Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Blood Sampling, Diet Evaluation, and Anthropometry
2.3. Indirect Calorimetry
2.4. Laboratory Measurements
2.5. Statistical Analyses
3. Results
3.1. Basic Clinical, Anthropometric, and Biochemical Characteristics
3.2. Fatty Acid Profiles
3.3. Bile Acid Composition
3.4. Regression Analysis
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AN-R | Anorexia nervosa (restrictive type) |
FA | Fatty acid |
TC | Total cholesterol |
LDL-C | Low-density lipoprotein-cholesterol |
HDL-C | High-density lipoprotein-cholesterol |
TAG | Triacylglycerols |
EDs | Eating disorders |
SFA | Saturated fatty acids |
MFA | Monounsaturated fatty acids |
PUFA | Polyunsaturated fatty acids |
SCFA | Short-chain fatty acids |
CNS | Central nervous system |
BA | Bile acid |
DCA | Deoxycholic acid |
LCA | Lithocholic acid |
UDCA | Ursodeoxycholic acid |
CA | Cholic acid |
CDCA | Chenodeoxycholic acid |
CON | Control group |
REE | Resting energy expenditure |
NEFA | Non-esterified fatty acids |
HOMA-IR | Homeostasis model assessment method of insulin resistance |
EFAD | Essential fatty acid deficiency |
BMI | Body mass index |
FMI | Fat mass index |
D9D | Delta-9 desaturase |
TUDCA | Tauroursodeoxycholic acid |
apo B | Apolipoprotein B-100 |
DPA-6 | Docosapentaenoic acid (n-6 family), Osbond acid |
DHGLA | Dihomo-γ-linolenic acid |
PA | Palmitic acid |
LA | Linoleic acid |
ALA | α-linolenic acid |
EPA | Eisocapentaenoic acid |
POA | Palmitoleic acid |
LC-PUFA | Long-chain polyusaturated fatty acids |
DHA | Docosahexaenoic acid |
AdA | Adrenic acid |
AA | Arachidonic acid |
GLA | γ-linolenic acid |
VLCSFA | Very-long-chain saturated fatty acids |
References
- DSM-5. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Katzman, D.K. Medical complications in adolescents with anorexia nervosa: A review of the literature. Int. J. Eat. Disord. 2005, 37, S52–S59. discussion S87–S89. [Google Scholar] [CrossRef] [PubMed]
- Katzman, D.K.; Kearney, S.A.; Becker, A.E. Feeding and Eating Disorders. In Slesinger and Fordtran’s Gastrointestinal and Liver Disease, 10th ed.; Feldman, M., Friedman, L.S., Brandt, L.J., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2016; Volume 1, pp. 130–147. [Google Scholar]
- Watson, H.J.; Yilmaz, Z.; Thornton, L.M.; Hübel, C.; Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Hinney, A.; Leppä, V.M.; Mattheisen, M.; et al. Genome-Wide Association Study Identifies Eight Risk Loci and Implicates Metabo-Psychiatric Origins for Anorexia Nervosa. Nat. Genet. 2019, 51, 1207–1214. [Google Scholar] [CrossRef]
- Mayo-Martínez, L.; Rupérez, F.J.; Martos-Moreno, G.Á.; Graell, M.; Barbas, C.; Argente, J.; García, A. Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients 2021, 13, 4249. [Google Scholar] [CrossRef]
- Mack, T.; Sanchez-Roige, S.; Davis, L.K. Genetic investigation of the contribution of body composition to anorexia nervosa in an electronic health record setting. Transl. Psychiatry 2022, 12, 486. [Google Scholar] [CrossRef]
- Frostad, S. Are the Effects of Malnutrition on the Gut Microbiota-Brain Axis the Core Pathologies of Anorexia Nervosa? Microorganisms 2022, 10, 1486. [Google Scholar] [CrossRef] [PubMed]
- Winston, A.P. The clinical biochemistry of anorexia nervosa. Ann. Clin. Biochem. 2012, 49, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Klinefelter, H.F. Hypercholesterolemia in anorexia nervosa. J. Clin. Endocrinol. Metab. 1965, 25, 1520–1521. [Google Scholar] [CrossRef]
- Crisp, A.H.; Blendis, L.M.; Pawan, G.L. Aspects of fat metabolism in anorexia nervosa. Metabolism 1968, 17, 1109–1118. [Google Scholar] [CrossRef]
- Mordasini, R.; Klose, G.; Greten, H. Secondary type II hyperlipoproteinemia in patients with anorexia nervosa. Metabolism 1978, 27, 71–79. [Google Scholar] [CrossRef]
