Serum Hemoglobin Level, Anemia, and Growth Were Unaffected by a 12-Month Multiple-Micronutrient Powder Intervention Among Children Aged 8–10 Months in a Low-Socioeconomic-Status Community of Jakarta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Subjects and Randomization
2.3. Intervention
2.4. Data Collection and Outcome Measures
2.4.1. Anthropometric Assessments
2.4.2. Subjects’ Medical Information
2.4.3. Biochemical Assessments
2.4.4. Complementary Feeding Practice and Other Questionnaires
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Guideline: Use of Multiple Micronutrient Powders for Point-of-Use Fortification of Foods Consumed by Infants and Young Children Aged 6–23 Months and Children Aged 2–12 Years; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Barkley, J.S.; Kendrick, K.L.; Codling, K.; Muslimatun, S.; Pachón, H. Anemia prevalence over time in Indonesia: Estimates from the 1997, 2000, and 2008 Indonesia Family Life Surveys. Asia Pac. J. Clin. Nutr. 2015, 24, 452–455. [Google Scholar]
- Kusumadewi, D.; Bardosono, S.; Sekartini, R. Dietary iron intake, serum ferritin and haemoglobin levels, and cognitive development scores of infants aged 6–8 months. Med. J. Indones. 2011, 20, 46–49. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Suchdev, P.S.; Vist, G.E.; Walleser, S.; Peña-Rosas, J.P. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under 2 years of age. Cochrane Database Syst. Rev. 2013, 8, 112–201. [Google Scholar] [CrossRef]
- Tam, E.; Keats, E.C.; Rind, F.; Das, J.K.; Bhutta, A.Z.A. Micronutrient Supplementation and Fortification Interventions on Health and Development Outcomes among Children Under-Five in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salam, R.A.; MacPhail, C.; Das, J.K.; Bhutta, Z.A. Effectiveness of micronutrient powders (MNP) in women and children. BMC Public Health 2013, 13 (Suppl. S3), S22. [Google Scholar] [CrossRef]
- Rohmah, E.; Handayani, T.; Mooy, D.A. Pengaruh Pemberian Taburia Terhadap Status Gizi Balita Usia 6–24 Bulan Di Puskesmas Maubesi Kecamatan Insana Tengah Kabupaten Timor Tengah Utara Propinsi Nusa Tenggara Timur. J. Delima Harapan 2014, 1, 67–78. [Google Scholar]
- Jahari, A.B.; Prihatini, S. Efek Program Pemberian “Taburia” Terhadap Kadar Hemoglobin Balita Pada Keluarga Miskin di Jakarta Utara. Penel Gizi Makan [Internet]. 2012. Available online: https://www.pgm.persagi.org/index.php/pgm/article/view/600 (accessed on 22 April 2025).
- Alwi, M.K. Study of Effectiveness Taburia Programs (Multi Gizimicro Substances) at Children Ages 6–24 Months in South Sulawesi Province. Indian J. Public Health Res. Dev. 2019, 10, 564–569. [Google Scholar] [CrossRef]
- Alwi, M.K.; Nursyamsi Thaha, A.R.; Jafar, N.; Hadju, V. The Effectiveness of Taburia of Hemoglobin and Ferritin Levels of 6–24 Month-Old Children in Jeneponto Regency, South Sulawesi Province. Media Gizi Masy. Indones. 2013, 2, 71–77. [Google Scholar]
- Chasanah, L.I.; Arifah, S.; Kp, S.; Budinugroho, A. Hubungan Tingkat Kepatuhan Pemberian Taburia Terhadap Peningkatan Berat Badan Anak Usia 6–24 Bulan Di Desa Demakan Kecamatan Mojolaban Kabupaten Sukoharjo. Ph.D. Thesis, Universitas Muhammadiyah Surakarta, Kartasura, Indonesia, 2014. Available online: https://eprints.ums.ac.id/30949/ (accessed on 12 January 2024).
