Chlorella-Induced Increase in Cardiac Function Further Enhances Aerobic Capacity Through High-Intensity Intermittent Training in Healthy Young Men and Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Study 1
2.1.1. Participants
2.1.2. Experimental Design
2.1.3. Chlorella and Placebo Tablets
2.1.4. Measurement of O2max
2.1.5. Measurement of MAOD
2.1.6. HIIT Intervention
2.2. Study 2
2.2.1. Participants
2.2.2. Experimental Design
2.2.3. Chlorella and Placebo Tablets
2.2.4. Measurement of O2max
2.2.5. Measurements of Cardiac Function and Morphology
2.3. Study 3
2.3.1. Animals and Protocol
2.3.2. Real-Time RT-PCR
2.3.3. Immunoblot
2.4. Statistical Analysis
3. Results
3.1. Study 1
Changes in Physical Characteristics and O2max Before and After HIIT
3.2. Study 2
3.2.1. Changes in Physical Characteristics and O2max Before and After Chlorella Intake
3.2.2. Changes in Cardiac Function and Morphology Before and After Chlorella Intake
3.2.3. Relationships Between Chlorella-Induced Increase in O2max and Cardiac Function
3.3. Study 3
3.3.1. Comparison of Animal Characteristics
3.3.2. Comparison of Molecular Markers of Maladaptation of the Heart
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIIT | High-intensity intermittent training |
O2max | Maximal oxygen uptake |
MAOD | Maximal accumulated oxygen deficit |
HIIE | High-intensity intermittent exercise |
CO | Cardiac output |
LV | Left ventricular |
PL | Placebo |
CH | Chlorella |
BDHQ | Brief-type self-administered diet history questionnaire |
HR | Heart rate |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
CV | Coefficients of variation |
SV | Stroke volume |
EF | Ejection fraction |
FS | Fractional shortening |
LVESD | Left ventricular end-systolic diameter |
LVEDD | Left ventricular end-diastolic diameter |
IVST | Interventricular septal thickness |
LVPWT | Left ventricular posterior wall thickness |
CSA | Cross-sectional area |
ANP | Atrial natriuretic peptide |
ET-1 | Endothelin-1 |
ACE | Angiotensin-converting enzyme |
RT-PCR | Reverse transcription polymerase chain reaction |
ERK | Extracellular signal-regulated kinase |
JNK | Jun-N-terminal kinase |
PBS | Phosphate-buffered saline |
SD | Standard deviation |
BCAA | Branched-chain amino acid |
References
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Ravier, G.; Dugué, B.; Grappe, F.; Rouillon, J.D. Impressive anaerobic adaptations in elite karate athletes due to few intensive intermittent sessions added to regular karate training. Scand. J. Med. Sci. Sports 2009, 19, 687–694. [Google Scholar] [CrossRef]
- Ziemann, E.; Grzywacz, T.; Łuszczyk, M.; Laskowski, R.; Olek, R.A.; Gibson, A.L. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J. Strength Cond. Res. 2011, 25, 1104–1112. [Google Scholar] [CrossRef]
