Use of Amino Acids as Supplements for Matching Nutrition, Training, and Rehabilitation—Focusing on Some Questions
Abstract
1. Introduction
2. Exercise Increases Nutritional Needs
3. Digestion and Absorption of Proteins: Nutrition Training and Aging
4. Nutrition and Exercise: Molecular Bases of Synergy
5. Protein Malnutrition Compromises Immunity
6. Conclusions
Funding
Conflicts of Interest
References
- Andrew, G.S.-G. The Early History of the Biochemistry of Muscle Contraction. J. Gen. Physiol. 2004, 123, 631–641. [Google Scholar] [CrossRef]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar] [CrossRef] [PubMed]
- HGNC:14929/HGNC:9237. Available online: https://www.genenames.org (accessed on 10 June 2025).
- Li, Y.; Kang, K.; Bao, H.; Liu, S.; Zhao, B.; Hu, G.; Wu, J. Research Progress on the Interaction Between SIRT1 and Mitochondrial Biochemistry in the Aging of the Reproductive System. Biology 2025, 14, 643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Browne, G.J. Proud CG Regulation of peptide-chain elongation in mammalian cells. Eur. J. Biochem. 2002, 269, 5360–5368. [Google Scholar] [CrossRef]
- Corsetti, G.; Pasini, E.; D’Antona, G.; Nisoli, E.; Flati, V.; Assanelli, D.; Dioguardi, F.S.; Bianchi, R. Morphometric changes induced by amino acid supplementation in skeletal and cardiac muscles of old mice. Am. J. Cardiol. 2008, 101, 26E–34E. [Google Scholar] [CrossRef] [PubMed]
- D’Antona, G.; Ragni, M.; Cardile, A.; Tedesco, L.; Dossena, M.; Bruttini, F.; Caliaro, F.; Corsetti, G.; Bottinelli, R.; Carruba, M.O.; et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 2010, 12, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Kamarulzaman, N.T.; Makpol, S. The link between Mitochondria and Sarcopenia. J. Physiol. Biochem. 2025, 81, 1–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nemes, R.; Koltai, E.; Taylor, A.W.; Suzuki, K.; Gyori, F.; Radak, Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants 2018, 7, 85. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Bernardi, H.; Py, G.; Candau, R.B. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R956–R969. [Google Scholar] [CrossRef] [PubMed]
- Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Corsetti, G.; Pasini, E.; Scarabelli, T.M.; Romano, C.; Singh, A.; Scarabelli, C.C.; Dioguardi, F.S. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024, 16, 2417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorissen, S.H.M.; Trommelen, J.; Kouw, I.W.K.; Holwerda, A.M.; Pennings, B.; Groen, B.B.L.; Wall, B.T.; Churchward-Venne, T.A.; Horstman, A.M.H.; Koopman, R.; et al. Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. J. Nutr. 2020, 150, 2041–2050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moughan, P.J.; Butts, C.A.; Rowan, A.M.; Deglaire, A. Dietary peptides increase endogenous amino acid losses from the gut in adults. Am. J. Clin. Nutr. 2005, 81, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Wojciech, L.; Png, C.W.; Koh, E.Y.; Kioh, D.Y.Q.; Deng, L.; Wang, Z.; Wu, L.Z.; Hamidinia, M.; Tung, D.W.; Zhang, W.; et al. A tryptophan metabolite made by a gut microbiome eukaryote induces pro-inflammatory T cells. EMBO J. 2023, 42, e112963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegert, W.; Ganzer, C.; Kluth, H.; Rodehutscord, M. Effect of amino acid deficiency on precaecal amino acid digestibility in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108 (Suppl. 2), S183–S211. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, F.S. Clinical use of amino acids as dietary supplement: Pros and cons. J. Cachexia Sarcopenia Muscle 2011, 2, 75–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lombardi, C.; Carubelli, V.; Lazzarini, V.; Vizzardi, E.; Quinzani, F.; Guidetti, F.; Rovetta, R.; Nodari, S.; Gheorghiade, M.; Metra, M. Effects of oral amino Acid supplements on functional capacity in patients with chronic heart failure. Clin. Med. Insights Cardiol. 