Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control
Abstract
1. Introduction
2. Literature Search Strategy
3. Chlorophylls and Related Compounds
4. Natural Sources of Chlorophyll and Dietary Intake
5. Nutritional and Functional Role of Chlorophyll
6. Effects of Chlorophyll and Its Derivatives on Glucose Metabolism
7. The Role of Chlorophyllin
8. Chlorophyll-Based Compounds with Antidiabetic Potential
9. Chlorophylls and Pheophytins as Antioxidants
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2-NBDG | 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose |
ADMET | Absorption, distribution, metabolism, excretion, and toxicity |
AGEs | Advanced glycation end-products |
ALP | Alkaline phosphatase |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
Bcl-2 | B-cell lymphoma-2 |
CCK | Cholecystokinin |
CuZnSOD | Copper–zinc superoxide dismutase |
DPP-4 | Dipeptidyl peptidase 4 |
FDA | U.S. Food and Drug Administration |
GLP-1 | Glucagon-like peptide 1 |
GLUTs | Glucose transporters |
HPLC–ESI–MS/MS | High-Performance liquid chromatography–electrospray ionization–tandem mass spectrometry |
IKK | IκB kinase |
IPGTT | Intraperitoneal glucose tolerance test |
IRS1 | Insulin receptor substrate 1 |
IRS2 | Insulin receptor substrate 2 |
IUPAC | International Union of Pure and Applied Chemistry |
LC/MS | Liquid chromatography–mass spectrometry |
MDA | Malondialdehyde |
MGAM-C | Maltase-glucoamylase C-terminal |
MnSOD | Manganese superoxide dismutase |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
PPARα | Peroxisome proliferator-activated receptor alpha |
PPARγ | Peroxisome proliferator-activated receptor gamma |
PPI | Pea protein isolate |
RAGE | Advanced glycation end products |
ROS | Reactive oxygen species |
RXR | Retinoic X receptor |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SGLT2 | Sodium-glucose transport protein 2 |
SPI | Soy protein isolate |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
References
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S19–S38. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025; Available online: https://diabetesatlas.org (accessed on 12 August 2025).
- Di Molfetta, S.; Di Gioia, L.; Caruso, I.; Cignarelli, A.; Green, S.C.; Natale, P.; Strippoli, G.F.M.; Sorice, G.P.; Perrini, S.; Natalicchio, A.; et al. Efficacy and Safety of Different Hybrid Closed Loop Systems for Automated Insulin Delivery in People with Type 1 Diabetes: A Systematic Review and Network Meta-Analysis. Diabetes Metab. Res. Rev. 2024, 40, e3842. [Google Scholar] [CrossRef]
- Singh, A.; Afshan, N.; Singh, A.; Singh, S.K.; Yadav, S.; Kumar, M.; Sarma, D.K.; Verma, V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur. J. Cell Biol. 2023, 102, 151329. [Google Scholar] [CrossRef]
- Foster, T.P.; Bruggeman, B.S.; Haller, M.J. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025, 85, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycemia in type 2 diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Gieroba, B.; Kryska, A.; Sroka-Bartnicka, A. Type 2 diabetes mellitus—Conventional therapies and future perspectives in innovative treatment. Biochem. Biophys. Rep. 2025, 42, 102037. [Google Scholar] [CrossRef]
- Di Magno, L.; Di Pastena, F.; Bordone, R.; Coni, S.; Canettieri, G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers 2022, 14, 3220. [Google Scholar] [CrossRef]
- Pandey, A.; Tripathi, P.; Pandey, R.; Srivatava, R.; Goswami, S. Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied Sci. 2011, 3, 504–512. [Google Scholar] [CrossRef]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2018, 8, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Moradi, B.; Abbaszadeh, S.; Shahsavari, S.; Alizadeh, M.; Beyranvand, F. The most useful medicinal herbs to treat diabetes. Biomed. Res. Ther. 2018, 5, 2538–2551. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Devkota, H.P.; Bhatt, I.D.; Rawal, R.S. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother. Res. 2021, 35, 223–245. [Google Scholar] [CrossRef] [PubMed]
