Gender-Specific Interactions Between Adiposity, Alcohol Consumption, and Biological Stress Biomarkers Among College Students in the United States
Abstract
1. Introduction
2. Methods
2.1. Study Sample and Procedures
2.2. Diet History Questionnaire
2.3. Body Composition Assessment
2.4. Alcohol Intake Determination
2.5. Salivary Stress Biomarker Determination
2.5.1. Sample Preparation
2.5.2. sAA Assay
2.5.3. sCort Assay
2.6. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the Participants
3.2. Salivary Stress Marker Characteristics
3.3. Interactive Effects of Alcohol Consumption and Participant Adiposity on sAA Activity
3.4. Interactive Effects of Alcohol Consumption and Participant Adiposity on sCort Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Mental Health Report: Transforming Mental Health for All; World Health Organization: Geneva, Switzerland, 2022; p. 296. [Google Scholar]
- Brandt, L.; Liu, S.; Heim, C.; Heinz, A. The Effects of Social Isolation Stress and Discrimination on Mental Health. Transl. Psychiatry 2022, 12, 398. [Google Scholar] [CrossRef]
- Dakanalis, A.; Voulgaridou, G.; Alexatou, O.; Papadopoulou, S.K.; Jacovides, C.; Pritsa, A.; Chrysafi, M.; Papacosta, E.; Kapetanou, M.G.; Tsourouflis, G.; et al. Overweight and Obesity Is Associated with Higher Risk of Perceived Stress and Poor Sleep Quality in Young Adults. Medicina 2024, 60, 983. [Google Scholar] [CrossRef] [PubMed]
- Turney, K.; Kissane, R.; Edin, K. After Moving to Opportunity: How Moving to a Low-Poverty Neighborhood Improves Mental Health among African American Women. Soc. Ment. Health 2013, 3, 1–21. [Google Scholar] [CrossRef]
- Pearlin, L.I.; Schieman, S.; Fazio, E.M.; Meersman, S.C. Stress, Health, and the Life Course: Some Conceptual Perspectives. J. Health Soc. Behav. 2005, 46, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Arday, J. Understanding Mental Health: What Are the Issues for Black and Ethnic Minority Students at University? Soc. Sci. 2018, 7, 196. [Google Scholar] [CrossRef]
- Abdel Wahed, W.Y.; Hassan, S.K. Prevalence and Associated Factors of Stress, Anxiety and Depression among Medical Fayoum University Students. Alex. J. Med. 2017, 53, 77–84. [Google Scholar] [CrossRef]
- Fusco, S.D.F.B.; Amancio, S.C.P.; Pancieri, A.P.; Alves, M.V.M.F.F.; Spiri, W.C.; Braga, E.M. Ansiedade, Qualidade Do Sono e Compulsão Alimentar Em Adultos Com Sobrepeso Ou Obesidade. Rev. Esc. Enferm. USP 2020, 54, e03656. [Google Scholar] [CrossRef]
- Torres, S.J.; Nowson, C.A. Relationship between Stress, Eating Behavior, and Obesity. Nutrition 2007, 23, 887–894. [Google Scholar] [CrossRef]
- Ellison-Barnes, A.; Johnson, S.; Gudzune, K. Trends in Obesity Prevalence Among Adults Aged 18 Through 25 Years, 1976–2018. JAMA 2021, 326, 2073. [Google Scholar] [CrossRef]
- Di Angelantonio, E.; Bhupathiraju, S.N.; Wormser, D.; Gao, P.; Kaptoge, S.; De Gonzalez, A.B.; Cairns, B.J.; Huxley, R.; Jackson, C.L.; Joshy, G.; et al. Body-Mass Index and All-Cause Mortality: Individual-Participant-Data Meta-Analysis of 239 Prospective Studies in Four Continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Adult Obesity Prevalence Maps; U.S. Dept of Health and Human Services: Washington, DC, USA, 2023.
