The Connections Between Dietary Fatty Acids, Inflammation, and Chronic Disease
1. Introduction
2. Dietary PUFAs and Health
3. PUFAs as Therapeutics
4. Vulvodynia: A Little-Known Example of Lipid Dysbiosis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Panezai, J.; van Dyke, T. Polyunsaturated Fatty Acids and Their Immunomodulatory Actions in Periodontal Disease. Nutrients 2023, 15, 821. [Google Scholar] [CrossRef] [PubMed Central]
- Zhao, P.; Zhao, S.; Tian, J.; Liu, X. Significance of Gut Microbiota and Short-Chain Fatty Acids in Heart Failure. Nutrients 2022, 14, 3758. [Google Scholar] [CrossRef] [PubMed Central]
- Hopfinger, A.; Karrasch, T.; Schaffler, A.; Schmid, A. Circulating Levels of Cathelicidin Antimicrobial Peptide (CAMP) Are Affected by Oral Lipid Ingestion. Nutrients 2023, 15, 3021. [Google Scholar] [CrossRef] [PubMed Central]
- Yao, Q.; Liu, J.; Cui, Q.; Jiang, T.; Xie, X.; Du, X.; Zhao, Z.; Lai, B.; Xiao, L.; Wang, N. CCN1/Integrin alpha(5)beta(1) Instigates Free Fatty Acid-Induced Hepatocyte Lipid Accumulation and Pyrop-tosis through NLRP3 Inflammasome Activation. Nutrients 2022, 14, 3871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crovella, S.; Ouhtit, A.; Rahman, S.M.; Rahman, M.M. Docosahexaenoic Acid, a Key Compound for Enhancing Sensitization to Drug in Doxorubicin-Resistant MCF-7 Cell Line. Nutrients 2023, 15, 1658. [Google Scholar] [CrossRef] [PubMed Central]
- Fischer, S.A.; Oladele, O.; Mahamed, Z.; Emanuelle, C.; Baumer, A.; Bekauri, T.; Maddipati, K.R.; Love, T.; Linder, M.; Falsetta, M.L. Dysregulation of Arachidonic Acid Metabolism Drives Inflammatory Lipid Production in Localized Pro-voked Vulvodynia. Nutrients 2025, 17, 2233. [Google Scholar] [CrossRef] [PubMed]
- Giangregorio, F.; Mosconi, E.; Debellis, M.G.; Provini, S.; Esposito, C.; Garolfi, M.; Oraka, S.; Kaloudi, O.; Mustafazade, G.; Marin-Baselga, R.; et al. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J. Clin. Med. 2024, 13, 5880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mititelu, M.; Lupuliasa, D.; Neacsu, S.M.; Olteanu, G.; Busnatu, S.S.; Mihai, A.; Popovici, V.; Maru, N.; Boroghina, S.C.; Mihai, S.; et al. Polyunsaturated Fatty Acids and Human Health: A Key to Modern Nutritional Balance in Association with Polyphenolic Compounds from Food Sources. Foods 2024, 14, 46. [Google Scholar] [CrossRef] [PubMed Central]
- Singh, P.; Kaushik, U.; Mir, S.R.; Kukreti, N.; Visht, S. Dietary and Nutritional Aspects of Metabolic Syndrome Management: An Overview. Endocr. Metab. Immune Disord. Drug Targets 2025, 25, 1–12. [Google Scholar] [CrossRef]
- Godos, J.; Guglielmetti, M.; Ferraris, C.; Frias-Toral, E.; Dominguez Azpiroz, I.; Lipari, V.; Di Mauro, A.; Furnari, F.; Castellano, S.; Galvano, F.; et al. Mediterranean Diet and Quality of Life in Adults: A Systematic Review. Nutrients 2025, 17, 577. [Google Scholar] [CrossRef] [PubMed Central]
- Aquino-Blanco, A.; Jimenez-Lopez, E.; Victoria-Montesinos, D.; Gutierrez-Espinoza, H.; Olivares-Arancibia, J.; Yanez-Sepulveda, R.; Martin-Calvo, N.; Lopez-Gil, J.F. The Role of Food Security in Mediterranean Diet Adherence Among Adolescents: Findings from the EHDLA Study. Foods 2025, 14, 414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjorndal, B.; Strand, E.; Gjerde, J.; Bohov, P.; Svardal, A.; Diehl, B.W.; Innis, S.M.; Berger, A.; Berge, R.K. Phospholipids from herring roe improve plasma lipids and glucose tolerance in healthy, young adults. Lipids Health Dis. 2014, 13, 82. [Google Scholar] [CrossRef] [PubMed Central]