- Mahankali, S.; Kalava, J.; Garapati, Y.; Domathoti, B.; Maddumala, V.R.; Sundramurty, V.P. A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. Evid. Based Complement. Alternat. Med. 2022, 2022, 8621665. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Khan, S.; Wani, S.A. Controlling diabetes with the aid of medicinal herbs: A critical compilation of a decade of research. Crit. Rev. Food Sci. Nutr. 2023, 63, 12552–12566. [Google Scholar] [CrossRef]
- Shabab, S.; Gholamnezhad, Z.; Mahmoudabady, M. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. J. Ethnopharmacol. 2021, 265, 113328. [Google Scholar] [CrossRef] [PubMed]
- Djeujo, F.M.; Ragazzi, E.; Urettini, M.; Sauro, B.; Cichero, E.; Tonelli, M.; Froldi, G. Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies. Pharmaceuticals 2022, 15, 205. [Google Scholar] [CrossRef]
- Nistor, M.; Pop, R.; Daescu, A.; Pintea, A.; Socaciu, C.; Rugina, D. Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022, 27, 4254. [Google Scholar] [CrossRef]
- Blumfield, M.; Mayr, H.; De Vlieger, N.; Abbott, K.; Starck, C.; Fayet-Moore, F.; Marshall, S. Should We ‘Eat a Rainbow’? An Umbrella Review of the Health Effects of Colorful Bioactive Pigments in Fruits and Vegetables. Molecules 2022, 27, 4061. [Google Scholar] [CrossRef]
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012, 35, 1293–1300. [Google Scholar] [CrossRef]
- Scheer, H. Chlorophylls: A Personal Snapshot. Molecules 2022, 27, 1093. [Google Scholar] [CrossRef]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef]
- Cady, J.B.; Morgan, W.S. Treatment of chronic ulcers with chlorophyll: Review of a series of fifty cases. Am. J. Surg. 1948, 75, 562–569. [Google Scholar] [CrossRef]
- Edwards, B.J. Treatment of chronic leg ulcers with ointment containing soluble chlorophyll. Physiotherapy 1954, 40, 177–179. [Google Scholar]
- Jimenez-Aleman, G.H.; Castro, V.; Londaitsbehere, A.; Gutierrez-Rodríguez, M.; Garaigorta, U.; Solano, R.; Gastaminza, P. SARS-CoV-2 Fears Green: The Chlorophyll Catabolite Pheophorbide A Is a Potent Antiviral. Pharmaceuticals 2021, 14, 1048. [Google Scholar] [CrossRef]
- Tamiaki, H. Chlorophylls. In Fundamentals of Porphyrin Chemistry: A 21st Century Approach; Brothers, P.J., Senge, M.O., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2022; Volume 2, pp. 743–776. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, S.P.; Mahapatra, S.K.; Swain, D.; Rout, G.R. Deeper insights into the physiological and metabolic functions of the pigments in plants and their applications: Beyond natural colorants. Physiol. Plant. 2025, 177, e70168. [Google Scholar] [CrossRef]
- Milne, B.F.; Toker, Y.; Rubio, A.; Nielsen, S.B. Unraveling the intrinsic color of chlorophyll. Angew. Chem. Int. Ed. Engl. 2015, 54, 2170–2173. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Bird, A.; Kopec, R.E. The Metabolism and Potential Bioactivity of Chlorophyll and Metallo-chlorophyll Derivatives in the Gastrointestinal Tract. Mol. Nutr. Food Res. 2021, 65, e2000761. [Google Scholar] [CrossRef]
- Takamiya, K.I.; Tsuchiya, T.; Ohta, H. Degradation Pathway(s) of Chlorophyll: What Has Gene Cloning Revealed? Trends Plant Sci. 2000, 5, 426–431. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Failla, M.L.; Schwartz, S.J. Assessment of Degradation and Intestinal Cell Uptake of Carotenoids and Chlorophyll Derivatives from Spinach Puree Using an In Vitro Digestion and Caco-2 Human Cell Model. J. Agric. Food Chem. 2001, 49, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Canazza, E.; Tessari, P.; Mayr Marangon, C.; Lante, A. Nutritional Profile and Chlorophyll Intake of Collard Green as a Convenience Food. Nutrients 2024, 16, 4015. [Google Scholar] [CrossRef]