- Ndumele, C.E.; Matsushita, K.; Lazo, M.; Bello, N.; Blumenthal, R.S.; Gerstenblith, G.; Nambi, V.; Ballantyne, C.M.; Solomon, S.D.; Selvin, E.; et al. Obesity and Subtypes of Incident Cardiovascular Disease. J. Am. Heart Assoc. 2016, 5, e003921. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Nagi, M.A.; Ahmed, H.; Rezq, M.A.A.; Sangroongruangsri, S.; Chaikledkaew, U.; Almalki, Z.; Thavorncharoensap, M. Economic Costs of Obesity: A Systematic Review. Int. J. Obes. 2024, 48, 33–43. [Google Scholar] [CrossRef]
- Llewellyn, A.; Simmonds, M.; Owen, C.G.; Woolacott, N. Childhood Obesity as a Predictor of Morbidity in Adulthood: A Systematic Review and Meta-analysis. Obes. Rev. 2016, 17, 56–67. [Google Scholar] [CrossRef]
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Atlas 2023; World Obesity Federation: London, UK, 2023. [Google Scholar]
- Kerkadi, A.; Sadig, A.H.; Bawadi, H.; Al Thani, A.A.M.; Al Chetachi, W.; Akram, H.; Al-Hazzaa, H.M.; Musaiger, A.O. The Relationship between Lifestyle Factors and Obesity Indices among Adolescents in Qatar. Int. J. Environ. Res. Public Health 2019, 16, 4428. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Kwok, A.; Dordevic, A.L.; Paton, G.; Page, M.J.; Truby, H. Effect of Alcohol Consumption on Food Energy Intake: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2019, 121, 481–495. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, E.L.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Alcohol and CV Health: Jekyll and Hyde J-Curves. Prog. Cardiovasc. Dis. 2018, 61, 68–75. [Google Scholar] [CrossRef]
- Visontay, R.; Sunderland, M.; Slade, T.; Wilson, J.; Mewton, L. Are There Non-Linear Relationships between Alcohol Consumption and Long-Term Health? Protocol for a Systematic Review of Observational Studies Employing Approaches to Improve Causal Inference. BMJ Open 2021, 11, e043985. [Google Scholar] [CrossRef] [PubMed]
- Saitz, R.; Miller, S.C.; Fiellin, D.A.; Rosenthal, R.N. Recommended Use of Terminology in Addiction Medicine. J. Addict. Med. 2021, 15, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.L.; Kaciroti, N.; Sturza, J.; Retzloff, L.; Rosenblum, K.; Vazquez, D.M.; Lumeng, J.C. Associations between Stress Biology Indicators and Overweight across Toddlerhood. Psychoneuroendocrinology 2017, 79, 98–106. [Google Scholar] [CrossRef]
- Pasquali, R.; Vicennati, V.; Agostini, A.; Pagotto, U. Glucocorticoids, Stress and Obesity. Expert Rev. Endocrinol. Metab. 2010, 5, 425–434. [Google Scholar] [CrossRef]
- Rebuffé-Scrive, M.; Walsh, U.A.; McEwen, B.; Rodin, J. Effect of Chronic Stress and Exogenous Glucocorticoids on Regional Fat Distribution and Metabolism. Physiol. Behav. 1992, 52, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Soares-Miranda, L.; Alves, A.J.; Vale, S.; Aires, L.; Santos, R.; Oliveira, J.; Mota, J. Central Fat Influences Cardiac Autonomic Function in Obese and Overweight Girls. Pediatr. Cardiol. 2011, 32, 924–928. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N.; Schlotz, W.; Ehlert, U.; Kirschbaum, C. Determinants of the Diurnal Course of Salivary Alpha-Amylase. Psychoneuroendocrinology 2007, 32, 392–401. [Google Scholar] [CrossRef]