- Mira, M.; Stewart, P.M.; Vizzard, J.; Abraham, S. Biochemical abnormalities in anorexia nervosa and bulimia. Ann. Clin. Biochem. 1987, 24, 29–35. [Google Scholar] [CrossRef]
- Gotto, A.M., Jr.; Pownall, H.J. Manual of Lipid Disorders; Williams & Wilkins: Baltimore, MD, USA, 1999. [Google Scholar]
- Arden, M.R.; Weiselberg, E.C.; Nussbaum, M.P.; Shenker, I.R.; Jacobson, M.S. Effect of weight restoration on the dyslipoproteinemia of anorexia nervosa. J. Adolesc. Health Care 1990, 11, 199–202. [Google Scholar] [CrossRef]
- Stadler, J.T.; Lackner, S.; Mörkl, S.; Meier-Allard, N.; Scharnagl, H.; Rani, A.; Mangge, H.; Zelzer, S.; Holasek, S.J.; Marsche, G. Anorexia Nervosa Is Associated with a Shift to Pro-Atherogenic Low-Density Lipoprotein Subclasses. Biomedicines 2022, 10, 895. [Google Scholar] [CrossRef]
- Hussain, A.A.; Hübel, C.; Hindborg, M.; Lindkvist, E.; Kastrup, A.M.; Yilmaz, Z.; Støving, R.K.; Bulik, C.M.; Sjögren, J.M. Increased lipid and lipoprotein concentrations in anorexia nervosa: A systematic review and meta-analysis. Int. J. Eat. Disord. 2019, 52, 611–629. [Google Scholar] [CrossRef]
- Feillet, F.; Feillet-Coudray, C.; Bard, J.M.; Parra, H.J.; Favre, E.; Kabuth, B.; Fruchart, J.C.; Vidailhet, M. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa. Clin. Chim. Acta 2000, 294, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Zák, A.; Vecka, M.; Tvrzická, E.; Hrubý, M.; Novák, F.; Papezová, H.; Lubanda, H.; Veselá, L.; Stanková, B. Composition of plasma fatty acids and non-cholesterol sterols in anorexia nervosa. Physiol. Res. 2005, 54, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.J. Cholesterol metabolism in anorexia nervosa and hypercholesterolemia. J. Clin. Endocrinol. Metab. 1974, 38, 325–328. [Google Scholar] [CrossRef]
- Föcker, M.; Cecil, A.; Prehn, C.; Adamski, J.; Albrecht, M.; Adams, F.; Hinney, A.; Libuda, L.; Bühlmeier, J.; Hebebrand, J.; et al. Evaluation of Metabolic Profiles of Patients with Anorexia Nervosa at Inpatient Admission, Short- and Long-Term Weight Regain-Descriptive and Pattern Analysis. Metabolites 2020, 11, 7. [Google Scholar] [CrossRef]
- Yehuda, S.; Rabinovitz, S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit. Rev. Food Sci. Nutr. 2016, 56, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Kunesová, M.; Hainer, V.; Tvrzicka, E.; Phinney, S.D.; Stich, V.; Parízková, J.; Zák, A.; Stunkard, A.J. Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids 2002, 37, 27–32. [Google Scholar] [CrossRef]
- Shimizu, M.; Kawai, K.; Yamashita, M.; Shoji, M.; Takakura, S.; Hata, T.; Nakashima, M.; Tatsushima, K.; Tanaka, K.; Sudo, N. Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: A case control study. Biopsychosoc. Med. 2020, 14, 14, Erratum in Biopsychosoc. Med. 2020, 14, 18. https://doi.org/10.1186/s13030-020-00192-w. [Google Scholar] [CrossRef]
- Satogami, K.; Tseng, P.T.; Su, K.P.; Takahashi, S.; Ukai, S.; Li, D.J.; Chen, T.Y.; Lin, P.Y.; Chen, Y.W.; Matsuoka, Y.J. Relationship between polyunsaturated fatty acid and eating disorders: Systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fatty Acids 2019, 142, 11–19. [Google Scholar] [CrossRef]
- Shih, P.B.; Morisseau, C.; Le, T.; Woodside, B.; German, J.B. Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat. 2017, 133, 11–19. [Google Scholar] [CrossRef]
- Fetissov, S.O.; Hökfelt, T. On the origin of eating disorders: Altered signaling between gut microbiota, adaptive immunity and the brain melanocortin system regulating feeding behavior. Curr. Opin. Pharmacol. 2019, 48, 82–91. [Google Scholar] [CrossRef]
