Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Design
2.2. Data Collection
2.3. Nutritional Analysis
2.4. Nutritional Composition
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Micronutrient Intake and the Relationship Between Electrolyte Balance and Diet Quality
4.2. Methodological Considerations
4.3. Public Health Implications
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Na:K | Sodium-to-potassium |
DQI-I | Diet Quality Index-International |
BMI | Body Mass Index |
24HR | 24 h dietary recall |
MPM | Multiple Pass Method |
References
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Clarke, R. Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur. J. Clin. Nutr. 2021, 63, 22–33. [Google Scholar] [CrossRef]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef]
- Sonnenburg, E.D.; Sonnenburg, J.L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 2019, 17, 383–390. [Google Scholar] [CrossRef]
- Suez, J.; Cohen, Y.; Valdés-Mas, R.; Mor, U.; Dori-Bachash, M.; Federici, S.; Zmora, N.; Leshem, A.; Heinemann, M.; Linevsky, R.; et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022, 185, 2565–2586. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Mosallanezhad, Z.; Jalali, M.; Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary sodium to potassium ratio is an independent predictor of cardiovascular events: A longitudinal follow-up study. BMC Public Health 2023, 23, 705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gałęska, E.; Wrzecińska, M.; Kowalczyk, A.; Araujo, J.P. Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. Biology 2022, 11, 1006. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez, V.; Chang, E.T. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv. Nutr. 2014, 5, 712–741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stamler, J.; Rose, G.; Elliott, P.; Dyer, A.; Marmot, M.; Kesteloot, H.; Stamler, R. Findings of the International Cooperative INTERSALT Study. Hypertension 1991, 17, I9–I15. [Google Scholar] [CrossRef]
- Ma, Y.; He, F.J.; Sun, Q.; Yuan, C.; Kieneker, L.M.; Curhan, G.C.; MacGregor, G.A.; Bakker, S.J.L.; Campbell, N.R.C.; Wang, M.; et al. 24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk. N. Engl. J. Med. 2022, 386, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J.; et al. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.; Martins, A.P.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.C.; Cannon, G.; Monteiro, C.A. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev. Saude Publica 2015, 49, 45. [Google Scholar] [CrossRef]
- Levings, J.L.; Gunn, J.P. The imbalance of sodium and potassium intake: Implications for dietetic practice. J. Acad. Nutr. Diet. 2014, 114, 838–841. [Google Scholar] [CrossRef]
- Souza, R.V.; Sarmento, R.A.; de Almeida, J.C.; Canuto, R. The effect of shift work on eating habits: A systematic review. Scand. J. Work Environ. Health 2019, 45, 7–21. [Google Scholar] [CrossRef]
- Leone, L.A.; Beth, D.; Ickes, S.B.; Macguire, K.; Nelson, E.; Smith, R.A.; Tate, D.F.; Ammerman, A.S. Attitudes Toward Fruit and Vegetable Consumption and Farmers’ Market Usage Among Low-Income North Carolinians. J. Hunger Environ. Nutr. 2012, 7, 64–76. [Google Scholar] [CrossRef]