- Peyrot Des Gachons, C.; Breslin, P.A.S. Salivary Amylase: Digestion and Metabolic Syndrome. Curr. Diab. Rep. 2016, 16, 102. [Google Scholar] [CrossRef]
- Marquina, C.; Mousa, A.; Belski, R.; Banaharis, H.; Naderpoor, N.; De Courten, B. Increased Inflammation and Cardiometabolic Risk in Individuals with Low AMY1 Copy Numbers. J. Clin. Med. 2019, 8, 382. [Google Scholar] [CrossRef]
- Maruyama, Y.; Kawano, A.; Okamoto, S.; Ando, T.; Ishitobi, Y.; Tanaka, Y.; Inoue, A.; Imanaga, J.; Kanehisa, M.; Higuma, H.; et al. Differences in Salivary Alpha-Amylase and Cortisol Responsiveness Following Exposure to Electrical Stimulation versus the Trier Social Stress Tests. PLoS ONE 2012, 7, e39375. [Google Scholar] [CrossRef] [PubMed]
- Vineetha, R.; Pai, K.M.; Vengal, M.; Gopalakrishna, K.; Narayanakurup, D. Usefulness of Salivary Alpha Amylase as a Biomarker of Chronic Stress and Stress Related Oral Mucosal Changes—A Pilot Study. J. Clin. Exp. Dent. 2014, 6, e132–e137. [Google Scholar] [CrossRef] [PubMed]
- Shushari, M.K.; Wei, T.; Tapanee, P.; Tidwell, D.; Tolar-Peterson, T. The Influence of Taste Genes on Body Fat and Alcohol Consumption. Nutrients 2024, 16, 1756. [Google Scholar] [CrossRef]
- Tapanee, P.; Reeder, N.; Christensen, R.; Tolar-Peterson, T. Sugar, Non-Nutritive Sweetener Intake and Obesity Risk in College Students. J. Am. Coll. Health 2023, 71, 2093–2098. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Campbell, C.E.; Maisto, S.A. Validity of the AUDIT-C Screen for at-Risk Drinking among Students Utilizing University Primary Care. J. Am. Coll. Health 2018, 66, 774–782. [Google Scholar] [CrossRef]
- Gazdzinski, S.; Durazzo, T.C. Alcohol Use and Abuse: Effects on Body Weight and Body Composition. In Alcohol, Nutrition, and Health Consequences; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 89–96. ISBN 978-1-62703-046-5. [Google Scholar]
- Pinho, S.; Padez, C.; Manco, L. High AMY1 Copy Number Protects against Obesity in Portuguese Young Adults. Ann. Hum. Biol. 2018, 45, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Al-Akl, N.S.; Thompson, R.I.; Arredouani, A. Reduced Odds of Diabetes Associated with High Plasma Salivary α-Amylase Activity in Qatari Women: A Cross-Sectional Study. Sci. Rep. 2021, 11, 11495. [Google Scholar] [CrossRef]
- Al Akl, N.S.; Khalifa, O.; Habibullah, M.; Arredouani, A. Salivary α-Amylase Activity Is Associated with Cardiometabolic and Inflammatory Biomarkers in Overweight/Obese, Non-Diabetic Qatari Women. Front. Endocrinol. 2024, 15, 1348853. [Google Scholar] [CrossRef]