- Smitka, K.; Prochazkova, P.; Roubalova, R.; Dvorak, J.; Papezova, H.; Hill, M.; Pokorny, J.; Kittnar, O.; Bilej, M.; Tlaskalova-Hogenova, H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Front. Endocrinol. 2021, 12, 613983. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.J.; Perrini, A.A.; Eckel, L.A. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021, 13, 500. [Google Scholar] [CrossRef]
- Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C.; et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, A.M.; Troisi, J.; Serena, G.; Fasano, A.; Dalle Grave, R.; Cascino, G.; Marciello, F.; Calugi, S.; Scala, G.; Corrivetti, G.; et al. The Gut Microbiome and Metabolomics Profiles of Restricting and Binge-Purging Type Anorexia Nervosa. Nutrients 2021, 13, 507. [Google Scholar] [CrossRef]
- Winston, J.A.; Theriot, C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 2020, 11, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Vecka, M.; Dušejovská, M.; Staňková, B.; Rychlík, I.; Žák, A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites 2021, 11, 774. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Sarvani, C.; Sireesh, D.; Ramkumar, K.M. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol. Res. 2017, 119, 412–421. [Google Scholar] [CrossRef]
- Hosoi, T.; Sasaki, M.; Miyahara, T.; Hashimoto, C.; Matsuo, S.; Yoshii, M.; Ozawa, K. Endoplasmic reticulum stress induces leptin resistance. Mol. Pharmacol. 2008, 74, 1610–1619. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, Q.; Zhou, X.; Duan, Y.; Yang, Y.; Gong, S.; Han, M.; Liu, Y.; Yang, Z.; Chen, Q.; et al. Role of brain-gut-muscle axis in human health and energy homeostasis. Front. Nutr. 2022, 9, 947033. [Google Scholar] [CrossRef]
- Alotaibi, G.; Alkhammash, A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur. J. Pharmacol. 2025, 998, 177509. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ramírez, L.; Mey, J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 9279. [Google Scholar] [CrossRef] [PubMed]
- Amerio, A.; Escelsior, A.; Martino, E.; Strangio, A.; Giacomini, C.; Montagna, E.; Aguglia, A.; Bellomo, M.; Sukkar, S.G.; Saverino, D. Dysfunction of Inflammatory Pathways and Their Relationship with Anti-Hypothalamic Autoantibodies in Patients with Anorexia Nervosa. Nutrients 2023, 15, 2199. [Google Scholar] [CrossRef] [PubMed]
- Hebebrand, J.; Hildebrandt, T.; Schlögl, H.; Seitz, J.; Denecke, S.; Vieira, D.; Gradl-Dietsch, G.; Peters, T.; Antel, J.; Lau, D.; et al. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: Implications for anorexia nervosa. Neurosci. Biobehav. Rev. 2022, 141, 104807. [Google Scholar] [CrossRef]
- Floriánková, M.; Uhlíková, P.; Dostálová, V.; Vecka, M.; Szitányi, P.; Žák, A. Nutritional and Clinical Status of Czech Adolescents with Anorexia Nervosa before and during the SARS-CoV-2 Pandemic. Bratisl. Med. J. 2025, 126, 609–618. [Google Scholar] [CrossRef]
- Tosi, F.; Sartori, F.; Guarini, P.; Olivieri, O.; Martinelli, N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014, 824, 61–81. [Google Scholar] [CrossRef]
- Zák, A.; Tvrzická, E.; Vecka, M.; Jáchymová, M.; Duffková, L.; Stanková, B.; Vávrová, L.; Kodydková, J.; Zeman, M. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J. Exp. Med. 2007, 212, 359–371. [Google Scholar] [CrossRef]
- Siguel, E.N.; Lerman, R.H. Prevalence of essential fatty acid deficiency in patients with chronic gastrointestinal disorders. Metabolism 1996, 45, 12–23. [Google Scholar] [CrossRef]
- Žížalová, K.; Vecka, M.; Vítek, L.; Leníček, M. Enzymatic methods may underestimate the total serum bile acid concentration. PLoS ONE 2020, 15, e0236372. [Google Scholar] [CrossRef] [PubMed]
- The R Development Core Team: R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.r-project.org/ (accessed on 28 April 2025).