- Roca, M.; Pérez-Gálvez, A. Application of EFSA EU menu database and R computing language to calculate the green chlorophyll intake in the European population. Food Chem. 2024, 461, 140912. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.M.; Gomes, B.B.; Lanfer-Marquez, U.M. Apparent absorption of chlorophyll from spinach in an assay with dogs. Innov. Food Sci. Emerg. Technol. 2007, 8, 426–432. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Viera, I.; Chen, K.; Ríos, J.J.; Benito, I.; Perez-Galvez, A.; Roca, M. First-pass metabolism of chlorophylls in mice. Mol. Nutr. Food Res. 2018, 62, e1800562. [Google Scholar] [CrossRef] [PubMed]
- Isakau, H.A.; Trukhacheva, T.V.; Zhebentyaev, A.I.; Petrov, P.T. HPLC study of chlorin e6 and its molecular complex with polyvinylpyrrolidone. Biomed. Chromatogr. 2007, 21, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Viera, I.; Herrera, M.; Roca, M. Influence of food composition on chlorophyll bioaccessibility. Food Chem. 2022, 386, 132805. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Hu, X.; Liao, X.; Zhang, Y. Chlorophyll Supplementation in Early Life Prevents Diet-Induced Obesity and Modulates Gut Microbiota in Mice. Mol. Nutr. Food Res. 2019, 63, e1801219. [Google Scholar] [CrossRef]
- Sim, L.; Quezada-Calvillo, R.; Sterchi, E.E.; Nichols, B.L.; Rose, D.R. Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 2008, 375, 782–792. [Google Scholar] [CrossRef]
- Yee, H.S.; Fong, N.T. A review of the safety and efficacy of acarbose in diabetes mellitus. Pharmacotherapy 1996, 16, 792–805. [Google Scholar] [CrossRef]
- Liu, X.; Gu, Y.; Xu, W.; Zhang, R.; Koyama, T. Analysis for inhibition mechanisms of pheophytin a and pyropheophytin a against alpha-glucosidase by multi-spectroscopy; molecular docking, and molecular dynamics simulation. LWT—Food Sci. Technol. 2025, 224, 117828. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Shen, S.; Ji, X.; Chen, F.; Liao, X.; Zhang, H.; Zhang, Y. Inhibitory effects of chlorophylls and its derivative on starch digestion in vitro. Food Chem. 2023, 413, 135377. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Brzezowska, J.; Tkacz, K.; Wojdyło, A. Polysaccharide- and protein-based carriers as a key strategy for obtaining microencapsulated chlorophyll-rich extracts: UPLC-PDA/ESI-QToF-MS characterization and evaluation of antidiabetic potential. Food Chem. 2025, 486, 144627. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 642–653. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, H.J.; Han, J.S. Pheophorbide A from Gelidium amansii improves postprandial hyperglycemia in diabetic mice through α-glucosidase inhibition. Phytother. Res. 2019, 33, 702–707. [Google Scholar] [CrossRef]
- Martin, A.E.; Montgomery, P.A. Acarbose: An α-glucosidase inhibitor. Am. J. Health Syst. Pharm. 1996, 53, 2277–2337. [Google Scholar] [CrossRef]
- Ren, L.; Qin, X.; Cao, X.; Wang, L.; Bai, F.; Bai, G.; Shen, Y. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2011, 2, 827–836. [Google Scholar] [CrossRef]
- Sun, S.M.; Yang, S.H.; Golokhvast, K.S.; Le, B.; Chung, G. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences. BioMed Res. Int. 2016, 2016, 1462916. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.O.; Nam, M.H.; Oh, J.S.; Lee, J.W.; Kim, C.T.; Park, K.W.; Lee, D.H.; Lee, K.W. Pheophorbide a from Capsosiphon fulvescens Inhibits Advanced Glycation End Products Mediated Endothelial Dysfunction. Planta Medica 2016, 82, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.F.; Tsai, Y.S.; Chou, S.S.; Liu, S.M.; Wu, J.T.; Lin, S.J.; Tu, W.C. HPLC determination of pheophorbide a and pyropheophorbide a in dried laver product implicated in food poisoning. J. Food Hyg. Soc. Jpn. 2005, 46, 45–48. [Google Scholar] [CrossRef]