- Nakajima, K.; Nemoto, T.; Muneyuki, T.; Kakei, M.; Fuchigami, H.; Munakata, H. Low Serum Amylase in Association with Metabolic Syndrome and Diabetes: A Community-Based Study. Cardiovasc. Diabetol. 2011, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Finelli, C. What about Non-Alcoholic Fatty Liver Disease as a New Criterion to Define Metabolic Syndrome? World J. Gastroenterol. 2013, 19, 3375–3384. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.; Dhar, S.; Mitchell, L.M.; Fu, B.; Tyson, J.; Shwan, N.A.A.; Yang, F.; Thomas, M.G.; Armour, J.A.L. Obesity, Starch Digestion and Amylase: Association between Copy Number Variants at Human Salivary (AMY1) and Pancreatic (AMY2) Amylase Genes. Hum. Mol. Genet. 2015, 24, 3472–3480. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Nam, Y.-S.; Yun, J.M.; Park, J.H.; Cho, B.L.; Son, H.-Y.; Kim, J.I.; Yun, J.W. Association between Salivary Amylase (AMY1) Gene Copy Numbers and Insulin Resistance in Asymptomatic Korean Men. Diabet. Med. 2015, 32, 1588–1595. [Google Scholar] [CrossRef]
- Falchi, M.; El-Sayed Moustafa, J.S.; Takousis, P.; Pesce, F.; Bonnefond, A.; Andersson-Assarsson, J.C.; Sudmant, P.H.; Dorajoo, R.; Al-Shafai, M.N.; Bottolo, L.; et al. Low Copy Number of the Salivary Amylase Gene Predisposes to Obesity. Nat. Genet. 2014, 46, 492–497. [Google Scholar] [CrossRef]
- Kirk, E.P.; Klein, S. Pathogenesis and Pathophysiology of the Cardiometabolic Syndrome. J. Clin. Hypertens. 2009, 11, 761–765. [Google Scholar] [CrossRef]
- Golzarand, M.; Salari-Moghaddam, A.; Mirmiran, P. Association between Alcohol Intake and Overweight and Obesity: A Systematic Review and Dose-Response Meta-Analysis of 127 Observational Studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 8078–8098. [Google Scholar] [CrossRef]
- Patton, G.C.; Olsson, C.A.; Skirbekk, V.; Saffery, R.; Wlodek, M.E.; Azzopardi, P.S.; Stonawski, M.; Rasmussen, B.; Spry, E.; Francis, K.; et al. Adolescence and the next Generation. Nature 2018, 554, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Granger, D.A.; Kivlighan, K.T.; El-SHEIKH, M.; Gordis, E.B.; Stroud, L.R. Salivary α-Amylase in Biobehavioral Research: Recent Developments and Applications. Ann. N. Y. Acad. Sci. 2007, 1098, 122–144. [Google Scholar] [CrossRef] [PubMed]
- Chatterton, R.T.; Vogelsong, K.M.; Lu, Y.; Ellman, A.B.; Hudgens, G.A. Salivary A-amylase as a Measure of Endogenous Adrenergic Activity. Clin. Physiol. 1996, 16, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Nater, U.M.; Rohleder, N. Salivary Alpha-Amylase as a Non-Invasive Biomarker for the Sympathetic Nervous System: Current State of Research. Psychoneuroendocrinology 2009, 34, 486–496. [Google Scholar] [CrossRef]
- Garbellotto, G.I.; Reis, F.J.; Feoli, A.M.P.; Piovesan, C.H.; Gustavo, A.d.S.; Oliveira, M.d.S.; Macagnan, F.E.; Ferreira, C.A.S.; Bauer, M.E.; Wietzycoski, C.R. Salivary Cortisol and Metabolic Syndrome Component’s Association. Arq. Bras. Cir. Dig. 2018, 31, e1351. [Google Scholar] [CrossRef]
- Sofer, Y.; Osher, E.; Abu Ahmad, W.; Greenman, Y.; Moshe, Y.; Shaklai, S.; Yaron, M.; Serebro, M.; Tordjman, K.; Stern, N. Cortisol Secretion in Obesity Revisited: Lower Basal Serum and Salivary Cortisol with Diminished Cortisol Response to the Low Dose ACTH Challenge. Obes. Facts 2025, 18, 178–186. [Google Scholar] [CrossRef]
- Nater, U.M.; La Marca, R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M.M.; Ehlert, U. Stress-Induced Changes in Human Salivary Alpha-Amylase Activity-Associations with Adrenergic Activity. Psychoneuroendocrinology 2006, 31, 49–58. [Google Scholar] [CrossRef]