- Huang, Y.Q.; Liu, X.C.; Lo, K.; Liu, L.; Yu, Y.L.; Chen, C.L.; Huang, J.Y.; Feng, Y.Q.; Zhang, B. The U Shaped Relationship Between High-Density Lipoprotein Cholesterol and All-Cause or Cause-Specific Mortality in Adult Population. Clin. Interv. Aging. 2020, 15, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, Y.; Wang, Z.; Wang, Y.; Bo, X.; Jiang, X.; Hao, C.; Ju, C.; Qu, Y.; Dong, H. Very high HDL-C (high-density lipoprotein cholesterol) is associated with increased cardiovascular risk in patients with NSTEMI (non-ST-segment elevation myocardial infarction) undergoing PCI (percutaneous coronary intervention). BMC Cardiovasc. Disord. 2023, 23, 357. [Google Scholar] [CrossRef] [PubMed]
- Schorr, M.; Miller, K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017, 13, 174–186. [Google Scholar] [CrossRef]
- Jafar, W.; Morgan, J. Anorexia nervosa and the gastrointestinal tract. Frontline Gastroenterol. 2021, 13, 316–324. [Google Scholar] [CrossRef]
- Králová Lesná, I.; Suchánek, P.; Kovář, J.; Poledne, R. Life style change and reverse cholesterol transport in obese women. Physiol. Res. 2009, 58, S33–S38. [Google Scholar] [CrossRef]
- Nguyen, N.; Dow, M.; Woodside, B.; German, J.B.; Quehenberger, O.; Shih, P.B. Food-Intake Normalization of Dysregulated Fatty Acids in Women with Anorexia Nervosa. Nutrients 2019, 11, 2208. [Google Scholar] [CrossRef]
- Caspar-Bauguil, S.; Montastier, E.; Galinon, F.; Frisch-Benarous, D.; Salvayre, R.; Ritz, P. Anorexia nervosa patients display a deficit in membrane long chain polyunsaturated fatty acids. Clin. Nutr. 2012, 31, 386–390. [Google Scholar] [CrossRef]
- Keys, A. Diet and the epidemiology of coronary heart disease. J. Am. Med. Assoc. 1957, 164, 1912–1919. [Google Scholar] [CrossRef]
- Kremmyda, L.S.; Tvrzicka, E.; Stankova, B.; Zak, A. Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011, 155, 195–218. [Google Scholar] [CrossRef]
- Zeman, M. Fatty acids and cardiovascular disease. In Fatty Acids and Fats in Health and Disease, 1st ed.; Zeman, M., Macášek, J., Vecka, M., Eds.; Grada Publishing: Prague, Czech Republic, 2024; pp. 109–126. (In Czech) [Google Scholar]
- van der Wurff, I.S.M.; von Schacky, C.; Bergeland, T.; Leontjevas, R.; Zeegers, M.P.; Kirschner, P.A.; de Groot, R.H.M. Exploring the association between whole blood Omega-3 Index, DHA, EPA, DHA, AA and n-6 DPA, and depression and self-esteem in adolescents of lower general secondary education. Eur. J. Nutr. 2019, 58, 1429–1439, Erratum in Eur. J. Nutr. 2020, 59, 843.. [Google Scholar] [CrossRef]
- Zec, M.M.; Schutte, A.E.; Ricci, C.; Baumgartner, J.; Kruger, I.M.; Smuts, C.M. Long-Chain Polyunsaturated Fatty Acids Are Associated with Blood Pressure and Hypertension over 10-Years in Black South African Adults Undergoing Nutritional Transition. Foods 2019, 8, 394. [Google Scholar] [CrossRef]