- Weber, C.L.; Schneider, D.A. Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. J. Appl. Physiol. 2002, 92, 1795–1801. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, M.K. Effect of Chlorella vulgaris on glucose metabolism in Wistar rats fed high fat diet. J. Med. Food 2009, 12, 1029–1037. [Google Scholar]
- Sansawa, H.; Takahashi, M.; Tsuchikura, S.; Endo, H. Effect of chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 2006, 52, 457–466. [Google Scholar]
- Vecina, J.F.; Oliveira, A.G.; Araujo, T.G.; Baggio, S.R.; Torello, C.O.; Saad, M.J.; Queiroz, M.L. Chlorella modulates insulin signaling pathway and prevents high-fat diet-induced insulin resistance in mice. Life Sci. 2014, 95, 45–52. [Google Scholar]
- Mizoguchi, T.; Takehara, I.; Masuzawa, T.; Saito, T.; Naoki, Y. Nutrigenomic studies of effects of Chlorella on subjects with high-risk factors for lifestyle-related disease. J. Med. Food 2008, 11, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, T.; Shimizu, K.; Iemitsu, M.; Kono, I. Salivary secretory immunoglobulin A secretion increases after 4-weeks ingestion of chlorella-derived multicomponent supplement in humans: A randomized cross over study. Nutr. J. 2011, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, S.; Otsuki, T. Chlorella-derived multicomponent supplementation increases aerobic endurance capacity in young individuals. J. Clin. Biochem. Nutr. 2014, 55, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, T.; Arakawa, Y.; Kobayashi, M.; Fujishima, M. Influence of Chlorella powder intake during swimming stress in mice. Biochem. Biophys. Res. Commun. 2011, 404, 121–126. [Google Scholar] [CrossRef]
- Horii, N.; Hasegawa, N.; Fujie, S.; Uchida, M.; Miyamoto-Mikami, E.; Hashimoto, T.; Tabata, I.; Iemitsu, M. High-intensity intermittent exercise training with chlorella intake accelerates exercise performance and muscle glycolytic and oxidative capacity in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R520–R528. [Google Scholar]
- Sanayei, M.; Hajizadeh-Sharafabad, F.; Amirsasan, R.; Barzegar, A. High-intensity interval training with or without chlorella vulgaris supplementation in obese and overweight women: Effects on mitochondrial biogenesis, performance and body composition. Br. J. Nutr. 2022, 128, 200–210. [Google Scholar]
- Esfandiari, S.; Sasson, Z.; Goodman, J.M. Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise. Eur. J. Appl. Physiol. 2014, 114, 331–343. [Google Scholar] [CrossRef]
- Cassidy, S.; Thoma, C.; Houghton, D.; Trenell, M.I. High-intensity interval training: A review of its impact on glucose control and cardiometabolic health. Diabetologia 2017, 60, 7–23. [Google Scholar] [CrossRef]
- Taylor, H.L.; Buskirk, E.; Henschel, A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J. Appl. Physiol. 1955, 8, 73–80. [Google Scholar] [CrossRef]
- Daley, P.J.; Sagar, K.B.; Wann, L.S. Doppler echocardiographic measurement of flow velocity in the ascending aorta during supine and upright exercise. Br. Heart J. 1985, 54, 562–567. [Google Scholar]