- Anthenelli, R.; Grandison, L. Effects of Stress on Alcohol Consumption. Alcohol. Res. 2012, 34, 381–382. [Google Scholar]
- Becker, H.C. Influence of Stress Associated with Chronic Alcohol Exposure on Drinking. Neuropharmacology 2017, 122, 115–126. [Google Scholar] [CrossRef]
- Nakajima, K.; Muneyuki, T.; Munakata, H.; Kakei, M. Revisiting the Cardiometabolic Relevance of Serum Amylase. BMC Res. Notes 2011, 4, 419. [Google Scholar] [CrossRef]
- Enberg, N.; Alho, H.; Loimaranta, V.; Lenander-Lumikari, M. Saliva Flow Rate, Amylase Activity, and Protein and Electrolyte Concentrations in Saliva after Acute Alcohol Consumption. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2001, 92, 292–298. [Google Scholar] [CrossRef]
- Pellegrini, J.; Sodoma, A.M.; Munshi, R.; Russe-Russe, J.R.; Arias, J.; Farraj, K.L.; Pellegrini, R.G.; Singh, J. Impact of Obesity on Outcomes Associated with Acute Alcoholic Pancreatitis. Cureus 2024, 16, e51653. [Google Scholar] [CrossRef] [PubMed]
- Schrieks, I.C.; Heil, A.L.J.; Hendriks, H.F.J.; Mukamal, K.J.; Beulens, J.W.J. The Effect of Alcohol Consumption on Insulin Sensitivity and Glycemic Status: A Systematic Review and Meta-Analysis of Intervention Studies. Diabetes Care 2015, 38, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.L.; Costanzo, S.; Cricelli, C.; et al. Moderate Alcohol Use and Health: A Consensus Document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, S.; Kirschbaum, C.; Fydrich, T.; Ströhle, A. Is Salivary Alpha-Amylase an Indicator of Autonomic Nervous System Dysregulations in Mental Disorders?—A Review of Preliminary Findings and the Interactions with Cortisol. Psychoneuroendocrinology 2013, 38, 729–743. [Google Scholar] [CrossRef]
- Laurent, H.K.; Powers, S.I.; Granger, D.A. Refining the Multisystem View of the Stress Response: Coordination among Cortisol, Alpha-Amylase, and Subjective Stress in Response to Relationship Conflict. Physiol. Behav. 2013, 119, 52–60. [Google Scholar] [CrossRef]
- Stephens, M.A.C.; Wand, G. Stress and the HPA Axis: Role of Glucocorticoids in Alcohol Dependence. Alcohol. Res. 2012, 34, 468–483. [Google Scholar]
- Barr, C.S.; Dvoskin, R.L.; Gupte, M.; Sommer, W.; Sun, H.; Schwandt, M.L.; Lindell, S.G.; Kasckow, J.W.; Suomi, S.J.; Goldman, D.; et al. Functional CRH Variation Increases Stress-Induced Alcohol Consumption in Primates. Proc. Natl. Acad. Sci. USA 2009, 106, 14593–14598. [Google Scholar] [CrossRef]
- Richardson, H.N.; Lee, S.Y.; O’Dell, L.E.; Koob, G.F.; Rivier, C.L. Alcohol Self-administration Acutely Stimulates the Hypothalamic-pituitary-adrenal Axis, but Alcohol Dependence Leads to a Dampened Neuroendocrine State. Eur. J. Neurosci. 2008, 28, 1641–1653. [Google Scholar] [CrossRef]
- Chawla, A.; Nguyen, K.D.; Goh, Y.P.S. Macrophage-Mediated Inflammation in Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the Stress Response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G. Adipose Tissue in the Regulation of Inflammation. Immunol. Endocr. Metab. Agents Med. Chem. 2007, 7, 129–136. [Google Scholar] [CrossRef]