- Woodruff, R.C.; Zhao, L.; Ahuja, J.K.C.; Gillespie, C.; Goldman, J.; Harris, D.M.; Jackson, S.L.; Moshfegh, A.; Rhodes, D.; Sebastian, R.S.; et al. Top Food Category Contributors to Sodium and Potassium Intake—United States, 2015–2016. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Okuda, N.; Okayama, A.; Miura, K.; Yoshita, K.; Miyagawa, N.; Saitoh, S.; Nakagawa, H.; Sakata, K.; Chan, Q.; Elliott, P.; et al. Food Sources of Dietary Potassium in the Adult Japanese Population: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Nutrients 2020, 12, 787. [Google Scholar] [CrossRef]
- Filippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Karppanen, H.; Karppanen, P.; Mervaala, E. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets? J. Hum. Hypertens. 2005, 19 (Suppl. 3), S10–S19. [Google Scholar] [CrossRef]
- Webster, J.; Waqanivalu, T.; Arcand, J.; Trieu, K.; Cappuccio, F.P.; Appel, L.J.; Woodward, M.; Campbell, N.R.C.; McLean, R. Understanding the science that supports population-wide salt reduction programs. J. Clin. Hypertens. 2017, 19, 569–576. [Google Scholar] [CrossRef]
- Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agric. Food Chem. 2020, 43, 2800–2802. [Google Scholar] [CrossRef]
- Previdelli, A.N.; Lipi, M.; Castro, M.A.; Marchioni, D.M. Dietary quality and associated factors among factory workers in the metropolitan region of São Paulo, Brazil. J. Am. Diet. Assoc. 2010, 110, 786–790. [Google Scholar] [CrossRef]
- Steele, E.M.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; Corvalán, C.; Levy, R.B.; Uauy, R.; Monteiro, C.A. Ultra-processed foods drive to unhealthy diets: Evidence from Chile. Public Health Nutr. 2021, 24, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Brasil, Ministério da Saúde; Secretaria de Atenção à Saúde; Departamento de Atenção Básica. Orientações Para a Coleta e Análise de Dados Antropométricos em Serviços de Saúde: Norma Técnica do Sistema de Vigilância Alimentar e Nutricional SISVAN; Série G; Estatística e Informação em Saúde; Ministério da Saúde: Brasília, Brazil, 2011.
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L. An overview of USDA’s dietary intake data system. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Kim, S.; Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index-International (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J. Nutr. 2003, 133, 3476–3484. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Marchioni, D.M.L.; Previdelli, A.N.; Carvalho, A.M.; Mendes, A.; Timm, A.S.; Gorgulho, B.M.; Verly Junior, E.; Steluti, J.; Brunacio, K.H.; et al. Manual de Avaliação do Consumo Alimentar em Estudos Populacionais: A Experiência do Inquérito de Saúde em São Paulo (ISA); FSP/USP: São Paulo 2012. Available online: http://colecoes.sibi.usp.br/fsp/files/original/8b36141af4e756cbfb889b895b541890.pdf (accessed on 24 June 2025).
- Núcleo de Estudos e Pesquisas em Alimentação-NEPA; Universidade Estadual de Campinas. Tabela Brasileira de Composição de Alimentos–TACO. 4. Ed. Rev. e Ampl. Campinas: NEPA-UNICAMP 2011. Available online: https://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf (accessed on 24 June 2025).
- Brasil. Ministério do Planejamento, Orçamento e Gestão; Instituto Brasileiro de Geografia e Estatística (IBGE); Diretoria de Pesquisas.; Coordenação de Trabalho e Rendimento. Pesquisa de Orçamentos Familiares (POF) 2008–2009: Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil; IBGE: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- United States Department of Agriculture. Agricultural Research Service, Nutrient Data 2024. Available online: https://fdc.nal.usda.gov/ (accessed on 24 June 2025).