- Sutrisna, A.; Vossenaar, M.; Izwardy, D.; Tumilowicz, A. Sensory evaluation of foods with added micronutrient powder (MNP) “Taburia” to assess acceptability among children aged 6–24 months and their caregivers in Indonesia. Nutrients 2017, 9, 979. [Google Scholar] [CrossRef]
- Soofi, S.; Cousens, S.; Iqbal, S.K.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.M.; Bhutta, Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet 2013, 382, 29–40. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Chassard, C.; Rohner, F.; N’Goran, E.K.; Nindjin, C.; Dostal, A.; Utzinger, J.; Ghattas, H.; Lacroix, C.; Hurrell, R.F. The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Côte d’Ivoire. Am. J. Clin. Nutr. 2010, 92, 1406–1415. [Google Scholar] [CrossRef]
- Wegmüller, R.; Bah, A.; Kendall, L.; Goheen, M.M.; Mulwa, S.; Cerami, C.; Moretti, D.; Prentice, A.M. Efficacy and safety of hepcidin-based screen-and-treat approaches using two different doses versus a standard universal approach of iron supplementation in young children in rural Gambia: A double-blind randomised controlled trial. BMC Pediatr. 2016, 16, 149. [Google Scholar] [CrossRef]
- Ernawati, T.; Bardosono, S.; Sekartini, R. Serum folate levels among healthy infants aged 6-8 months: Relation to infants’ nutritional status indicators and maternal knowledge-attitute-practice. Med. J. Indones 2011, 20, 138–142. [Google Scholar] [CrossRef]
- Menon, P.; Ruel, M.T.; Loechl, C.U.; Arimond, M.; Habicht, J.-P.; Pelto, G.; Michaud, L. Micronutrient sprinkles reduce anemia among 9- to 24-mo-old children when delivered through an integrated health and nutrition program in rural Haïti. J. Nutr. 2007, 137, 1023–1030. [Google Scholar] [CrossRef]
- Ministry of Health Republic of Indonesia. Regulation of the Minister of Health of the Republic of Indonesia Number 28 of 2019 Concerning Recommended Dietary Allowances for the Indonesian Population; Ministry of Health Republic of Indonesia: Jakarta, Indonesia, 2019.
- World Health Organization. Recommendations for Data Collection, Analysis, and Reporting on Anthropometric Indicators in Children Under 5 Years; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Neogi, S.B.; Sharma, J.; Pandey, S.; Zaidi, N.; Bhattacharya, M.; Kar, R.; Kar, S.S.; Purohit, A.; Bandyopadhyay, S.; Saxena, R. Diagnostic accuracy of point-of-care devices for detection of anemia in community settings in India. BMC Health Serv. Res. 2020, 20, 468. [Google Scholar] [CrossRef]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor (sTfR), retinol binding protein (RBP), c-reactive protein (CRP), and alpha-1 acid glycoprotein (AGP) by an inexpensive, sensitive and simple sandwich ELISA technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef]
- World Health Organization; United Nations Children’s Fund. Indicators for Assessing Infant and Young Child Feeding Practices: Definitions and Measurement Methods; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240018389 (accessed on 1 December 2024).
- Rahman, S.; Lee, P.; Raqib, R.; Roy, A.K.; Khan, M.R.; Ahmed, F. Effect of Micronutrient Powder (MNP) with a Low-Dose of Iron on Hemoglobin and Iron Biomarkers, and Its Effect on Morbidities in Rural Bangladeshi Children Drinking Groundwater with a High-Level of Iron: A Randomized Controlled Trial. Nutrients 2019, 11, 2756. [Google Scholar] [CrossRef]
- Luo, R.; Yue, A.; Zhou, H.; Shi, Y.; Zhang, L.; Martorell, R.; Medina, A.; Rozelle, S.; Sylvia, S. The effect of a micronutrient powder home fortification program on anemia and cognitive outcomes among young children in rural China: A cluster-randomized trial. BMC Public Health 2017, 17, 738. [Google Scholar] [CrossRef]