- Brydon, L. Adiposity, Leptin and Stress Reactivity in Humans. Biol. Psychol. 2011, 86, 114–120. [Google Scholar] [CrossRef]
- Kidambi, S.; Kotchen, J.M.; Grim, C.E.; Raff, H.; Mao, J.; Singh, R.J.; Kotchen, T.A. Association of Adrenal Steroids with Hypertension and the Metabolic Syndrome in Blacks. Hypertension 2007, 49, 704–711. [Google Scholar] [CrossRef]
- Urhoghide, E.; Onyechi, N.P.; Okobi, O.E.; Odoma, V.A.; Okunromade, O.; Moevi, A.A.; Louise-Oluwasanmi, O.; Ojo, S.; Harry, N.M.; Awoyemi, E.; et al. A Cross-Sectional Study of the Trends in Cardiovascular Mortality Among African Americans with Hypertension. Cureus 2023, 15, e40437. [Google Scholar] [CrossRef]
- Mambo, A.; Yang, Y.; Mahulu, E.; Zihua, Z. Investigating the Interplay of Smoking, Cardiovascular Risk Factors, and Overall Cardiovascular Disease Risk: NHANES Analysis 2011–2018. BMC Cardiovasc. Disord. 2024, 24, 193. [Google Scholar] [CrossRef]
Males and Females Combined | Females Only | Males Only | |
---|---|---|---|
n (%) | n (%) | n (%) | |
Variables | 189 | 155 (82.01) | 34 (17.9) |
Age + | 20 ± 2.6 | 20 ± 2.7 | 21 ± 2.0 |
Ethnic Group | |||
Caucasian | 122 (64.6) | 105 (67.74) | 17 (50) |
African American | 62 (32.8) | 49 (31.61) | 13 (38.24) |
Others | 5 (2.7) | 1 (0.65) | 4 (11.76) |
BMI | |||
Normal | 102 (53.97) | 90 (58.06) | 12 (35.29) |
Overweight and Obese | 72 (38.1) | 50 (32.26) | 22 (64.71) |
Underweight | 15 (7.9) | 15 (79.68) | |
Body Fat % | |||
Healthy | 101 (53.44) | 85 (54.84) | 16 (47.06) |
Overfat/obese | 56 (29.63) | 40 (25.81) | 16 (47.06) |
Underfat | 32 (16.93) | 30 (19.35) | 2 (5.88) |
Variables | Total + |
---|---|
Alcohol consumption (g/d) | 9 ± 16.2 |
Total fat (g/d) | 71 ± 65.1 |
Total protein (g/d) | 71 ± 70.5 |
Total sugars (g/d) | 127.1 ± 111.4 |
Dietary fiber (g/d) | 16.6 ± 13.6 |
Males and Females Combined | Females Only | Males Only | |||||||
---|---|---|---|---|---|---|---|---|---|
Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | |
Variables | n = 189 | n = 189 | n = 189 | n = 155 | n = 155 | n = 155 | n = 34 | n = 34 | n = 34 |
Age | 1.301 | 1.249 | 1.641 | 0.798 | 0.808 | 1.386 | −0.201 | 0.053 | 0.885 |
Ethnic Group | |||||||||
African American | 8.641 | 11.551 | 8.575 | 12.090 | 16.198 | 12.331 | −28.805 | −23.469 | −23.422 |
Others | −16.114 | −14.260 | −12.234 | −118.193 | −95.375 | −97.061 | −10.737 | −1.092 | −0.804 |
Diet | |||||||||
Total Fat (g/d) | −0.157 | −0.086 | −0.006 | −0.302 | −0.235 | −0.218 | 0.277 | 0.349 | 0.376 |
Total Protein (g/d) | 0.038 | −0.043 | −0.105 | 0.220 | 0.248 | 0.216 | −0.561 | −0.641 | −0.652 |
Total Fiber (g/d) | 0.269 | −0.043 | −0.109 | 0.022 | −0.767 | −1.263 | 0.278 | 0.450 | 0.567 |
Total Sugar (g/d) | 0.111 | 0.143 * | −0.162 * | 0.150 | 0.178 * | 0.220 * | 0.1502 | 0.123 | 0.115 |
Alcohol Intake (g/d) | 0.564 | 0.003 | 0.557 | 0.021 | 0.530 | −0.583 | |||
BMI | |||||||||
Overweight and Obese | −24.039 * | −24.772 * | −32.846 * | −32.279 * | 10.884 | 11.520 | |||
Underweight | −30.342 | −44.244 | −30.725 | −44.977 | |||||