- Lee, K.R.; Midgette, Y.; Shah, R. Fish Oil Derived Omega 3 Fatty Acids Suppress Adipose NLRP3 Inflammasome Signaling in Human Obesity. J. Endocr. Soc. 2019, 3, 504–515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, Z.T.; Zhang, J.M.; Zhu, W.T. Omega-3 Polyunsaturated Fatty Acid Supplementation for Reducing Muscle Soreness after Eccentric Exercise: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biomed. Res. Int. 2020, 2020, 8062017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Yurko-Mauro, K.; Kralovec, J.; Bailey-Hall, E.; Smeberg, V.; Stark, J.G.; Salem, N., Jr. Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis. 2015, 14, 99. [Google Scholar] [CrossRef] [PubMed Central]
- Offman, E.; Marenco, T.; Ferber, S.; Johnson, J.; Kling, D.; Curcio, D.; Davidson, M. Steady-state bioavailability of prescription omega-3 on a low-fat diet is significantly improved with a free fatty acid formulation compared with an ethyl ester formulation: The ECLIPSE II study. Vasc. Health Risk Manag. 2013, 9, 563–573. [Google Scholar] [CrossRef] [PubMed Central]
- Liang, Z.; Wang, Z.; Liu, X.; He, Y. Confronting the global obesity epidemic: Investigating the role and underlying mechanisms of vitamin D in metabolic syndrome management. Front. Nutr. 2024, 11, 1416344. [Google Scholar] [CrossRef] [PubMed Central]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed Central]
- Strauss, M.; Lavie, C.J.; Lippi, G.; Brzek, A.; Vollenberg, R.; Sanchis-Gomar, F.; Leischik, R. A systematic review of prevalence of metabolic syndrome in occupational groups—Does occupation matter in the global epidemic of metabolic syndrome? Prog. Cardiovasc. Dis. 2022, 75, 69–77. [Google Scholar] [CrossRef]
- Ito, M.K. A Comparative Overview of Prescription Omega-3 Fatty Acid Products. Pharm. Ther. 2015, 40, 826–857. [Google Scholar] [PubMed Central]
- Gioxari, A.; Kaliora, A.C.; Marantidou, F.; Panagiotakos, D.P. Intake of omega-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: A systematic review and meta-analysis. Nutrition 2018, 45, 114–124.e4. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Jeong, M.; Park, J.M.; Kim, M.Y.; Go, E.J.; Cha, J.Y.; Kim, K.J.; Hahm, K.B. The omega-3 polyunsaturated fatty acids prevented colitis-associated carcinogenesis through blocking disso-ciation of beta-catenin complex, inhibiting COX-2 through repressing NF-kappaB, and inducing 15-prostaglandin dehydro-genase. Oncotarget 2016, 7, 63583–63595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jamilian, M.; Samimi, M.; Mirhosseini, N.; Afshar Ebrahimi, F.; Aghadavod, E.; Taghizadeh, M.; Asemi, Z. A Randomized Double-Blinded, Placebo-Controlled Trial Investigating the Effect of Fish Oil Supplementation on Gene Expression Related to Insulin Action, Blood Lipids, and Inflammation in Gestational Diabetes Mellitus-Fish Oil Sup-plementation and Gestational Diabetes. Nutrients 2018, 10, 163. [Google Scholar] [PubMed Central]
- Micallef, M.A.; Garg, M.L. Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis 2009, 204, 476–482. [Google Scholar] [CrossRef]
- Falsetta, M.L.; Maddipati, K.R.; Honn, K.V. Inflammation, lipids, and pain in vulvar disease. Pharmacol. Ther. 2023, 248, 108467. [Google Scholar] [CrossRef]
- Pownall, H.J.; Brauchi, D.; Kilinc, C.; Osmundsen, K.; Pao, Q.; Payton-Ross, C.; Gotto, A.M., Jr.; Ballantyne, C.M. Correlation of serum triglyceride and its reduction by omega-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis 1999, 143, 285–297. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef] [PubMed Central]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83, 1467S–1476S. [Google Scholar] [CrossRef]