- Somasse, Y.E.; Dramaix, M.; Traore, B.; Ngabonziza, I.; Toure, O.; Konate, M.; Diallo, M.; Donnen, P. The WHO recommendation of home fortification of foods with multiple-micronutrient powders in children under 2 years of age and its effectiveness on anaemia and weight: A pragmatic cluster-randomized controlled trial. Public Health Nutr. 2018, 21, 1350–1358. [Google Scholar] [CrossRef]
- Kounnavong, S.; Sunahara, T.; Mascie-Taylor, C.G.N.; Hashizume, M.; Okumura, J.; Moji, K.; Boupha, B.; Yamamoto, T. Effect of daily versus weekly home fortification with multiple micronutrient powder on haemoglobin concentration of young children in a rural area, Lao People’s Democratic Republic: A randomised trial. Nutr. J. 2011, 10, 129. [Google Scholar] [CrossRef]
- Andrew, A.; Attanasio, O.; Fitzsimons, E.; Rubio-Codina, M. Why is multiple micronutrient powder ineffective at reducing anaemia among 12-24 month olds in Colombia? Evidence from a randomised controlled trial. SSM-Popul. Health 2016, 2, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Donker, A.E.; van der Staaij, H.; Swinkels, D.W. The critical roles of iron during the journey from fetus to adolescent: Developmental aspects of iron homeostasis. Blood Rev. 2021, 50, 100866. [Google Scholar] [CrossRef] [PubMed]
- Inzaghi, E.; Pampanini, V.; Deodati, A.; Cianfarani, S. The effects of nutrition on linear growth. Nutrients 2022, 14, 1752. [Google Scholar] [CrossRef] [PubMed]
- Lanou, H.B.; Osendarp, S.J.M.; Argaw, A.; De Polnay, K.; Ouédraogo, C.; Kouanda, S.; Kolsteren, P. Micronutrient powder supplements combined with nutrition education marginally improve growth amongst children aged 6-23 months in rural Burkina Faso: A cluster randomized controlled trial. Matern. Child Nutr. 2019, 15, e12820. [Google Scholar] [CrossRef]
- Ericson, B.; Hariojati, N.; Susilorini, B.; Crampe, L.F.; Fuller, R.; Taylor, M.P.; Caravanos, J. Assessment of the prevalence of lead-based paint exposure risk in Jakarta, Indonesia. Sci. Total Environ. 2019, 657, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Mansyur, M.; Fitriani, D.Y.; Prayogo, A.; Mutiara, A.; Fadhillah, R.; Aini, R.; Putri, W.W.; Ramadhani, S.E.F.; Rubaya, A.K.; Windarso, S.E.; et al. Determinant Factors of Children’s Blood Lead Levels in Java, Indonesia. Int. J. Hyg. Environ. Health 2024, 261, 114426. [Google Scholar] [CrossRef]
- Yu, X.; Xiong, L.; Zhao, S.; Li, Z.; Xiang, S.; Cao, Y.; Zhou, C.; Dong, J.; Qiu, J. Effect of lead, calcium, iron, zinc, copper and magnesium on anemia in children with BLLs ≥ 100 μg/L. J. Trace Elem. Med. Biol. 2023, 78, 127192. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.O.; Tsaih, S.W.; Schwartz, J.; Wright, R.J.; Hu, H. Association between iron deficiency and blood lead level in a longitudinal analysis of children followed in an urban primary care clinic. J. Pediatr. 2003, 142, 9–14. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Daily Iron Supplementation in Infants and Children [Internet]; World Health Organization: Geneva, Switzerland, 2016; Available online: https://www.who.int/publications/i/item/9789241549523 (accessed on 1 December 2024).
- Barffour, M.A.; Hinnouho, G.M.; Kounnavong, S.; Wessells, K.R.; Ratsavong, K.; Bounheuang, B.; Chanhthavong, B.; Sitthideth, D.; Sengnam, K.; Arnold, C.D.; et al. Effects of daily zinc, daily multiple micronutrient powder, or therapeutic zinc supplementation for diarrhea prevention on physical growth, anemia, and micronutrient status in rural Laotian children: A randomized controlled trial. J. Pediatr. 2019, 207, 80–89. [Google Scholar] [CrossRef]