- Jafary, F.H. Devereux formula for left ventricular mass--be careful to use the right units of measurement. J. Am. Soc. Echocardiogr. 2007, 20, 783. [Google Scholar] [PubMed]
- Gisvold, S.E.; Brubakk, A.O. Measurement of instantaneous blood-flow velocity in the human aorta using pulsed Doppler ultrasound. Cardiovasc. Res. 1982, 16, 26–33. [Google Scholar] [CrossRef]
- Tan, I.; Butlin, M.; Liu, Y.Y.; Ng, K.; Avolio, A.P. Heart rate dependence of aortic pulse wave velocity at different arterial pressures in rats. Hypertension 2012, 60, 528–533. [Google Scholar] [CrossRef]
- Tan, K.T.; Ding, L.W.; Wu, C.S.; Tenen, D.G.; Yang, H. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts. Sci. Adv. 2021, 7, eabd2605. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Wang, Y. Mitogen-activated protein kinases in heart development and diseases. Circulation 2007, 116, 1413–1423. [Google Scholar] [CrossRef]
- Gu, W.; Cheng, Y.; Wang, S.; Sun, T.; Li, Z. PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2. Cardiovasc. Toxicol. 2021, 21, 451–461. [Google Scholar] [CrossRef]
- Iemitsu, M.; Miyauchi, T.; Maeda, S.; Sakai, S.; Kobayashi, T.; Fujii, N.; Miyazaki, H.; Matsuda, M.; Yamaguchi, I. Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R2029–R2036. [Google Scholar] [PubMed]
- Matsumoto, K.; Koba, T.; Hamada, K.; Tsujimoto, H.; Mitsuzono, R. Branched-chain amino acid supplementation increases the lactate threshold during an incremental exercise test in trained individuals. J. Nutr. Sci. Vitaminol. 2009, 55, 52–58. [Google Scholar] [CrossRef]
- Rezaei, S.; Gholamalizadeh, M.; Tabrizi, R.; Nowrouzi-Sohrabi, P.; Rastgoo, S.; Doaei, S. The effect of L-arginine supplementation on maximal oxygen uptake: A systematic review and meta-analysis. Physiol. Rep. 2021, 9, e14739. [Google Scholar]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef]
- Knuiman, P.; van Loon, L.J.C.; Wouters, J.; Hopman, M.; Mensink, M. Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 508–518. [Google Scholar] [CrossRef]
- Tabata, I. Tabata training: One of the most energetically effective high-intensity intermittent training methods. J. Physiol. Sci. 2019, 69, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Abe, H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry 2000, 65, 757–765. [Google Scholar] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acid 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Atakan, M.M.; Li, Y.; Koşar, Ş.N.; Turnagöl, H.H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef]
HIIT + Placebo | p Value | HIIT + Chlorella | p Value | HIIT + Placebo | HIIT + Chlorella | p Value | Cohen’s d | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | ||||||||
Body weight (kg) | 68 ± 8 | 67 ± 7 | 0.2748 | 68 ± 8 | 68 ± 8 | 0.8217 | Δ | −0.3 ± 0.8 | 0.1 ± 0.9 | 0.6451 | 0.47 |