2014, 8, 39–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gazzaneo, M.C.; Suryawan, A.; Orellana, R.A.; Torrazza, R.M.; El-Kadi, S.W.; Wilson, F.A.; Kimball, S.R.; Srivastava, N.; Nguyen, H.V.; Fiorotto, M.L.; et al. Intermittent bolus feeding has a greater stimulatory effect on protein synthesis in skeletal muscle than continuous feeding in neonatal pigs. J. Nutr. 2011, 141, 2152–2158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heffernan, A.J.; Talekar, C.; Henain, M.; Purcell, L.; Palmer, M.; White, H. Comparison of continuous versus intermittent enteral feeding in critically ill patients: A systematic review and meta-analysis. Crit. Care 2022, 26, 325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, W.K.; Phillips, B.E.; Williams, J.P.; Rankin, D.; Lund, J.N.; Smith, K.; Atherton, P.J. A dose- rather than delivery profile-dependent mechanism regulates the “muscle-full” effect in response to oral essential amino acid intake in young men. J. Nutr. 2015, 145, 207–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dioguardi, F.S. Influence of the ingestion of branched chain amino acids on plasma concentrations of ammonia and free fatty acids. I. Strength Cond. Res. 1997, 11, 242–245. [Google Scholar]
- Wall, B.T.; Gorissen, S.H.; Pennings, B.; Koopman, R.; Groen, B.B.L.; Verdijk, L.B.; Van Loon, L.J. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS ONE 2015, 10, e0140903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edman, S.; Söderlund, K.; Moberg, M.; Apró, W.; Blomstrand, E. mTORC1 Signaling in Individual Human Muscle Fibers Following Resistance Exercise in Combination with Intake of Essential Amino Acids. Front. Nutr. 2019, 6, 96. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203, Erratum in Nat. Rev. Mol. Cell Biol. 2020, 21, 246. https://doi.org/10.1038/s41580-020-0219-y. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- von Weizsäcker, C.F. Matter, Energy, Information. In Carl Friedrich von Weizsäcker: Major Texts in Physics; Drieschner, M., Ed.; Briefs on Pioneers in Science and Practice; Springer: Cham, Switzerland, 2014; Volume 22. [Google Scholar] [CrossRef]
- Abraham, R.T. Making sense of amino acid sensing. Science 2015, 347, 128. [Google Scholar] [CrossRef] [PubMed]
- English, K.L.; Mettler, J.A.; Ellison, J.B.; Mamerow, M.M.; Arentson-Lantz, E.; Pattarini, J.M.; Ploutz-Snyder, R.; Sheffield-Moore, M.; Paddon-Jones, D. Leucine partially protects muscle mass and function during bed rest in middle-aged adults. Am. J. Clin. Nutr. 2016, 103, 465–473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanner, R.E.; Brunker, L.B.; Agergaard, J.; Barrows, K.M.; Briggs, R.A.; Kwon, O.S.; Young, L.M.; Hopkins, P.N.; Volpi, E.; Marcus, R.L.; et al. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation. J. Physiol. 2015, 593, 4259–4273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roux, P.P.; Topisirovic, I. Signaling Pathways Involved in the Regulation of mRNA Translation. Mol. Cell Biol. 2018, 38, e00070-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimkus, K.L.; Jefferson, L.S.; Gordon, B.S.; Kimball, S.R. Repressors of mTORC1 act to blunt the anabolic response to feeding in the soleus muscle of a cast-immobilized mouse hindlimb. Physiol. Rep. 2018, 6, e13891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- English, K.L.; Paddon-Jones, D. Protecting muscle mass and function in older adults during bed rest. Curr. Opin. Clin. Nutr. MetabCare 2010, 13, 34–39. [Google Scholar] [CrossRef]
- Horstman, A.M.H.; Stolwijk-Swüste, J.M.; van Loon, L.J.C.; de Groot, S. Strategies to mitigate muscle mass loss in individuals with spinal cord injury. J. Spinal Cord Med. 2025, 1–19, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Field, C.J.; Johnson, I.R.; Schley, P.D. Nutrients and their role in host resistance to infection. J. Leukoc. Biol. 2002, 71, 16–32. [Google Scholar] [CrossRef] [PubMed]
