Associations of Increased Plant Protein Intake Ratio with Adherence of Low-Protein Diet, Acid-Base Status, and Body Composition in CKD Stage 3–5
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Dietary Intake and Nutrient Determination
2.3. Assessment of Anthropometric Data, Body Composition, and Handgrip Strength
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, C.P.; Cheng, T.Y.; Tsai, M.K.; Chang, Y.C.; Chan, H.T.; Tsai, S.P.; Chiang, P.H.; Hsu, C.C.; Sung, P.K.; Hsu, Y.H.; et al. All-cause mortality attributable to chronic kidney disease: A prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008, 371, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Marsh, K.; Zeuschner, C.; Saunders, A. Health implications of a vegetarian diet: A review. Am. J. Lifestyle Med. 2012, 6, 250–267. [Google Scholar] [CrossRef]
- Oussalah, A.; Levy, J.; Berthezène, C.; Alpers, D.H.; Guéant, J.-L. Health outcomes associated with vegetarian diets: An umbrella review of systematic reviews and meta-analyses. Clin. Nutr. 2020, 39, 3283–3307. [Google Scholar] [CrossRef]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef]
- Patel, K.P.; Luo, F.J.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 2012, 7, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Garneata, L.; Stancu, A.; Dragomir, D.; Stefan, G.; Mircescu, G. Ketoanalogue-Supplemented Vegetarian Very Low–Protein Diet and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 2164–2176. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Joshi, S.; Schlueter, R.; Cooke, J.; Brown-Tortorici, A.; Donnelly, M.; Schulman, S.; Lau, W.L.; Rhee, C.M.; Streja, E.; et al. Plant-Dominant Low-Protein Diet for Conservative Management of Chronic Kidney Disease. Nutrients 2020, 12, 1931. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.H.; Huang, H.Y.; Chen, K.J.; Wu, Y.R.; Chiu, J.P.; Li, Y.H.; Chiu, B.C.; Lin, C.L.; Lin, M.N. Relative validity and reproducibility of a quantitative FFQ for assessing nutrient intakes of vegetarians in Taiwan. Public Health Nutr. 2014, 17, 1459–1466. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 1994, 59, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Peng, C.H.; Hung, S.C.; Tarng, D.C. Body composition is associated with clinical outcomes in patients with non-dialysis-dependent chronic kidney disease. Kidney Int. 2018, 93, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Wang, C.H.; Tsai, J.P.; Chen, C.T.; Chen, Y.H.; Hung, S.C.; Hsu, B.G. A Comparison of SARC-F, Calf Circumference, and Their Combination for Sarcopenia Screening among Patients Undergoing Peritoneal Dialysis. Nutrients 2022, 14, 923. [Google Scholar] [CrossRef]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 1982, 307, 652–659. [Google Scholar]
- Anderson, S.; Brenner, B.M. The role of intraglomerular pressure in the initiation and progression of renal disease. J. hypertension. Suppl. Off. J. Int. Soc. Hypertens. 1986, 4, S236–S238. [Google Scholar]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Lakatua, J.D.; Ma, J.Z.; Louis, T.A. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am. J. Kidney Dis. 1998, 31, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Ahmadi, S.F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low-protein diet for conservative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials. J. Cachexia Sarcopenia Muscle 2018, 9, 235–245. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, M.; Lei, N.; Ouyang, W.W.; Chen, H.F.; Lao, B.N.; Xu, Y.M.; Tang, F.; Fu, L.Z.; Liu, X.S.; et al. An investigation of low-protein diets’ qualification rates and an analysis of their short-term effects for patients with CKD stages 3-5: A single-center retrospective cohort study from China. Int. Urol. Nephrol. 2023, 55, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Rizzetto, F.; Leal, V.O.; Bastos, L.S.; Fouque, D.; Mafra, D. Chronic kidney disease progression: A retrospective analysis of 3-year adherence to a low protein diet. Ren. Fail. 2017, 39, 357–362. [Google Scholar] [CrossRef]