- Rossi, E.; Borchard, K.; Cole, J.M. Pseudoporphyria following self-medication with chlorophyll. Australas. J. Dermatol. 2015, 56, 47–48. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Frew, J.W.; Muhaidat, J.; Cheung, K.; Lee, P.; Poulos, V.; McCrossin, I.; Cachia, A.R.; Tefany, F.; Murrell, D.F. Chlorophyll-induced pseudoporphyria with ongoing photosensitivity after cessation—A case series of four patients. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1239–1242. [Google Scholar] [CrossRef]
- Cinčárová, D.; Hájek, J.; Dobřichovský, M.; Lukeš, M.; Hrouzek, P. Recommendations on the quantitative analysis of pheophorbides, photosensitizers present in algal biomass intended as food supplement. Algal Res. 2021, 56, 102298. [Google Scholar] [CrossRef]
- Hellgren, L.I. Phytanic acid—An overlooked bioactive fatty acid in dairy fat? Ann. N. Y. Acad. Sci. 2010, 1190, 42–49. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Mariño-Lorenzo, P.; Miranda, J.M.; Porto-Arias, J.J.; Lamas, A.; Vazquez, B.I.; Franco, C.M.; Cepeda, A. Phytanic acid consumption and human health, risks, benefits and future trends: A review. Food Chem. 2017, 221, 237–247. [Google Scholar] [CrossRef]
- Krauß, S.; Vetter, W. Phytol and phytyl fatty acid esters: Occurrence, concentrations, and relevance. Eur. J. Lipid Sci. Technol. 2018, 120, 1700387. [Google Scholar] [CrossRef]
- Kitareewan, S.; Burka, L.T.; Tomer, K.B.; Parker, C.E.; Deterding, L.J.; Stevens, R.D.; Forman, B.M.; Mais, D.E.; Heyman, R.A.; McMorris, T.; et al. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol. Biol. Cell 1996, 7, 1153–1166. [Google Scholar] [CrossRef]
- McCarty, M.F. The chlorophyll metabolite phytanic acid is a natural rexinoid--potential for treatment and prevention of diabetes. Med. Hypotheses 2001, 56, 217–219. [Google Scholar] [CrossRef]
- Mukherjee, R.; Davies, P.J.; Crombie, D.L.; Bischoff, E.D.; Cesario, R.M.; Jow, L.; Hamann, L.G.; Boehm, M.F.; Mondon, C.E.; Nadzan, A.M.; et al. Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 1997, 386, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Elmazar, M.M.; El-Abhar, H.S.; Schaalan, M.F.; Farag, N.A. Phytol/Phytanic acid and insulin resistance: Potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS ONE 2013, 8, e45638. [Google Scholar] [CrossRef] [PubMed]
- Heim, M.; Johnson, J.; Boess, F.; Bendik, I.; Weber, P.; Hunziker, W.; Fluhmann, B. Phytanic acid, a natural peroxisome proliferator-activated receptor agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB J. 2002, 16, 718–720. [Google Scholar] [CrossRef]
- Schlüter, A.; Yubero, P.; Iglesias, R.; Giralt, M.; Villarroya, F. The chlorophyll-derived metabolite phytanic acid induces white adipocyte differentiation. Int. J. Obes. 2002, 26, 1277–1280. [Google Scholar] [CrossRef]
- Islam, M.T.; Bhuia, M.S.; de Lima, J.P.M.; Maia, F.P.A.; Ducati, A.B.H.; Coutinho, H.D.M. Phytanic acid, an inconclusive phytol metabolite: A review. Curr. Res. Toxicol. 2023, 5, 100120. [Google Scholar] [CrossRef]
- Wunderlich, A.L.M.; Azevedo, S.C.S.F.; Yamada, L.A.; Bataglini, C.; Previate, C.; Campanholi, K.S.S.; Pereira, P.C.S.; Caetano, W.; Kaplum, V.; Nakamura, C.V.; et al. Chlorophyll treatment combined with photostimulation increases glycolysis and decreases oxidative stress in the liver of type 1 diabetic rats. Braz. J. Med. Biol. Res. 2020, 53, e8389. [Google Scholar] [CrossRef] [PubMed]
- Tumolo, T.; Lanfer-Marquez, U.M. Copper chlorophyllin: A food colorant with bioactive properties? Food Res. Int. 2012, 46, 451–459. [Google Scholar] [CrossRef]
- Nagini, S.; Palitti, F.; Natarajan, A.T. Chemopreventive Potential of Chlorophyllin: A Review of the Mechanisms of Action and Molecular Targets. Nutr. Cancer 2015, 67, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Failla, M.L.; Schwartz, S.J. Sodium copper chlorophyllin: In vitro digestive stability and accumulation by Caco-2 human intestinal cells. J. Agric. Food Chem. 2002, 50, 2173–2179. [Google Scholar] [CrossRef]
- Gertsch, J. The Metabolic Plant Feedback Hypothesis: How Plant Secondary Metabolites Nonspecifically Impact Human Health. Planta Medica 2016, 82, 920–929. [Google Scholar] [CrossRef]