BMI * Alcohol Intake | |||||||||
Overweight and Obese | 1.540 * | 2.264 * | 1.317 | ||||||
Underweight | −2.327 | −2.257 | |||||||
Pseudo R2 | 0.037 | 0.078 | 0.109 | 0.058 | 0.113 | 0.159 | 0.091 | 0.113 | 0.124 |
Δ Pseudo R2 | 0.04 | 0.03 | 0.05 | 0.05 | 0.02 | 0.01 |
Males and Females | Females Only | Males Only | |||||||
---|---|---|---|---|---|---|---|---|---|
Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | |
Variables | n = 189 | n = 189 | n = 189 | n = 155 | n = 155 | n = 155 | n = 34 | n = 34 | n = 34 |
Age | 1.301 | 1.499 | 1.781 | 0.798 | 0.971 | 1.229 | −0.201 | 0.554 | −2.405 |
Ethnic Group | |||||||||
African American | 8.641 | 15.668 | 14.848 | 12.090 | 20.933 | 19.039 | −28.805 | −29.978 | −45.011 |
Others | −16.114 | −15.038 | −14.440 | −118.193 | −87.783 | −86.710 | −10.737 | 19.191 | 21.181 |
Diet | |||||||||
Total Fat (g/d) | −0.157 | −0.143 | −0.090 | −0.302 | −0.304 | −0.301 | 0.277 | 0.340 | 0.228 |
Total Protein (g/d) | 0.038 | 0.047 | −0.022 | 0.220 | 0.277 | 0.251 | −0.561 | −0.680 | −0.608 |
Total Fiber (g/d) | 0.269 | −0.066 | −0.178 | 0.022 | −0.570 | −1.051 | 0.278 | 0.616 | 0.713 |
Total Sugar (g/d) | 0.112 | 0.137 * | 0.152 * | 0.150 | 0.173 * | 0.208 * | 0.151 | 0.136 | 0.153 |
Alcohol Intake (g/d) | 0.648 | 0.201 | 0.681 | −0.005 | 0.632 | 2.218 | |||
Body Fat | |||||||||
Overfat/Obese | −28.268 * | −29.559 * | −39.642 * | −40.719 * | 35.950 | 45.652 | |||
Underfat | −10.845 | −11.382 | −19.509 | −19.704 | 97.521 | −1096.895 | |||
Body Fat * Alcohol Intake | |||||||||
Overfat/Obese | 1.141 | 2.200 * | −2.330 | ||||||
Underfat | 0.078 | 0.717 | −139.900 | ||||||
Pseudo R2 | 0.037 | 0.075 | 0.088 | 0.058 | 0.117 | 0.153 | 0.091 | 0.220 | 0.295 |
Δ Pseudo R2 | 0.04 | 0.01 | 0.06 | 0.04 | 0.13 | 0.08 |
Males and Females | Females Only | Males Only | |||||||
---|---|---|---|---|---|---|---|---|---|
Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | |
Variables | n = 189 | n = 189 | n = 189 | n = 155 | n = 155 | n = 155 | n = 34 | n = 34 | n = 34 |
Age | −0.001 | −0.000 | −0.002 | −0.001 | −0.001 | −0.002 | 0.012 | 0.014 | 0.010 |
Ethnicity | |||||||||
African American | −0.003 | 0.000 | 0.008 | −0.032 | −0.032 | −0.024 | 0.198 * | 0.223 * | 0.223 * |
Others | 0.056 | 0.057 | 0.054 | 0.149 | 0.147 | 0.151 | 0.107 | 0.059 | 0.058 |
Diet | |||||||||
Total Fat (g/d) | 0.0002 | 0.000 | 0.000 | −0.000 | −0.000 | −0.000 | 0.001 | 0.002 | 0.002 |
Total Protein (g/d) | −0.000 | −0.000 | 0.000 | 0.001 | 0.001 | 0.001 | −0.000 | −0.001 | −0.001 |
Total Fiber (g/d) | −0.001 | −0.002 | −0.001 | −0.001 | −0.001 | −0.001 | −0.000 | 0.001 | −0.000 |
Total Sugar (g/d) | −0.000 | −0.000 | −0.000 | −0.000 | −0.000 | −0.000 | −0.001 | −0.000 | −0.000 |
Alcohol Intake (g/d) | 0.000 | 0.001 | 0.000 | 0.001 | 0.003 | 0.009 | |||
BMI | |||||||||
Overweight and Obese | −0.025 | −0.023 | 0.002 | 0.001 | −0.186 * | −0.190 * | |||
Underweight | −0.007 | 0.052 | 0.001 | 0.058 | |||||
BMI * Alcohol Intake | |||||||||
Overweight and Obese | −0.003 | −0.003 | −0.007 | ||||||
Underweight | 0.012 | 0.012 | |||||||