- Chen, M.E.; Hwang, S.J.; Chen, H.C.; Hung, C.C.; Hung, H.C.; Liu, S.C.; Wu, T.J.; Huang, M.C. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes. Kaohsiung J. Med. Sci. 2017, 33, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.-K.; Tye, Y.-L.; Mahmood, N.M.N.; Daud, Z.A.M. Factors Associated with Adherence to Low Protein Diet Among Patients with Stage III-V of Chronic Kidney Disease in an Outpatient Clinic at Hospital Pakar Sultanah Fatimah. Malays. J. Med. Health Sci. 2020, 16, 131–139. [Google Scholar]
- Noce, A.; Marrone, G.; Wilson Jones, G.; Di Lauro, M.; Pietroboni Zaitseva, A.; Ramadori, L.; Celotto, R.; Mitterhofer, A.P.; Di Daniele, N. Nutritional Approaches for the Management of Metabolic Acidosis in Chronic Kidney Disease. Nutrients 2021, 13, 2534. [Google Scholar] [CrossRef]
- Copur, S.; Sag, A.; Rossignol, P.; Covic, A.; Kanbay, M. Complications of metabolic acidosis and alkalinizing therapy in chronic kidney disease patients: A clinician-directed organ-specific primer. Int. Urol. Nephrol. 2020, 52, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef]
- Scialla, J.J.; Appel, L.J.; Wolf, M.; Yang, W.; Zhang, X.; Sozio, S.M.; Miller, E.R., 3rd; Bazzano, L.A.; Cuevas, M.; Glenn, M.J.; et al. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: The Chronic Renal Insufficiency Cohort study. J. Ren. Nutr. 2012, 22, 379–388.e1. [Google Scholar] [CrossRef]
- Chen, Z.; Schoufour, J.D.; Rivadeneira, F.; Lamballais, S.; Ikram, M.A.; Franco, O.H.; Voortman, T. Plant-based Diet and Adiposity Over Time in a Middle-aged and Elderly Population: The Rotterdam Study. Epidemiology 2019, 30, 303–310. [Google Scholar] [CrossRef]
- Ritchie, S.A.; Connell, J.M.C. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 319–326. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between obesity and kidney disease: A systematic review and meta-analysis. Kidney Int. 2008, 73, 19–33. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Sahni, N.; Gupta, K.L.; Rana, S.V.; Prasad, R.; Bhalla, A.K. Intake of antioxidants and their status in chronic kidney disease patients. J. Ren. Nutr. 2012, 22, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.C.; Chen, M.E.; Hung, H.C.; Chen, H.C.; Chang, W.T.; Lee, C.H.; Wu, Y.Y.; Chiang, H.C.; Hwang, S.J. Inadequate energy and excess protein intakes may be associated with worsening renal function in chronic kidney disease. J. Ren. Nutr. 2008, 18, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.M.; McAlpine, R.; Kyle, E. Agreement between bicarbonate measured on arterial and venous blood gases. Emerg. Med. Australas. EMA 2004, 16, 407–409. [Google Scholar] [CrossRef]
Characteristics | Number of Patients (N = 377) |
---|---|
Basic demographics | |
Age (years) | 68.5 ± 12.1 |
Sex (female), n (%) | 159 (42.2) |
CKD stage 3, n (%) | 181 (48.0) |
CKD stage 4, n (%) | 123 (32.6) |
CKD stage 5, n (%) | 73 (19.4) |
Diseases, n (%) | |
DM | 227 (60.2) |
Hypertension | 293 (77.7) |
Hyperlipidemia | 283 (75.1) |
Basic measurement | |
Height (cm) | 160.6 ± 8.1 |
Weight (kg) | 67.5 ± 13.1 |
BMI (kg/m2) | 26.1 ± 4.3 |
BMI < 18.5 kg/m2, n (%) | 4 (1.1) |
Body composition a | |
LTI (kg/m2) | 14.8 ± 3.7 |
FTI (kg/m2) | 11.3 ± 5.0 |
Waist circumference (cm) | 90.4 ± 11.3 |
Hip circumference (cm) | 97.5 ± 8.2 |
Waist-to-hip ratio (%) | 92.5 ± 8.0 |
Waist-to-height ratio (%) | 56.3 ± 7.0 |
Handgrip strength a | |
Right hand (kg) | 24.2 ± 9.2 |
Left hand (kg) | 22.7 ± 9.0 |
Average (kg) | 23.5 ± 8.9 |
Laboratory data | |
Creatinine (mg/dL) | 2.2 (1.6–3.2) |
eGFR (mL/min/1.73 m2) | 28.9 (17.8–40.4) |
Albumin (g/dL) | 4.1 (3.9–4.3) |
Albumin < 3.8 g/dL, n (%) | 65 (17.2) |
UPCR (g/g) | 0.59 (0.22–1.84) |