- de Groot, R.H.; van Boxtel, M.P.; Schiepers, O.J.; Hornstra, G.; Jolles, J. Age dependence of plasma phospholipid fatty acid levels: Potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations. Br. J. Nutr. 2009, 102, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, J.; Papandreou, C.; Soria-Florido, M.T.; Sala-Vila, A.; Blanchart, G.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Ros, E.; Ruiz-Canela, M.; et al. Cross-Sectional Associations between HDL Structure or Function, Cell Membrane Fatty Acid Composition, and Inflammation in Elderly Adults. J. Nutr. 2022, 152, 789–795. [Google Scholar] [CrossRef] [PubMed]
- van Gool, C.J.; van Houwelingen, A.C.; Hornstra, G. The essential fatty acid status in phenylketonuria patients under treatment. J. Nutr. Biochem. 2000, 11, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.A.; Ghebremeskel, K.; Lowy, C.; Offley-Shore, B.; Crawford, M.A. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot. Essent. Fatty Acids 2005, 72, 335–341. [Google Scholar] [CrossRef]
- de Groot, R.H.; Hornstra, G.; Jolles, J. Exploratory study into the relation between plasma phospholipid fatty acid status and cognitive performance. Prostaglandins Leukot. Essent. Fatty Acids 2007, 76, 165–172. [Google Scholar] [CrossRef]
- Elizondo, A.; Araya, J.; Rodrigo, R.; Poniachik, J.; Csendes, A.; Maluenda, F.; Díaz, J.C.; Signorini, C.; Sgherri, C.; Comporti, M.; et al. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity 2007, 15, 24–31. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; King, I.B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 2022, 33, 76–82. [Google Scholar] [CrossRef]
- Lai, K.Z.H.; Yehia, N.A.; Semnani-Azad, Z.; Mejia, S.B.; Boucher, B.A.; Malik, V.; Bazinet, R.P.; Hanley, A.J. Lifestyle Factors Associated with Circulating Very Long-Chain Saturated Fatty Acids in Humans: A Systematic Review of Observational Studies. Adv. Nutr. 2023, 14, 99–114. [Google Scholar] [CrossRef]
- Roubalová, R.; Procházková, P.; Papežová, H.; Smitka, K.; Bilej, M.; Tlaskalová-Hogenová, H. Anorexia nervosa: Gut microbiota-immune-brain interactions. Clin. Nutr. 2020, 39, 676–684. [Google Scholar] [CrossRef]
- Shapiro, H.; Kolodziejczyk, A.A.; Halstuch, D.; Elinav, E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 2018, 215, 383–396. [Google Scholar] [CrossRef]
- Galmiche, M.; Achamrah, N.; Déchelotte, P.; Ribet, D.; Breton, J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr. Rev. 2022, 80, 381–391. [Google Scholar] [CrossRef]
- Higashi, T.; Watanabe, S.; Tomaru, K.; Yamazaki, W.; Yoshizawa, K.; Ogawa, S.; Nagao, H.; Minato, K.; Maekawa, M.; Mano, N. Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids 2017, 125, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, K.; Tornese, P.; Cocco, A.; Albanese, A. Tauroursodeoxycholic acid: A potential therapeutic tool in neurodegenerative diseases. Transl. Neurodegener. 2022, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.Y.; Lee, A.; Lu, Y.X.; Zhou, S.Y.; Owyang, C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 2020, 5, e132400. [Google Scholar] [CrossRef] [PubMed]