- Kunayarti, W.; Julia, M.; Susilo, J. Pengaruh taburia terhadap status anemia dan status gizi balita gizi kurang. J. Gizi Klin. Indones. 2014, 11, 38–47. [Google Scholar] [CrossRef]
- Ford, N.D.; Ruth, L.J.; Ngalombi, S.; Lubowa AHalati, S.; Ahimbisibwe, M.; Baingana, R.; Whitehead, R.D., Jr.; Mapango, C.; Jefferds, M.E. An integrated infant and young child feeding and micronutrient powder intervention does not affect anemia, iron status, or vitamin Astatus among children aged 12–23 months in eastern Uganda. J. Nutr. 2020, 150, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Dusingizimana, T.; Weber, J.L.; Ramilan, T.; Iversen, P.O.; Brougha, L. A mixed-methods study of factors influencing access to and use of micronutrient powders in Rwanda. Glob. Health Sci. Pract. 2021, 9, 274–285. [Google Scholar] [CrossRef] [PubMed]
Nutrient a | Unit | Amount/Day (5 g) b |
---|---|---|
Calcium (as calcium carbonate) | mg | 480 |
Iron (as ferrous fumarate) | mg | 8 |
Zinc (as zinc sulfate) | mg | 8 |
Iodine (as potassium iodate) | mcg | 90 |
Selenium (as sodium selenite) | mcg | 11 |
Vitamin A (as retinol acetate) | mcg | 400 |
Vitamin D3 (as cholecalciferol) | mcg | 5 |
Vitamin E (as dl-alpha-tocopheryl acetate) | IU | 6 |
Vitamin B1 (as thiamine HCl) | mg | 0.5 |
Vitamin B2 (as riboflavin) | mg | 0.5 |
Vitamin B6 (as pyridoxine) | mg | 0.4 |
Vitamin B12 (as cyanocobalamin) | mcg | 0.6 |
Vitamin C (as sodium ascorbate) | mg | 40 |
Folic Acid | mcg | 90 |
Niacin (as niacinamide) | mg | 5 |
Pantothenic Acid | mg | 2 |
Variables | Control (n = 69) | Intervention (n = 110) | p-Value |
---|---|---|---|
Child’s gender (%) | |||
Boys | 50.7 | 48.2 | 0.740 |
Girls | 49.3 | 51.8 | |
Age | |||
Child (mo) | 9.1 ± 1.1 † | 8.9 ± 0.9 † | 0.140 |
8.0–8.9 months, % | 20.3 | 27.3 | |
9.0–9.9 months, % | 39.1 | 40.8 | 0.357 |
10.0–10.9 months, % | 40.6 | 31.9 | |
Mother (y) | 28.5 ± 6.1 † | 28.8 ± 5.9 † | 0.710 |
Father (y) | 31.9 ± 7.0 † | 33.4 ± 6.7 † | 0.155 |
Number of children (%) | |||
≤2 | 71.0 | 63.6 | 0.309 |
>2 | 29.0 | 36.4 | |
Educational level (%) | |||
Mother | |||
Low | 43.4 | 39.1 | 0.561 |
High | 56.6 | 60.9 | |
Occupational status (%) | |||
Mother | |||
Outside the house | 10.1 | 10.0 | 0.713 |
In house | 89.9 | 90.0 | |
Father | |||
Not permanently | 27.5 | 22.8 | 0.077 |
Permanent job | 72.5 | 77.2 | |
Smoking habit in family members (%) | 84.1 | 80.9 | 0.593 |
Variables | Control (n = 69) | Intervention (n = 110) | p-Value | Mean Difference (95% CI) |
---|---|---|---|---|
Continued Breastfeeding (%) | ||||
Baseline (T0) | 85.5 | 93.6 | 0.071 a | |
6 months (T1) | 81.2 | 83.6 | 0.670 a | |
12 months (T2) | 55.1 | 67.3 | 0.101 a | |
Dietary diversity score | ||||
Baseline (T0) | 4.0 (1.0) d | 4.0 (1.0) | 0.110 b | |
6 months (T1) | 5.0 (1.0) | 5.0 (1.0) | 0.640 b | |
12 months (T2) | 5.0 (1.5) | 5.0 (1.0) | 0.165 b | |
Delta (T2 − T0) | 2.0 (2.0) | 1.0 (2.0) | 0.049 b | |
Minimum dietary diversity (%) | ||||
Baseline (T0) | 17.4 | 20.0 | 0.665 a | |
6 months (T1) | 58.0 | 54.5 | 0.653 a | |
12 months (T2) | 66.7 | 56.4 | 0.170 a | |
LAZ | ||||
Baseline (T0) | −0.5 ± 1.1 e | −0.5 ± 1.0 | 0.647 c | |
6 months (T1) | 0.7 ± 1.1 | −0.8 ± 1.0 | 0.356 c | |
12 months (T2) | −0.9 ± 1.1 | −1.0 ± 1.1 | 0.587 c | |
Delta (T2 − T0) | −0.4 ± 0.9 | −0.5 ± 0.8 | 0.885 c | 0.0 (−0.2–0.3) |
WAZ | ||||
Baseline (T0) | −1.2 ± 0.8 | −1.0 ± 1.0 | 0.231 c | |