- van Wayenburg, C.A.; van de Laar, F.A.; van Weel, C.; van Staveren, W.A.; van Binsbergen, J.J. Nutritional deficiency in general practice: A systematic review. Eur. J. Clin. Nutr. 2005, 59 (Suppl. 1), S81–S87. [Google Scholar] [CrossRef] [PubMed]
- Hatch-McChesney, A.; Smith, T.J. Nutrition, Immune Function, and Infectious Disease in Military Personnel: A Narrative Review. Nutrients 2023, 15, 4999. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, T.J.; Wardle, S.L.; Greeves, J.P. Energy Deficiency in Soldiers: The Risk of the Athlete Triad and Relative Energy Deficiency in Sport Syndromes in the Military. Front. Nutr. 2020, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Ingenbleek, Y. Plasma transthyretin is a nutritional biomarker in human morbidities. Front. Med. 2022, 16, 540–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miyajima, M. Amino acids: Key sources for immunometabolites and immunotransmitters. Int. Immunol. 2020, 32, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Ilkowski, J.; Guzik, P.; Kaluzniak-Szymanowska, A.; Rzymski, P.; Chudek, J.; Wieczorowska-Tobis, K. Nutritional Risk Score (NRS-2002) as a Predictor of In-Hospital Mortality in COVID-19 Patients: A Retrospective Single-Center Cohort Study. Nutrients 2025, 17, 1278. [Google Scholar] [CrossRef]
- Aquilani, R.; Zuccarelli, G.C.; Dioguardi, F.S.; Baiardi, P.; Frustaglia, A.; Rutili, C.; Comi, E.; Catani, M.; Iadarola, P.; Viglio, S.; et al. Effects of oral amino acid supplementation on long-term-care-acquired infections in elderly patients. Arch. Gerontol. Geriatr. 2011, 52, e123–e128. [Google Scholar] [CrossRef] [PubMed]
- Gwin, J.A.; Church, D.D.; Hatch-McChesney, A.; Allen, J.T.; Wilson, M.A.; Varanoske, A.N.; Carrigan, C.T.; Murphy, N.E.; Margolis, L.M.; Carbone, J.W.; et al. Essential amino acid-enriched whey enhances post-exercise whole-body protein balance during energy deficit more than iso-nitrogenous whey or a mixed-macronutrient meal: A randomized, crossover study. J. Int. Soc. Sports Nutr. 2021, 18, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ten Haaf, D.S.M.; De Regt, M.F.; Visser, M.; Witteman, B.J.M.; de Vries, J.H.M.; Eijsvogels, T.M.H.; Hopman, M.T.E. Insufficient Protein Intakes is Highly Prevalent among Physically Active Elderly. J. Nutr. Health Aging 2018, 22, 1112–1114. [Google Scholar] [CrossRef] [PubMed]
- Lisiak, M.; Jędrzejczyk, M.; Wleklik, M.; Lomper, K.; Czapla, M.; Uchmanowicz, I. Nutritional risk, frailty and functional status in elderly heart failure patients. ESC Heart Fail. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Corsetti, G.; Flati, V.; Pasini, E.; Picca, A.; Calvani, R.; Marzetti, E.; Dioguardi, F.S. Influence of Diets with Varying Essential/Nonessential Amino Acid Ratios on Mouse Lifespan. Nutrients 2019, 11, 1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dioaguardi, F.S. Use of Amino Acids as Supplements for Matching Nutrition, Training, and Rehabilitation—Focusing on Some Questions. Nutrients 2025, 17, 2667. https://doi.org/10.3390/nu17162667
Dioaguardi FS. Use of Amino Acids as Supplements for Matching Nutrition, Training, and Rehabilitation—Focusing on Some Questions. Nutrients. 2025; 17(16):2667. https://doi.org/10.3390/nu17162667
Chicago/Turabian StyleDioaguardi, Francesco Saverio. 2025. "Use of Amino Acids as Supplements for Matching Nutrition, Training, and Rehabilitation—Focusing on Some Questions" Nutrients 17, no. 16: 2667. https://doi.org/10.3390/nu17162667
APA StyleDioaguardi, F. S. (2025). Use of Amino Acids as Supplements for Matching Nutrition, Training, and Rehabilitation—Focusing on Some Questions. Nutrients, 17(16), 2667. https://doi.org/10.3390/nu17162667