Body fat mass (kg) | 11 ± 3 | 10 ± 3 | 0.0964 | 11 ± 3 | 11 ± 3 | 0.9739 | Δ | −0.5 ± 0.9 | 0.0 ± 0.9 | 0.2017 | 0.56 |
Lean body mass (kg) | 57 ± 6 | 57 ± 5 | 0.3460 | 57 ± 6 | 57 ± 6 | 0.8824 | Δ | 0.2 ± 0.7 | 0.1 ± 1.1 | 0.6903 | 0.11 |
HR (bpm) | 60 ± 6 | 62 ± 11 | 0.5407 | 58 ± 7 | 60 ± 6 | 0.4421 | Δ | 2.2 ± 10.9 | 1.9 ± 7.0 | 0.9428 | 0.03 |
SBP (mmHg) | 119 ± 10 | 119 ± 10 | 0.9757 | 124 ± 8 | 119 ± 14 | 0.0468 | Δ | −0.6 ± 9.4 | −5.3 ± 8.1 | 0.2200 | 0.54 |
DBP (mmHg) | 66 ± 7 | 61 ± 6 | 0.0431 | 71 ± 8 | 62 ± 7 | 0.0030 | Δ | −5.3 ± 8.0 | −9.2 ± 8.4 | 0.2534 | 0.48 |
Placebo | p Value | Chlorella | p Value | Placebo | Chlorella | p Value | Cohen’s d | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | ||||||||
Body weight (kg) | 64 ± 5 | 64 ± 5 | 0.5877 | 64 ± 5 | 64 ± 4 | 0.6833 | Δ | 0.18 ± 0.78 | 0.17 ± 0.94 | 0.9740 | 0.01 |
Body fat mass (kg) | 8.6 ± 1.6 | 8.7 ± 2.1 | 0.7130 | 8.3 ± 1.3 | 8.5 ± 1.2 | 0.6047 | Δ | 0.17 ± 1.05 | 0.15 ± 0.27 | 0.9744 | 0.03 |
Lean body mass (kg) | 55 ± 4 | 55 ± 4 | 0.9692 | 55 ± 4 | 55 ± 4 | 0.9727 | Δ | 0.02 ± 1.01 | 0.02 ± 1.13 | 0.9999 | 0.00 |
HR (bpm) | 68 ± 8 | 65 ± 6 | 0.3442 | 67 ± 5 | 68 ± 9 | 0.9304 | Δ | −2.83 ± 6.65 | 0.17 ± 4.45 | 0.3797 | 0.53 |
SBP (mmHg) | 112 ± 7 | 116 ± 7 | 0.3602 | 118 ± 9 | 114 ± 7 | 0.2926 | Δ | 3.83 ± 9.33 | −3.83 ± 8.00 | 0.1571 | 0.88 |
DBP (mmHg) | 65 ± 7 | 61 ± 6 | 0.4080 | 63 ± 11 | 58 ± 3 | 0.3137 | Δ | −3.83 ± 10.40 | −4.83 ± 10.57 | 0.8721 | 0.10 |
SV (mL) | 63 ± 2 | 62 ± 3 | 0.1634 | 63 ± 2 | 63 ± 2 | 0.6747 | Δ | −1.83 ± 2.75 | −0.28 ± 1.47 | 0.2489 | 0.70 |
CO (L/min) | 4.3 ± 0.6 | 4.0 ± 0.3 | 0.1551 | 4.2 ± 0.4 | 4.2 ± 0.5 | 0.8864 | Δ | −0.21 ± 0.45 | −0.02 ± 0.25 | 0.1915 | 0.52 |
EF (%) | 61 ± 3 | 60 ± 2 | 0.2433 | 60 ± 3 | 60 ± 3 | 0.4711 | Δ | −1.13 ± 2.10 | −0.61 ± 1.94 | 0.6670 | 0.26 |
FS (%) | 33 ± 2 | 32 ± 1 | 0.2839 | 32 ± 2 | 32 ± 2 | 0.3174 | Δ | −0.63 ± 1.29 | −0.45 ± 0.98 | 0.7870 | 0.16 |
LVESD (mm) | 3.2 ± 0.2 | 3.2 ± 0.2 | 0.5279 | 3.2 ± 0.2 | 3.3 ± 0.2 | 0.7803 | Δ | 0.02 ± 0.06 | 0.02 ± 0.14 | 0.9999 | 0.00 |
LVEDD (mm) | 4.8 ± 0.2 | 4.7 ± 0.2 | 0.3790 | 4.8 ± 0.2 | 4.8 ± 0.1 | 0.7412 | Δ | −0.03 ± 0.07 | 0.02 ± 0.12 | 0.4406 | 0.51 |
IVST (mm) | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.1438 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.2236 | Δ | −0.02 ± 0.03 | −0.03 ± 0.05 | 0.7631 | 0.24 |
LVPWT (mm) | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.7820 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.8471 | Δ | 0.01 ± 0.11 | −0.01 ± 0.08 | 0.7295 | 0.21 |
LV mass index (g/m2) | 74 ± 7 | 73 ± 10 | 0.7266 | 75 ± 9 | 74 ± 9 | 0.5882 | Δ | −1.02 ± 6.61 | −1.19 ± 5.08 | 0.9612 | 0.03 |
Placebo | p Value | Chlorella | p Value | Placebo | Chlorella | p Value | Cohen’s d | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | ||||||||
HR (bpm) | 185 ± 5 | 184 ± 8 | 0.7679 | 186 ± 4 | 189 ± 5 | 0.0907 | Δ | −0.67 ± 2.14 | 2.33 ± 2.73 | 0.2421 | 0.72 |