- Montelius, C.; Erlandsson, D.; Vitija, E.; Stenblom, E.L.; Egecioglu, E.; Erlanson-Albertsson, C. Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women. Appetite 2014, 81, 295–304. [Google Scholar] [CrossRef]
- Stenblom, E.L.; Montelius, C.; Östbring, K.; Håkansson, M.; Nilsson, S.; Rehfeld, J.F.; Erlanson-Albertsson, C. Supplementation by thylakoids to a high carbohydrate meal decreases feelings of hunger, elevates CCK levels and prevents postprandial hypoglycaemia in overweight women. Appetite 2013, 68, 118–123. [Google Scholar] [CrossRef]
- Amirinejad, A.; Heshmati, J.; Shidfar, F. Effects of thylakoid intake on appetite and weight loss: A systematic review. J. Diabetes Metab. Disord. 2019, 19, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Patar, A.K.; Sharma, A.; Syiem, D.; Bhan, S. Chlorophyllin supplementation modulates hyperglycemia-induced oxidative stress and apoptosis in liver of streptozotocin-administered mice. BioFactors 2018, 44, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Patar, A.K.; Bhan, S.; Syiem, D. Effect of chlorophyllin, a semi-synthetic chlorophyll molecule on hyperglycemia and hyperlipidemia in streptozotocin induced diabetic mice. Int. J. Pharm. Pharm. Sci. 2016, 8, 293–296. [Google Scholar]
- Zheng, H.; You, Y.; Hua, M.; Wu, P.; Liu, Y.; Chen, Z.; Zhang, L.; Wei, H.; Li, Y.; Luo, M.; et al. Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Front. Physiol. 2018, 9, 1671. [Google Scholar] [CrossRef]
- Samadder, A.; Dey, S.; Sow, P.; Das, R.; Nandi, S.; Das, J.; Bhattacharjee, B.; Chakrovorty, A.; Biswas, M.; Guptaroy, P. Phyto-chlorophyllin Prevents Food Additive Induced Genotoxicity and Mitochondrial Dysfunction via Cytochrome c Mediated Pathway in Mice Model. Comb. Chem. High Throughput Screen. 2021, 24, 1618–1627. [Google Scholar] [CrossRef]
- Ribeiro, T.; Reis, M.; Vasconcelos, V.; Urbatzka, R. Phenotypic screening in zebrafish larvae identifies promising cyanobacterial strains and pheophorbide a as insulin mimetics. Sci. Rep. 2024, 14, 32142. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Sarkerb, U.K.; Farhanab, F.; Alib, M.M.; Islamb, M.A.; Haquec, M.A.; Ishigamid, K.; Rokeyae, B.; Royb, B. Isolation and characterization of anti-diabetic compound from Clerodendrum infortunatum L. leaves. S. Afr. J. Bot. 2021, 142, 380–390. [Google Scholar] [CrossRef]
- Pillai, J.S.; Ratheesh, R.; Nair, K.P.; Sanalkumar, M.G.; Thomson, R.J. Evaluation of the anti-diabetic potential of aqueous extract of Clerodendrum infortunatum L. in vivo in streptozotocin-induced diabetic Wistar rats. Plant Sci. Today 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Matsumoto, T.; Matsuno, M.; Ikui, N.; Mizushina, Y.; Omiya, Y.; Ishibashi, R.; Ueda, T.; Mizukami, H. Identification of pheophorbide a as an inhibitor of receptor for advanced glycation end products in Mallotus japonicus. J. Nat. Med. 2021, 75, 675–681. [Google Scholar] [CrossRef]
- Paul, S.; Pallavi, A.; Gandasi, N.R. Exploring the potential of pheophorbide A, a chlorophyll-derived compound in modulating GLUT for maintaining glucose homeostasis. Front. Endocrinol. 2024, 15, 1330058. [Google Scholar] [CrossRef]
- Holman, G.D. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 1155–1175. [Google Scholar] [CrossRef]
- Caspi, I.; Tremmel, D.M.; Pulecio, J.; Yang, D.; Liu, D.; Yan, J.; Odorico, J.S.; Huangfu, D. Glucose Transporters Are Key Components of the Human Glucostat. Diabetes 2024, 73, 1336–1351. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Yang, S.M.; Yi, G.; Roh, Y.J.; Park, H.; Park, J.M.; Choi, M.G.; Koo, H. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem. Biophys. Res. Commun. 2018, 498, 523–528. [Google Scholar] [CrossRef]