6 months (T1) | −1.3 (1.3) | −1.2 (1.3) | 0.968 b | |
12 months (T2) | −1.0 ± 1.1 | −1.0 ± 1.0 | 0.937 c | |
Delta (T2 − T0) | 0.2 ± 0.8 | −0.1 (0.9) | 0.072 b | |
WLZ | ||||
Baseline (T0) | −1.2 ± 1.0 | −0.9 ± 1.0 | 0.135 c | |
6 months (T1) | −1.2 ± 1.0 | −0.9 ± 1.0 | 0.154 c | |
12 months (T2) | −0.8 ± 1.0 | −0.7 ± 1.1 | 0.390 c | |
Delta (T2 − T0) | 0.4 ± 0.9 | 0.2 (0.9) | 0.120 b | |
LAZ < −2SD (%) | ||||
Baseline (T0) | 5.8 | 5.5 | 0.923 a | |
6 months (T1) | 8.7 | 10.0 | 0.772 a | |
12 months (T2) | 17.4 | 18.2 | 0.893 a | |
WAZ < −2SD (%) | ||||
Baseline (T0) | 15.9 | 18.2 | 0.700 a | |
6 months (T1) | 15.9 | 17.3 | 0.817 a | |
12 months (T2) | 20.3 | 17.3 | 0.612 a | |
WLZ < −2SD (%) | ||||
Baseline (T0) | 23.2 | 11.8 | 0.044 a | |
6 months (T1) | 15.9 | 12.7 | 0.546 a | |
12 months (T2) | 11.6 | 11.8 | 0.964 a |
Variables | Control (n = 69) | Intervention (n = 110) | p-Value | Mean Difference (95% CI) |
---|---|---|---|---|
Hemoglobin (g/dL) | ||||
Baseline (T0) | 11.6 ± 1.1 d | 11.5 ± 1.1 | 0.694 a | 0.1 (−0.3–0.4) |
6 months (T1) | 11.4 ± 1.5 | 11.4 ± 1.1 | 0.992 a | 0.0 (−0.4–0.4) |
12 months (T2) | 11.6 ± 1.1 | 11.5 ± 1.4 | 0.555 a | 0.1 (−0.3–0.5) |
Delta (T2 − T0) | 0.0 ± 1.0 | 0.0 ± 1.2 | 0.806 a | 0.0 (−0.3–0.4) |
Ferritin (µg/L) | ||||
Baseline (T0) | 27.1 (45.3) e (n = 57) | 32.7 (48.7) (n = 93) | 0.403 b | |
6 months (T1) | 26.6 (39.7) (n = 53) | 30.0 (39.4) (n = 104) | 0.550 b | |
12 months (T2) | 22.2 (21.9) (n = 64) | 20.6 (26.3) (n = 103) | 0.686 b | |
Delta (T2 − T0) | −7.9 (32.2) (n = 53) | −10.2 (32.2) (n = 91) | 0.324 b | |
Anemia (%) | ||||
Baseline (T0) | 29.4 | 27.8 | 0.815 c | |
6 months (T1) | 25.8 | 25.7 | 0.992 c | |
12 months (T2) | 19.1 | 26.4 | 0.269 c | |
Iron deficiency (%) | ||||
Baseline (T0) | 18.9 (n = 57) | 16.5 (n = 93) | 0.638 c | |
6 months (T1) | 18.0 (n = 53) | 18.9 (n = 104) | 0.954 c | |
12 months (T2) | 24.5 (n = 64) | 30.8 (n = 103) | 0.476 c | |
Iron deficiency anemia (%) | ||||
Baseline (T0) | 7.5 (n = 57) | 11.0 (n = 93) | 0.393 c | |
6 months (T1) | 14.0 (n = 53) | 13.3 (n = 104) | 0.962 c | |
12 months (T2) | 15.1 (n = 64) | 18.7 (n = 103) | 0.560 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, D.N.; Bardosono, S.; Sundjaya, T.; Wiguna, T.; Sekartini, R. Serum Hemoglobin Level, Anemia, and Growth Were Unaffected by a 12-Month Multiple-Micronutrient Powder Intervention Among Children Aged 8–10 Months in a Low-Socioeconomic-Status Community of Jakarta. Nutrients 2025, 17, 2520. https://doi.org/10.3390/nu17152520
Chandra DN, Bardosono S, Sundjaya T, Wiguna T, Sekartini R. Serum Hemoglobin Level, Anemia, and Growth Were Unaffected by a 12-Month Multiple-Micronutrient Powder Intervention Among Children Aged 8–10 Months in a Low-Socioeconomic-Status Community of Jakarta. Nutrients. 2025; 17(15):2520. https://doi.org/10.3390/nu17152520
Chicago/Turabian StyleChandra, Dian Novita, Saptawati Bardosono, Tonny Sundjaya, Tjhin Wiguna, and Rini Sekartini. 2025. "Serum Hemoglobin Level, Anemia, and Growth Were Unaffected by a 12-Month Multiple-Micronutrient Powder Intervention Among Children Aged 8–10 Months in a Low-Socioeconomic-Status Community of Jakarta" Nutrients 17, no. 15: 2520. https://doi.org/10.3390/nu17152520
APA StyleChandra, D. N., Bardosono, S., Sundjaya, T., Wiguna, T., & Sekartini, R. (2025). Serum Hemoglobin Level, Anemia, and Growth Were Unaffected by a 12-Month Multiple-Micronutrient Powder Intervention Among Children Aged 8–10 Months in a Low-Socioeconomic-Status Community of Jakarta. Nutrients, 17(15), 2520. https://doi.org/10.3390/nu17152520