- Perino, A.; Velázquez-Villegas, L.A.; Bresciani, N.; Sun, Y.; Huang, Q.; Fénelon, V.S.; Castellanos-Jankiewicz, A.; Zizzari, P.; Bruschetta, G.; Jin, S.; et al. Central anorexigenic actions of bile acids are mediated by TGR5. Nat. Metab. 2021, 3, 595–603. [Google Scholar] [CrossRef]
- Sato, H.; Macchiarulo, A.; Thomas, C.; Gioiello, A.; Une, M.; Hofmann, A.F.; Saladin, R.; Schoonjans, K.; Pellicciari, R.; Auwerx, J. Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 2008, 51, 1831–1841. [Google Scholar] [CrossRef]
- Li, R.; Andreu-Sánchez, S.; Kuipers, F.; Fu, J. Gut microbiome and bile acids in obesity-related diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101493. [Google Scholar] [CrossRef]
Parameter | AN (n = 39) | CON (n = 35) |
---|---|---|
Age (years) | 17 (14–21) 1 | 20 (16–22) |
BMI (kg·m−2) | 16.4 (13.6–18.2) *** | 20.8 (19.8–22.4) |
Fat mass (kg) | 7.6 (4.2–10.6) *** | 15.5 (12.4–18.5) |
Fat mass index (kg·m−2) | 3.1 (1.5–4.0) *** | 5.6 (4.8–6.5) |
Lean body mass (kg) | 36.3 (30.2–41.1) * | 41.8 (39.1–43.6) |
LBMI (kg·m−2) | 13.3 (11.7–15.0) ** | 15.4 (14.4–16.3) |
REE (kcal) | 998 (866–1309) ** | 1569 (1503–1645) |
NEFA (mmol/L) | 0.410 (0.155–0.780) | 0.420 (0.322–0.532) |
T3I (nmol/L) | 3.350 (2.775–3.855) *** | 6.100 (5.900–6.500) |
T4I (nmol/L) | 12.300 (11.750–13.225) ** | 15.500 (14.200–16.100) |
TSH (mIU/L) | 1.928 (1.375–2.280) | 2.670 (1.943–3.821) |
TC (mmol/L) | 4.76 (4.23–5.59) | 4.18 (3.95–4.88) |
TAG (mmol/L) | 0.92 (0.80–1.24) | 0.73 (0.61–1.03) |
Apo B (g/L) | 0.74 (0.60–0.85) | 0.72 (0.64–0.77) |
HDL-C (mmol/L) | 1.56 (1.40–1.85) *** | 1.28 (1.07–1.42) |
LDL-C (mmol/L) | 2.62 (2.18–3.31) | 2.61 (2.24–3.20) |
Non-HDL-C | 3.16 (2.390– 3.96) | 3.07 (2.69–3.54) |
LDL/HDL (ratio) | 1.74 (1.24–2.25) | 2.14 (1.72–2.84) |
Glucose (mmol/L) | 4.6 (4.1–5.0) | 4.7 (4.5–4.9) |
Insulin (mU/L) | 5.12 (3.57–6.36) ** | 11.36 (7.84–16.30) |
HOMA-IR (ratio) | 0.98 (0.59–1.56) * | 2.57 (1.57–3.26) |
CRP (mg/L) | 2.10 (0.54–4.38) | 2.30 (0.50–4.38) |
Parameter | AN (n = 39) | CON (n = 35) |
---|---|---|
14:0 1 | 0.24 (0.20–0.40) 2 | 0.26 (0.24–0.37) |
16:0 | 29.53 (27.31–30.92) 3* | 26.81 (25.55–29.05) |
16:1n-9 | 0.16 (0.13–0.18) | 0.17 (0.15–0.21) |
16:1n-7 | 0.72 (0.52–0.95) | 0.63 (0.57–0.70) |
18:0 | 12.95 (11.52–13.68) | 13.49 (12.42–14.46) |
18:1trans | 0.11 (0.08–0.14) | NA |
18:1n-9 | 11.31 (10.70–12.63) | 10.81 (10.28–11.75) |
18:1n-7 | 1.87 (1.63–2.14) | 1.96 (1.71–2.35) |
18:2n-6 | 23.65 (21.02–25.28) * | 25.53 (24.38–26.46) |
18:3n-6 | 0.08 (0.05–0.11) | 0.08 (0.06–0.10) |
18:3n-3 | 0.21 (0.08–0.38) | 0.30 (0.08–0.34) |
20:0 | 0.06 (0.05–0.15) | 0.07 (0.06–0.16) |