- Souza, A.M.; Bezerra, I.W.L.; Pereira, G.S.; Torres, K.G.; Costa, R.M.; Oliveira, A.G. Relationships between motivations for food choices and consumption of food groups: A prospective cross-sectional survey in manufacturing workers in Brazil. Nutrients 2020, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- Philippi, S.T. Nutrição e Técnica Dietética, 4th ed.; Manole: Barueri, Brazil, 2019. [Google Scholar]
- Wronska, M.D.; Coffey, M.; Robins, A. Determinants of nutrition practice and food choice in UK construction workers. Health Promot. Int. 2022, 1, 37. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Vital signs: Food categories contributing the most to sodium consumption—United States, 2007–2008. MMWR Morb. Mortal. Wkly Rep. 2012, 61, 92–98. [Google Scholar]
- Morrissey, E.; Giltinan, M.; Kehoe, L.; Nugent, A.P.; McNulty, B.A.; Flynn, A.; Walton, J. Sodium and Potassium Intakes and Their Ratio in Adults (18–90 y): Findings from the Irish National Adult Nutrition Survey. Nutrients 2020, 12, 938. [Google Scholar] [CrossRef]
- Vulin, M.; Magušić, L.; Metzger, A.-M.; Muller, A.; Drenjančević, I.; Jukić, I.; Šijanović, S.; Lukić, M.; Stanojević, L.; Davidović Cvetko, E.; et al. Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients 2022, 14, 5052. [Google Scholar] [CrossRef]
- French, C.D.; Arsenault, J.E.; Arnold, C.D.; Haile, D.; Luo, H.; Dodd, K.W.; Vosti, S.A.; Slupsky, C.M.; Engle-Stone, R.; Variance Components of Nutrient Intakes Data Working Group. Within-Person Variation in Nutrient Intakes Across Populations and Settings: Implications for the Use of External Estimates in Modeling Usual Nutrient Intake Distributions. Adv. Nutr. 2021, 12, 429–451. [Google Scholar] [CrossRef]
- Gibson, R.S.; Charrondiere, U.R.; Bell, W. Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv. Nutr. 2017, 8, 980–991. [Google Scholar] [CrossRef]
- Najibi, N.; Jahromi, M.K.; Teymoori, F.; Farhadnejad, H.; Salehi-Sahlabadi, A.; Mirmiran, P. International diet quality index and revised diet quality index relationship with non-alcoholic fatty liver disease: A case-control study. BMC Gastroenterol. 2023, 23, 441. [Google Scholar] [CrossRef]
- Lassen, A.D.; Beck, A.; Leedo, E.; Andersen, E.W.; Christensen, T.; Mejborn, H.; Thorsen, A.V.; Tetens, I. Effectiveness of offering healthy labelled meals in improving the nutritional quality of lunch meals eaten in a worksite canteen. Appetite 2014, 75, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Machín, L.; Girona, A.; Curutchet, M.R.; Giménez, A. Comparison of motives underlying food choice and barriers to healthy eating among low medium income consumers in Uruguay. Cad. Saude Publica 2017, 33, e00213315. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 2015, 73, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.S.D.S.; Santos, L.A.D.S. Dietary guidelines for Brazilian population: An analysis from the cultural and social dimensions of food. Cienc. Saude Colet. 2020, 25, 2519–2528. [Google Scholar] [CrossRef] [PubMed]
Variable | Values |
---|---|
Age, years | 38.2 ± 10.7 |
Sex, male | 515 (55.9%) |
Married/Cohabiting | 577 (62.7%) |
Education > middle school | 527 (57.3%) |
Income, minimum wages | 1.46 ± 1.61 |
Body Mass Index, kg/m2 | 27.2 ± 4.80 |
Waist Circumference, cm | 89.7 ± 11.9 |
Underweight | 12 (1.30%) |
Normal weight | 316 (34.4%) |
Overweight | 359 (39.0%) |
Obesity I | 178 (19.4%) |
Obesity II | 40 (4.35%) |
Obesity III | 15 (1.63%) |
Na:K ratio (mg/mg) | 1.97 ± 0.86 |
Na:K ratio > 0.6 mg/mg | 5 (0.54%) |
Na:K ratio > 1.0 mg/mg | 48 (5.21%) |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Food Group | Coefficient | 95% CI | p-Value | Coefficient | 95% CI | p-Value | ||