HCO3 (mmol/L) | 23.1 ± 3.9 |
Glucose (mg/dL) | 105 (94–130) |
Total cholesterol (mg/dL) | 146 (125–174) |
Triglyceride (mg/dL) | 121 (91–169) |
Potassium (mmol/L) | 4.4 (4.0–4.7) |
Total calcium (mg/dL) | 9.2 (8.9–9.5) |
Phosphorus (mg/dL) | 3.6 (3.3–4.2) |
Medications, n (%) | |
Statins | 167(44.3) |
Diuretics | 111 (29.4) |
Insulin | 64 (17.0) |
Sodium bicarbonate | 50 (13.3) |
Potassium binders | 30 (8.0) |
Phosphate binders | 8 (2.1) |
Characteristics | Number of Patients (N = 377) |
---|---|
Dietary pattern, n (%) | |
Omnivorous | 356 (94.4) |
Lacto-ovo vegetarian | 14 (3.7) |
Vegan | 7 (1.9) |
Nutrients | |
Carbohydrate (g/day) | 156 (112–217) |
Fat (g/day) | 39 (25–59) |
Energy intake (kcal/day) | 1272 ± 590 |
Dietary fiber (g/day) | 11.1 (7.8–15.8) |
Total protein intake (g/day) | 45 ± 22 |
DPI < 0.8 g/kg/day, n (%) | 262 (69.5) |
Protein sources | |
Animal protein (g/day) | 17.8 (10.0–27.3) |
Plant protein (g/day) | 21.7 (15.2–31.3) |
Plant protein ratio (%) | 56 ± 18 |
Mineral intake (mg/day) | |
Potassium | 1425 (994–1828) |
Calcium | 288 (185–381) |
Magnesium | 137 (97–190) |
Phosphorus | 537 (394–767) |
PRAL (mEq/day) | 5.6 (−0.2–12.3) |
Protein Intake Pattern | Univariate | p Value | |
---|---|---|---|
OR | 95% CI | ||
Per 10% increase in plant protein intake | 1.20 | 1.06–1.37 | 0.005 * |
Plant protein intake proportion >50% | 1.59 | 1.02–2.47 | 0.041 * |
Vegetarian diet | 1.93 | 0.63–5.86 | 0.248 |
Variables | Plant Protein Intake (Per 10% Increase) | ||
---|---|---|---|
β | 95% CI | p | |
PRAL (mEq/day) | −1.10 | −1.63, −0.57 | <0.001 * |
HCO3 (mmol/L) | 0.24 | 0.02, 0.45 | 0.031 * |
Albumin (g/dL) | 0.01 | −0.01, 0.03 | 0.415 |
Glucose (mg/dL) | −0.83 | −3.38, 1.71 | 0.521 |
Total cholesterol (mg/dL) | 0.06 | −2.31, 2.43 | 0.962 |
Triglyceride (mg/dL) | −3.53 | −10.06, 3.00 | 0.289 |
Potassium (mmol/L) | −0.02 | −0.05, 0.01 | 0.195 |
Total calcium (mg/dL) | −0.01 | −0.03, 0.02 | 0.731 |
Phosphorus (mg/dL) | −0.02 | −0.06, 0.02 | 0.328 |
Ca × P (mg2/dL2) | −0.20 | −0.61, 0.21 | 0.328 |
Variables | Plant Protein Intake (Per 10% Increase) | ||
---|---|---|---|
β | 95% CI | p Value | |
BMI (kg/m2) | −0.82 | −1.05, −0.59 | <0.001 * |
LTI (kg/m2) | −0.03 | −0.29, 0.23 | 0.819 |
FTI (kg/m2) | −0.71 | −1.01, −0.40 | <0.001 * |
Waist circumference (cm) | −2.11 | −2.80, −1.41 | <0.001 * |
Hip circumference (cm) | −1.25 | −1.75, −0.75 | <0.001 * |
Waist-to-hip ratio (%) | −0.91 | −1.44, −0.38 | 0.001 * |
Waist-to-height ratio (%) | −1.25 | −1.71, −0.80 | <0.001 * |
Right handgrip strength (kg) | −0.23 | −0.72, 0.27 | 0.375 |
Left handgrip strength (kg) | −0.04 | −0.53, 0.45 | 0.879 |
Average handgrip strength (kg) | −0.15 | −0.62, 0.33 | 0.546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, B.-G.; Tong, L.-X.; Liou, H.-H.; Wang, C.-H.; Lin, Y.-L. Associations of Increased Plant Protein Intake Ratio with Adherence of Low-Protein Diet, Acid-Base Status, and Body Composition in CKD Stage 3–5. Nutrients 2025, 17, 2649. https://doi.org/10.3390/nu17162649
Hsu B-G, Tong L-X, Liou H-H, Wang C-H, Lin Y-L. Associations of Increased Plant Protein Intake Ratio with Adherence of Low-Protein Diet, Acid-Base Status, and Body Composition in CKD Stage 3–5. Nutrients. 2025; 17(16):2649. https://doi.org/10.3390/nu17162649
Chicago/Turabian StyleHsu, Bang-Gee, Li-Xia Tong, Hung-Hsiang Liou, Chih-Hsien Wang, and Yu-Li Lin. 2025. "Associations of Increased Plant Protein Intake Ratio with Adherence of Low-Protein Diet, Acid-Base Status, and Body Composition in CKD Stage 3–5" Nutrients 17, no. 16: 2649. https://doi.org/10.3390/nu17162649
APA StyleHsu, B.-G., Tong, L.-X., Liou, H.-H., Wang, C.-H., & Lin, Y.-L. (2025). Associations of Increased Plant Protein Intake Ratio with Adherence of Low-Protein Diet, Acid-Base Status, and Body Composition in CKD Stage 3–5. Nutrients, 17(16), 2649. https://doi.org/10.3390/nu17162649