20:1n-9 | 0.15 (0.13–0.18) | 0.17 (0.14–0.19) |
20:2n-6 | 0.44 (0.34–0.76) | 0.40 (0.33–0.46) |
20:3n-6 | 3.11 (2.35–3.61) | 3.11 (2.74–3.29) |
20:4n-6 | 10.46 (9.00–11.33) | 10.23 (9.38–11.59) |
20:5n-3 | 0.60 (0.51–0.80) | 0.66 (0.54–0.81) |
22:4n-6 | 0.37 (0.32–0.42) | 0.37 (0.35–0.40) |
22:5n-6 | 0.28 (0.20–0.35) | 0.24 (0.21–0.28) |
22:5n-3 | 0.92 (0.69–1.14) | 0.90 (0.82–1.06) |
22:6n-3 | 2.61 (1.95–3.43) | 2.91 (2.17–3.80) |
Parameter | AN (n = 39) | CON (n = 35) |
---|---|---|
Σ SFA | 42.07 (41.18–43.57) 2 | 40.73 (39.86–43.35) |
Σ MFA | 14.38 (13.42–15.74) | 13.82 (12.99–14.85) |
Σ PUFA n-6 | 38.36 (36.97–39.77) 3** | 39.82 (38.77–41.47) |
Σ PUFA n-3 | 4.88 (3.61–5.66) | 5.12 (3.65–5.82) |
D5Dn-6 (20:4n-6/20:3n-6) 1 | 3.216 (2.642–4.817) | 3.338 (3.027–4.127) |
D6Dn-6 (18:3n-6/18:2n-6) | 0.003 (0.002–0.005) | 0.003 (0.002–0.004) |
D9D16 (16:1n-7/16:0) | 0.025 (0.019–0.032) | 0.023 (0.020–0.026) |
D9D18 (18:1n-9/18:0) | 0.908 (0.829–1.031) * | 0.811 (0.736–0.888) |
ADA n-6 4 | 0.615 (0.536–0.540) | 0.572 (0.511–0.614) |
22:4n-6/22:5n-6 | 1.369 (1.211–1.637) 5 | 1.522 (1.414–1.644) |
n-6 EFAD index | 0.030 (0.021–0.075) | 0.025 (0.019–0.028) |
n-6 EFAD index (≥0.086/<0.086) | none/39 | none/35 |
HDL-C | |||||||||
---|---|---|---|---|---|---|---|---|---|
AN | CON | ||||||||
Model 1: FAs + BMI + FMI | Model 1: FAs + BMI + FMI | ||||||||
variable | estimate | SE | p | Adjusted R2 | variable | estimate | SE | p | Adjusted R2 |
22:5n-6 | −0.4932 | 0.1321 | 0.0007 | 0.43 | 20:0 | 0.3894 | 0.1603 | 0.0208 | 0.15 |
FMI | −0.4044 | 0.1319 | 0.0042 | ||||||
16:0 | 0.3646 | 0.1347 | 0.0106 | ||||||
20:3n-6 | −0.2568 | 0.1309 | NS | ||||||
Model 2: FAs + Glu + Ins | Model 2: FAs + Glu + Ins | ||||||||
variable | estimate | SE | p | Adjusted R2 | variable | estimate | SE | p | Adjusted R2 |
22:5n-6 | −0.3896 | 0.1514 | 0.0142 | 0.15 | 20:0 | 0.3894 | 0.1603 | 0.0208 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žák, A.; Vecka, M.; Szitanyi, P.; Floriánková, M.; Staňková, B.; Uhlíková, P.; Dostálová, V.; Burda, M. Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern. Nutrients 2025, 17, 2347. https://doi.org/10.3390/nu17142347
Žák A, Vecka M, Szitanyi P, Floriánková M, Staňková B, Uhlíková P, Dostálová V, Burda M. Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern. Nutrients. 2025; 17(14):2347. https://doi.org/10.3390/nu17142347
Chicago/Turabian StyleŽák, Aleš, Marek Vecka, Peter Szitanyi, Marcela Floriánková, Barbora Staňková, Petra Uhlíková, Veronika Dostálová, and Michal Burda. 2025. "Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern" Nutrients 17, no. 14: 2347. https://doi.org/10.3390/nu17142347
APA StyleŽák, A., Vecka, M., Szitanyi, P., Floriánková, M., Staňková, B., Uhlíková, P., Dostálová, V., & Burda, M. (2025). Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern. Nutrients, 17(14), 2347. https://doi.org/10.3390/nu17142347