- Rybkin, A.Y.; Kurmaz, S.V.; Urakova, E.A.; Filatova, N.V.; Sizov, L.R.; Kozlov, A.V.; Koifman, M.O.; Goryachev, N.S. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and In Vitro Phototoxic Activity. Pharmaceutics 2023, 15, 273. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, Y.; Lim, S.G.; Lee, C.; Park, J.S.; Koo, H. Pheophorbide a-loaded casein micelle for in vivo drug delivery and efficient photodynamic therapy. J. Drug Deliv. Sci. Technol. 2024, 95, 105598. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Qin, Y.; Song, H.; Huang, P.; Wang, W.; Wang, C.; Li, C.; Wang, Y.; Kong, D. Co-delivery of doxorubicin and pheophorbide A by pluronic F127 micelles for chemo-photodynamic combination therapy of melanoma. J. Mater. Chem. B 2018, 6, 3305–3314. [Google Scholar] [CrossRef]
- Paul, S.; Majumdar, M. Comparative study of six antidiabetic polyherbal formulation for its multimodal approaches in diabetes management. 3Biotech 2022, 12, 114. [Google Scholar] [CrossRef]
- Nyman, E.S.; Hynninen, P.H. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2004, 73, 1–28. [Google Scholar] [CrossRef]
- Brandis, A.S.; Salomon, Y.; Scherz, A. Chlorophyll sensitizers in photodynamic therapy. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 461–483. [Google Scholar] [CrossRef]
- Juzeniene, A.; Nielsen, K.P.; Moan, J. Biophysical aspects of photodynamic therapy. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 7–28. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Kwon, S.M.; Kim, Y.C.; Ahn, S.G.; Yoon, J.H. Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo. Oncol. Rep. 2012, 27, 1772–1778. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Doustvandi, M.A.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagn. Photodyn. Ther. 2019, 26, 395–404. [Google Scholar] [CrossRef]
- Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 2, 916–966. [Google Scholar] [CrossRef] [PubMed]
- Uguz, A.C.; Rocha-Pimienta, J.; Martillanes, S.; Garrido, M.; Espino, J.; Delgado-Adámez, J. Chlorophyll Pigments of Olive Leaves and Green Tea Extracts Differentially Affect Their Antioxidant and Anticancer Properties. Molecules 2023, 28, 2779. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Shokramraji, Z.; Tavakkoli, S.; Mihaylova, D.; Lante, A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. Plants 2023, 12, 1533. [Google Scholar] [CrossRef]
- Torres-Isidro, O.; González-Montoya, M.; Vargas-Vargas, M.A.; Florian-Rodriguez, U.; García-Berumen, C.I.; Montoya-Pérez, R.; Saavedra-Molina, A.; Calderón-Cortés, E.; Rodríguez-Orozco, A.R.; Cortés-Rojo, C. Anti-Aging Potential of Avocado Oil via Its Antioxidant Effects. Pharmaceuticals 2025, 18, 246. [Google Scholar] [CrossRef]
- Hsu, C.; Chao, P.; Hu, S.; Yang, C. The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Subramoniam, A.; Asha, V.V.; Nair, S.A.; Sasidharan, S.P.; Sureshkumar, P.K.; Rajendran, K.N.; Karunagaran, D.; Ramalingam, K. Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same. Inflammation 2012, 35, 959–966. [Google Scholar] [CrossRef]
- Marshall, L.J.; Bailey, J.; Cassotta, M.; Herrmann, K.; Pistollato, F. Poor Translatability of Biomedical Research Using Animals—A Narrative Review. Altern. Lab. Anim. 2023, 51, 102–135. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T. The (misleading) role of animal models in drug development. Front. Drug Discov. 2024, 4, 1355044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartore, G.; Zagotto, G.; Ragazzi, E. Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control. Nutrients 2025, 17, 2653. https://doi.org/10.3390/nu17162653
Sartore G, Zagotto G, Ragazzi E. Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control. Nutrients. 2025; 17(16):2653. https://doi.org/10.3390/nu17162653
Chicago/Turabian StyleSartore, Giovanni, Giuseppe Zagotto, and Eugenio Ragazzi. 2025. "Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control" Nutrients 17, no. 16: 2653. https://doi.org/10.3390/nu17162653
APA StyleSartore, G., Zagotto, G., & Ragazzi, E. (2025). Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control. Nutrients, 17(16), 2653. https://doi.org/10.3390/nu17162653