene combinations associated with the production of autoantibodies [93] |
IGHJ4 | Immunoglobulin heavy joining 4 | Clonotypes in IGHV gene combinations associated with the production of autoantibodies [93] | |
IGHD6–13 | Immunoglobulin heavy diversity 6–13 | Clonotypes in IGHV gene combinations associated with the production of autoantibodies [93] | |
Hypo-methylated | POLH | DNA polymerase eta | DNA repair polymerase involved in post-replication short-patch repair [94] |
FANK1 | Fibronectin type III and ankyrin repeat domains 1 | Nuclear protein exclusively expressed during the transition from the meiotic to the haploid phase of spermatogenesis in testis [95] | |
TRAV22 | Alpha variable 22 | T-cell receptor repertoires segment clonotypes [96] |
Gene Name | Gene Description | Principal Function of the Gene Product | |
---|---|---|---|
Hyper-methylated | TNFRSF25 | TNF receptor superfamily member 25 | Immune checkpoint gene [97] |
LY6G6F | Lymphocyte antigen 6 family member G6F | Cell-mediated adaptive immunity-related protein [98] | |
PVT1 | Pvt1 oncogene | Protein closely linked to cancer development via microRNAs [96] | |
CTSW | Cathepsin W | Member of the papain family cysteine proteases, involved in antigen-presenting cells, antigen processing, and immune response control [96] | |
CABP4 | Calcium-binding protein 4 | Neuronal-Ca2+-binding protein that participates in many cellular processes by regulating the concentration of free Ca2+ ions [99] | |
IGHD3–16 | Immunoglobulin heavy diversity 3–16 | Clonotypes in IGHV gene combinations associated with the production of autoantibodies [93] | |
IGHV3–53 | Immunoglobulin heavy variable 3–53 | Clonotypes in IGHV gene combinations associated with production of autoantibodies [93] | |
MPG | N-methylpurine DNA glycosylase | Initiation of base excision repair in DNA by removing alkylated, deaminated, and lipid-peroxidation-induced purine adducts [100] | |
NDUFB10 | NADH ubiquinone oxidoreductase subunit B10 | Interacting partner and in vivo target of CHCHD4, a disulfide-bond-forming enzyme [101] | |
DUS2 | Dihydrouridine synthase 2 | Flavoenzyme that catalyzes synthesis of dihydrouridine within the complex elbow structure of tRNA [102] | |
CSF3 | Colony-stimulating factor 3 | Related to innate and adaptive immune systems [103] | |
CDH4 | Cadherin 4 | Differentiation of retina, kidney, striated muscle, and brain nerves [104] | |
COL20A1 | Collagen alpha 1 chain | Collagen synthesis [105] | |
APOL5 | Apolipoprotein L5 | Member of APOL lipoprotein family, associated with inflammation, autophagy, and kidney disease [106] | |
Hypo-methylated | HAT1 | Histone acetyltransferase 1 | Acetylation of newly synthesized H4 [107] |
NCAM1 | Neural cell adhesion molecule 1 | Neural cell adhesion molecule, recently related with systemic lupus erythematosus [108] | |
CNTN1 | Contactin 1 | Cell adhesion molecules implicated in myelinated axon organization [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruciata, I.; Naselli, F.; Volpes, S.; Cardinale, P.S.; Greco, L.; Martinelli, F.; Ramazzotti, M.; Perrone, A.; Serio, G.; Gentile, C.; et al. Methylomic Signature and Epigenetic Damage Modulation of Bronte Pistachio (Pistacia vera L.) Hydrophilic Extract in Differentiated CaCo-2 Cells. Nutrients 2025, 17, 2678. https://doi.org/10.3390/nu17162678
Cruciata I, Naselli F, Volpes S, Cardinale PS, Greco L, Martinelli F, Ramazzotti M, Perrone A, Serio G, Gentile C, et al. Methylomic Signature and Epigenetic Damage Modulation of Bronte Pistachio (Pistacia vera L.) Hydrophilic Extract in Differentiated CaCo-2 Cells. Nutrients. 2025; 17(16):2678. https://doi.org/10.3390/nu17162678
Chicago/Turabian StyleCruciata, Ilenia, Flores Naselli, Sara Volpes, Paola Sofia Cardinale, Laura Greco, Federico Martinelli, Matteo Ramazzotti, Anna Perrone, Graziella Serio, Carla Gentile, and et al. 2025. "Methylomic Signature and Epigenetic Damage Modulation of Bronte Pistachio (Pistacia vera L.) Hydrophilic Extract in Differentiated CaCo-2 Cells" Nutrients 17, no. 16: 2678. https://doi.org/10.3390/nu17162678
APA StyleCruciata, I., Naselli, F., Volpes, S., Cardinale, P. S., Greco, L., Martinelli, F., Ramazzotti, M., Perrone, A., Serio, G., Gentile, C., & Caradonna, F. (2025). Methylomic Signature and Epigenetic Damage Modulation of Bronte Pistachio (Pistacia vera L.) Hydrophilic Extract in Differentiated CaCo-2 Cells. Nutrients, 17(16), 2678. https://doi.org/10.3390/nu17162678