Pseudo R2 | 0.017 | 0.020 | 0.056 | 0.029 | 0.029 | 0.069 | 0.219 | 0.389 | 0.430 |
Δ Pseudo R2 | 0.00 | 0.04 | 0.00 | 0.04 | 0.17 | 0.04 |
Males and Females | Females Only | Males Only | |||||||
---|---|---|---|---|---|---|---|---|---|
Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | Model-1 | Model-2 | Model-3 | |
Variables | n = 189 | n = 189 | n = 189 | n = 155 | n = 155 | n = 155 | n = 34 | n = 34 | n = 34 |
Age | −0.001 | −0.001 | −0.001 | −0.001 | −0.002 | −0.002 | 0.011 | 0.021 | 0.015 |
Ethnicity | |||||||||
African American | −0.003 | 0.001 | −0.000 | −0.032 | −0.034 | −0.034 | 0.198 * | 0.214 * | 0.151 |
Others | 0.056 | 0.064 | 0.064 | 0.149 | 0.139 | 0.140 | 0.107 | 0.159 | 0.149 |
Diet | |||||||||
Total Fat (g/d) | 0.000 | 0.000 | 0.000 | −0.000 | −0.000 | −0.000 | 0.001 | 0.001 | 0.001 |
Total Protein (g/d) | −0.000 | 0.000 | −0.000 | 0.001 | 0.000 | 0.000 | −0.000 | −0.000 | −0.001 |
Total Fiber (g/d) | −0.001 | 0.001 | −0.001 | −0.001 | −0.001 | −0.001 | 0.000 | −0.001 | −0.001 |
Total Sugar (g/d) | −0.000 | 0.000 | −0.000 | −0.000 | −0.000 | −0.000 | −0.001 | −0.000 | −0.000 |
Alcohol Intake (g/d) | 0.000 | 0.001 | 0.000 | 0.000 | 0.003 | 0.005 | |||
Body Fat | |||||||||
Overfat/Obese | 0.005 | 0.005 | 0.014 | 0.014 | −0.037 | −0.016 | |||
Underfat | 0.039 | 0.036 | 0.012 | 0.011 | 0.354 * | −5.696 | |||
Body fat * Alcohol Intake | |||||||||
Overfat/Obese | −0.001 | −0.000 | −0.003 | ||||||
Underfat | −0.002 | −0.001 | −0.701 | ||||||
Pseudo R2 | 0.017 | 0.023 | 0.027 | 0.029 | 0.031 | 0.031 | 0.219 | 0.418 | 0.507 |
Δ Pseudo R2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apalowo, O.E.; O’Dwyer, M.; Nsubuga, E.J.; Pylate, L.; Alardawi, A.M.; Reeder, N.; Kiyimba, F.; Tolar-Peterson, T.; Schilling, W.; Komakech, J.J. Gender-Specific Interactions Between Adiposity, Alcohol Consumption, and Biological Stress Biomarkers Among College Students in the United States. Nutrients 2025, 17, 2640. https://doi.org/10.3390/nu17162640
Apalowo OE, O’Dwyer M, Nsubuga EJ, Pylate L, Alardawi AM, Reeder N, Kiyimba F, Tolar-Peterson T, Schilling W, Komakech JJ. Gender-Specific Interactions Between Adiposity, Alcohol Consumption, and Biological Stress Biomarkers Among College Students in the United States. Nutrients. 2025; 17(16):2640. https://doi.org/10.3390/nu17162640
Chicago/Turabian StyleApalowo, Oladayo E., Meghan O’Dwyer, Edirisa J. Nsubuga, Leah Pylate, Abeer M. Alardawi, Nicole Reeder, Frank Kiyimba, Terezie Tolar-Peterson, Wes Schilling, and Joel J. Komakech. 2025. "Gender-Specific Interactions Between Adiposity, Alcohol Consumption, and Biological Stress Biomarkers Among College Students in the United States" Nutrients 17, no. 16: 2640. https://doi.org/10.3390/nu17162640
APA StyleApalowo, O. E., O’Dwyer, M., Nsubuga, E. J., Pylate, L., Alardawi, A. M., Reeder, N., Kiyimba, F., Tolar-Peterson, T., Schilling, W., & Komakech, J. J. (2025). Gender-Specific Interactions Between Adiposity, Alcohol Consumption, and Biological Stress Biomarkers Among College Students in the United States. Nutrients, 17(16), 2640. https://doi.org/10.3390/nu17162640