- Davidson, M.H.; Johnson, J.; Rooney, M.W.; Kyle, M.L.; Kling, D.F. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: The ECLIPSE (Epanova((R)) compared to Lovaza((R)) in a pharmacokinetic single-dose evaluation) study. J. Clin. Lipidol. 2012, 6, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, A.; Ericsson, C.; Hagstedt, T.; Kjellstedt, A.; Oscarsson, J.; Oakes, N.D. Uptake and tissue accretion of orally administered free carboxylic acid as compared to ethyl ester form of docosahexaenoic acid (DHA) in the rat. PLoS ONE 2018, 13, e0201367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cassagnol, M.; Ezzo, D.; Patel, P.N. New therapeutic alternatives for the management of dyslipidemia. J. Pharm. Pract. 2013, 26, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Maimo-Barcelo, A.; Martin-Saiz, L.; Barcelo-Nicolau, M.; Salivo, S.; Perez-Romero, K.; Rodriguez, R.M.; Martin, J.; Martinez, M.A.; Garcia, M.; Amengual, I.; et al. Lipid signature associated with chronic colon inflammation reveals a dysregulation in colonocyte differentiation process. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159528. [Google Scholar] [CrossRef]
- Bekauri, T.; Fischer, S.; Honn, K.V.; Maddipati, K.R.; Love, T.; Little, C.; Wood, R.W.; Bonham, A.D.; Linder, M.A.; Yule, D.I.; et al. Inflammation, lipid dysregulation, and transient receptor potential cation channel subfamily V member 4 signaling perpetuate chronic vulvar pain. Pain 2024, 165, 820–837. [Google Scholar] [CrossRef] [PubMed Central]
- Augustin, B.; Wu, D.; Black, L.P.; Bertrand, A.; Sulaiman, D.; Hopson, C.; Jacob, V.; Shavit, J.A.; Hofmaenner, D.A.; Labilloy, G.; et al. Multiomic molecular patterns of lipid dysregulation in a subphenotype of sepsis with higher shock incidence and mortality. Crit. Care 2024, 28, 431. [Google Scholar] [CrossRef] [PubMed Central]
- Muniz-Santos, R.; Lucieri-Costa, G.; de Almeida, M.A.P.; Moraes-de-Souza, I.; Brito, M.; Silva, A.R.; Goncalves-de-Albuquerque, C.F. Lipid oxidation dysregulation: An emerging player in the pathophysiology of sepsis. Front. Immunol. 2023, 14, 1224335. [Google Scholar] [CrossRef] [PubMed Central]
- Chiang, N.; Serhan, C.N. Specialized pro-resolving mediator network: An update on production and actions. Essays Biochem. 2020, 64, 443–462. [Google Scholar]
- Serhan, C.N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Asp. Med. 2017, 58, 1–11. [Google Scholar] [CrossRef] [PubMed Central]
- Byrne, L.; Guiry, P.J. Advances in the Chemistry and Biology of Specialised Pro-Resolving Mediators (SPMs). Molecules 2024, 29, 2233. [Google Scholar] [CrossRef] [PubMed Central]
- Ferreira, I.; Falcato, F.; Bandarra, N.; Rauter, A.P. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Path-ways, Synthetic Approaches, and Their Role in Inflammation. Molecules 2022, 27, 1677. [Google Scholar] [CrossRef] [PubMed Central]
- Amirthalingam, S.D.; Nalliah, S. Vulvodynia—A contemporary understanding and practical approach in primary care settings. Malays. Fam. Physician 2024, 19, 72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falsetta, M.L.; Foster, D.C.; Bonham, A.D.; Phipps, R.P. A review of the available clinical therapies for vulvodynia management and new data implicating proin-flammatory mediators in pain elicitation. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 210–218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haefner, H.K.; Collins, M.E.; Davis, G.D.; Edwards, L.; Foster, D.C.; Hartmann, E.D.; Kaufman, R.H.; Lynch, P.J.; Margesson, L.J.; Moyal-Barracco, M.; et al. The vulvodynia guideline. J. Low. Genit. Tract Dis. 2005, 9, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Stockdale, C.K.; Lawson, H.W. 2013 Vulvodynia Guideline update. J. Low. Genit. Tract Dis. 2014, 18, 93–100. [Google Scholar] [CrossRef]
- Falsetta, M.L.; Wood, R.W.; Linder, M.A.; Bonham, A.D.; Honn, K.V.; Maddipati, K.R.; Phipps, R.P.; Haidaris, C.G.; Foster, D.C. Specialized Pro-resolving Mediators Reduce Pro-nociceptive Inflammatory Mediator Production in Models of Localized Provoked Vulvodynia. J. Pain 2021, 22, 1195–1209. [Google Scholar] [CrossRef] [PubMed Central]
- Foster, D.; Falsetta, M.L.; Woeller, C.; Pollock, S.; Song, K.; Bonham, A.; Haidaris, C.; Stogell, C.; Messing, S.; Iadarola, M.; et al. Site-specific mesenchymal control of inflammatory pain to yeast challenge in vulvodynia afflicted and pain-free women. Pain 2015, 156, 386–396. [Google Scholar] [CrossRef] [PubMed Central]