O2max (ml/kg/min) | 43 ± 7 | 43 ± 7 | 0.2964 | 43 ± 6 | 45 ± 5 | 0.0404 | Δ | 0.13 ± 0.74 | 2.00 ± 1.28 | 0.0113 | 1.82 |
SV (mL) | 119 ± 25 | 121 ± 25 | 0.1315 | 121 ± 26 | 129 ± 23 | 0.0032 | Δ | 2.03 ± 2.78 | 8.47 ± 3.90 | 0.0081 | 1.92 |
CO (L/min) | 22 ± 5 | 22 ± 5 | 0.2101 | 23 ± 5 | 24 ± 5 | 0.0004 | Δ | 0.34 ± 0.57 | 1.89 ± 0.51 | 0.0006 | 2.87 |
EF (%) | 70 ± 2 | 70 ± 2 | 0.8885 | 70 ± 3 | 71 ± 2 | 0.0175 | Δ | 0.03 ± 0.53 | 1.39 ± 0.99 | 0.0141 | 1.71 |
FS (%) | 40 ± 2 | 40 ± 2 | 0.7711 | 40 ± 2 | 41 ± 2 | 0.0189 | Δ | 0.05 ± 0.44 | 1.21 ± 0.87 | 0.0155 | 1.68 |
LVESD (mm) | 3.5 ± 0.3 | 3.5 ± 0.3 | 0.3403 | 3.5 ± 0.3 | 3.6 ± 0.3 | 0.2009 | Δ | 0.02 ± 0.04 | 0.01 ± 0.02 | 0.7495 | 0.19 |
LVEDD (mm) | 5.9 ± 0.5 | 5.9 ± 0.5 | 0.1682 | 5.9 ± 0.5 | 6.0 ± 0.5 | 0.0034 | Δ | 0.04 ± 0.06 | 0.14 ± 0.06 | 0.0235 | 1.67 |
IVST (mm) | 0.9 ± 0.1 | 1.0 ± 0.1 | 0.2168 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.3432 | Δ | 0.05 ± 0.08 | −0.04 ± 0.08 | 0.0966 | 1.06 |
LVPWT (mm) | 1.0 ± 0.1 | 0.9 ± 0.1 | 0.1548 | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.8523 | Δ | −0.07 ± 0.10 | 0.01 ± 0.17 | 0.3159 | 0.61 |
Control | Chlorella | p Value | |
---|---|---|---|
Body weight (g) | 587 ± 37 | 624 ± 48 | 0.0699 |
Epididymal fat mass (g) | 7.9 ± 1.5 | 7.9 ± 2.8 | 0.9798 |
LV mass (g) | 1.1 ± 0.1 | 1.2 ± 0.2 | 0.2403 |
GA muscle mass (g) | 2.7 ± 0.2 | 2.8 ± 0.3 | 0.3943 |
HR (bpm) | 285 ± 41 | 276 ± 15 | 0.7278 |
SBP (mmHg) | 100 ± 10 | 94 ± 4 | 0.3383 |
DBP (mmHg) | 74 ± 10 | 74 ± 6 | 0.9476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujie, S.; Inoue, K.; Tsuji, K.; Horii, N.; Oshiden, M.; Tabata, I.; Iemitsu, M. Chlorella-Induced Increase in Cardiac Function Further Enhances Aerobic Capacity Through High-Intensity Intermittent Training in Healthy Young Men and Rats. Nutrients 2025, 17, 2657. https://doi.org/10.3390/nu17162657
Fujie S, Inoue K, Tsuji K, Horii N, Oshiden M, Tabata I, Iemitsu M. Chlorella-Induced Increase in Cardiac Function Further Enhances Aerobic Capacity Through High-Intensity Intermittent Training in Healthy Young Men and Rats. Nutrients. 2025; 17(16):2657. https://doi.org/10.3390/nu17162657
Chicago/Turabian StyleFujie, Shumpei, Kenichiro Inoue, Katsunori Tsuji, Naoki Horii, Moe Oshiden, Izumi Tabata, and Motoyuki Iemitsu. 2025. "Chlorella-Induced Increase in Cardiac Function Further Enhances Aerobic Capacity Through High-Intensity Intermittent Training in Healthy Young Men and Rats" Nutrients 17, no. 16: 2657. https://doi.org/10.3390/nu17162657
APA StyleFujie, S., Inoue, K., Tsuji, K., Horii, N., Oshiden, M., Tabata, I., & Iemitsu, M. (2025). Chlorella-Induced Increase in Cardiac Function Further Enhances Aerobic Capacity Through High-Intensity Intermittent Training in Healthy Young Men and Rats. Nutrients, 17(16), 2657. https://doi.org/10.3390/nu17162657