Increase Na:K Ratio | ||||||||
Beans | 0.050 | 0.018 | 0.082 | 0.002 | ||||
Rice | 0.210 | 0.144 | 0.276 | 0.000 | 0.205 | 0.151 | 0.258 | <0.001 |
Corn | 0.092 | 0.043 | 0.140 | 0.000 | 0.115 | 0.076 | 0.154 | <0.001 |
Bread | 0.086 | 0.048 | 0.124 | 0.000 | 0.077 | 0.046 | 0.107 | <0.001 |
Pasta | 0.099 | 0.051 | 0.148 | 0.000 | 0.057 | 0.014 | 0.100 | 0.010 |
Soups | 0.114 | 0.096 | 0.131 | 0.000 | 0.109 | 0.094 | 0.123 | <0.001 |
Red meat | 0.189 | 0.145 | 0.232 | 0.000 | 0.116 | 0.077 | 0.156 | <0.001 |
Processed meat | 0.162 | 0.082 | 0.243 | 0.000 | ||||
Fast food | 3.332 | 1.644 | 5.020 | 0.000 | 3.294 | 1.943 | 4.645 | <0.001 |
Vegetable oil | 0.102 | 0.036 | 0.168 | 0.002 | 0.065 | 0.001 | 0.130 | 0.047 |
Salt | 0.036 | 0.021 | 0.052 | 0.000 | ||||
Decrease Na:K Ratio | ||||||||
Grains, integral | −0.153 | −0.247 | −0.058 | 0.002 | ||||
Tubercles | −0.105 | −0.143 | −0.067 | 0.000 | ||||
Fruits | −0.204 | −0.254 | −0.154 | 0.000 | −0.158 | −0.198 | −0.117 | <0.001 |
Dairy | −0.056 | −0.090 | −0.022 | 0.001 | −0.042 | −0.069 | −0.015 | 0.002 |
White meat | −0.151 | −0.206 | −0.097 | 0.000 | −0.129 | −0.179 | −0.079 | <0.001 |
Coffee | −0.164 | −0.222 | −0.106 | 0.000 | −0.208 | −0.255 | −0.161 | <0.001 |
Vitamin supplements | −0.205 | −0.375 | −0.036 | 0.018 |
Micronutrient | Coeficient | 95% CI | p-Value | |
---|---|---|---|---|
Calcium | −45.774 | −76.059 | −15.489 | 0.003 |
Copper | 0.000 | −0.209 | 0.210 | 0.99 |
Iron | 1.813 | 1.151 | 2.476 | <0.001 |
Magnesium | −13.451 | −21.820 | −5.081 | 0.002 |
Manganese | 0.070 | −0.274 | 0.413 | 0.69 |
Phosphorus | −58.971 | −99.339 | −18.603 | 0.004 |
Selenium | −3.014 | −7.212 | 1.184 | 0.16 |
Zinc | 1.069 | −0.094 | 2.232 | 0.07 |
Vitamin A | −55.447 | −267.550 | 156.656 | 0.61 |
Vitamin C | −28.809 | −46.282 | −11.336 | 0.001 |
Vitamin D | −0.379 | −0.679 | −0.078 | 0.013 |
Vitamin E | −0.691 | −1.032 | −0.350 | <0.001 |
Cobalamin | −0.942 | −2.144 | 0.260 | 0.13 |
Niacin | −1.262 | −2.211 | −0.313 | 0.009 |
Pyridoxine | 0.011 | −0.055 | 0.078 | 0.74 |
Riboflavin | 0.047 | −0.034 | 0.129 | 0.25 |
Thiamine | 0.044 | −0.010 | 0.098 | 0.11 |
DQI-I Score | Coefficient | 95% CI | p-Value | |
---|---|---|---|---|
Total score (0–100) | −0.026 | −0.032 | −0.020 | <0.001 |
Variety (0–20) | −0.046 | −0.066 | −0.026 | <0.001 |
Adequacy (0–40) | −0.022 | −0.034 | −0.010 | <0.001 |
Moderation (0–30) | −0.032 | −0.040 | −0.024 | <0.001 |
Overall Balance (0–10) | 0.018 | −0.009 | 0.045 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, A.M.; Bezerra, I.W.L.; Torres, K.G.; Pereira, G.S.; Costa, R.M.; Oliveira, A.G. Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers. Nutrients 2025, 17, 2483. https://doi.org/10.3390/nu17152483
Souza AM, Bezerra IWL, Torres KG, Pereira GS, Costa RM, Oliveira AG. Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers. Nutrients. 2025; 17(15):2483. https://doi.org/10.3390/nu17152483
Chicago/Turabian StyleSouza, Anissa Melo, Ingrid Wilza Leal Bezerra, Karina Gomes Torres, Gabriela Santana Pereira, Raiane Medeiros Costa, and Antonio Gouveia Oliveira. 2025. "Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers" Nutrients 17, no. 15: 2483. https://doi.org/10.3390/nu17152483
APA StyleSouza, A. M., Bezerra, I. W. L., Torres, K. G., Pereira, G. S., Costa, R. M., & Oliveira, A. G. (2025). Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers. Nutrients, 17(15), 2483. https://doi.org/10.3390/nu17152483