- Falsetta, M.L.; Foster, D.C.; Woeller, C.F.; Pollock, S.J.; Bonham, A.D.; Haidaris, C.G.; Stodgell, C.J.; Phipps, R.P. Identification of novel mechanisms involved in generating localized vulvodynia pain. Am. J. Obstet. Gynecol. 2015, 213, 38.e1–38.e12. [Google Scholar] [CrossRef] [PubMed Central]
- Awad-Igbaria, Y.; Dadon, S.; Shamir, A.; Livoff, A.; Shlapobersky, M.; Bornstein, J.; Palzur, E. Characterization of Early Inflammatory Events Leading to Provoked Vulvodynia Development in Rats. J. Inflamm. Res. 2022, 15, 3901–3923. [Google Scholar] [CrossRef] [PubMed Central]
- Tommola, P.; Unkila-Kallio, L.; Paetau, A.; Meri, S.; Kalso, E.; Paavonen, J. Immune activation enhances epithelial nerve growth in provoked vestibulodynia. Am. J. Obstet. Gynecol. 2016, 215, 768.e1–768.e8. [Google Scholar] [CrossRef] [PubMed]
- Tommola, P.; Butzow, R.; Unkila-Kallio, L.; Paavonen, J.; Meri, S. Activation of vestibule-associated lymphoid tissue in localized provoked vulvodynia. Am. J. Obstet. Gynecol. 2015, 212, 476.e1–476.e8. [Google Scholar] [CrossRef]
- Falsetta, M.L. Editorial: Vulvodynia and beyond: Innate immune sensing, microbes, inflammation, and chronic pain. Front. Cell. Infect. Microbiol. 2023, 13, 1338659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomson, S.J.; Askari, A.; Bishop-Bailey, D. Anti-inflammatory effects of epoxyeicosatrienoic acids. Int. J. Vasc. Med. 2012, 2012, 605101. [Google Scholar] [CrossRef] [PubMed Central]
- Falsetta, M.L.; Foster, D.C.; Woeller, C.F.; Pollock, S.J.; Bonham, A.D.; Haidaris, C.G.; Phipps, R.P. A role for bradykinin signaling in chronic vulvar pain. J. Pain 2016, 17, 1183–1197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falsetta, M.L.; Foster, D.C.; Woeller, C.F.; Pollock, S.J.; Bonham, A.D.; Piekna-Przybylska, D.; Maggirwar, S.B.; Haidaris, C.G.; Phipps, R.P. Toll-Like Receptor Signaling Contributes to Proinflammatory Mediator Production in Localized Provoked Vulvodynia. J. Low. Genit. Tract Dis. 2018, 22, 52–57. [Google Scholar] [CrossRef] [PubMed Central]
- Mocini, E.; Donini, L.M.; Isidori, A.M.; Minnetti, M. Nutritional and metabolic aspects related to vulvodynia: What do we really know? Nutrition 2024, 117, 112232. [Google Scholar] [CrossRef]
- Harlow, B.L.; Abenhaim, H.A.; Vitonis, A.F.; Harnack, L. Influence of dietary oxalates on the risk of adult-onset vulvodynia. J. Reprod. Med. 2008, 53, 171–178. [Google Scholar]
- Greenstein, A.; Militscher, I.; Chen, J.; Matzkin, H.; Lessing, J.B.; Abramov, L. Hyperoxaluria in women with vulvar vestibulitis syndrome. J. Reprod. Med. 2006, 51, 500–502. [Google Scholar]
- Baggish, M.S.; Sze, E.H.; Johnson, R. Urinary oxalate excretion and its role in vulvar pain syndrome. Am. J. Obstet. Gynecol. 1997, 177, 507–511. [Google Scholar] [CrossRef]
- Solomons, C.C.; Melmed, M.H.; Heitler, S.M. Calcium citrate for vulvar vestibulitis. A case report. J. Reprod. Med. 1991, 36, 879–882. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falsetta, M.L.; Chrysilla, E. The Connections Between Dietary Fatty Acids, Inflammation, and Chronic Disease. Nutrients 2025, 17, 2322. https://doi.org/10.3390/nu17142322
Falsetta ML, Chrysilla E. The Connections Between Dietary Fatty Acids, Inflammation, and Chronic Disease. Nutrients. 2025; 17(14):2322. https://doi.org/10.3390/nu17142322
Chicago/Turabian StyleFalsetta, Megan L., and Emanuelle Chrysilla. 2025. "The Connections Between Dietary Fatty Acids, Inflammation, and Chronic Disease" Nutrients 17, no. 14: 2322. https://doi.org/10.3390/nu17142322
APA StyleFalsetta, M. L., & Chrysilla, E. (2025). The Connections Between Dietary Fatty Acids, Inflammation, and Chronic Disease. Nutrients, 17(14), 2322. https://doi.org/10.3390/nu17142322