Obesity and Pancreatic Diseases: From Inflammation to Oncogenesis and the Impact of Weight Loss Interventions
Abstract
1. Introduction
2. Methods
3. The Role of Obesity in the Onset and Severity of Acute Pancreatitis
3.1. Obesity as a Risk Factor for Acute Pancreatitis
3.2. Mechanisms Linking Obesity to the Onset of Acute Pancreatitis
3.2.1. Gallstone Formation
3.2.2. Hypertriglyceridemia-Associated Pancreatitis
3.2.3. Insulin Resistance and Type 2 Diabetes Mellitus
3.2.4. Intrapancreatic Fat as a Substrate for Inflammation
3.3. Obesity and the Severity of Acute Pancreatitis
3.4. Clinical Implications and Future Directions
4. Obesity and Chronic Pancreatitis: Risk, Mechanisms, and Clinical Perspectives
4.1. Obesity and Risk of Chronic Pancreatitis
4.2. Intrapancreatic Fat, Fibrosis, and Progression in Chronic Pancreatitis
4.3. Clinical Implications and Future Directions
5. Obesity and Pancreatic Cancer: Epidemiology, Pathogenesis, and Therapeutic Perspectives
5.1. Epidemiology and Obesity as a Risk Factor
5.2. Mechanisms Linking Obesity to Pancreatic Cancer Development
5.3. Clinical Implications and Future Directions
6. The Impact of Obesity Treatment on Pancreatic Diseases
6.1. Lifestyle Modification and Preventive Strategies
6.2. Pharmacologic Interventions
6.3. Endoscopic Bariatric and Metabolic Therapies
6.4. Bariatric and Metabolic Surgery
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ng, M.; Gakidou, E.; Lo, J.; Abate, Y.H.; Abbafati, C.; Abbas, N.; Abbasian, M.; ElHafeez, S.A.; Abdel-Rahman, W.M.; Abd-Elsalam, S.; et al. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef]
- Ryan, D.; Barquera, S.; Barata Cavalcanti, O.; Ralston, J. The Global Pandemic of Overweight and Obesity. In Handbook of Global Health; Kickbusch, I., Ganten, D., Moeti, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 739–773. [Google Scholar]
- Gonzalez, A.B.d.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-Mass Index and Mortality among 1.46 Million White Adults. N. Engl. J. Med. 2010, 363, 2211–2219. [Google Scholar] [CrossRef]
- Eibl, G.; Rozengurt, E. Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers 2021, 13, 5067. [Google Scholar] [CrossRef]
- Huang, J.; Lok, V.; Ngai, C.H.; Zhang, L.; Yuan, J.; Lao, X.Q.; Ng, K.; Chong, C.; Zheng, Z.J.; Wong, M.C.S. Worldwide Burden of, Risk Factors for, and Trends in Pancreatic Cancer. Gastroenterology 2021, 160, 744–754. [Google Scholar] [CrossRef]
- Ouyang, G.; Pan, G.; Liu, Q.; Wu, Y.; Liu, Z.; Lu, W.; Li, S.; Zhou, Z.; Wen, Y. The global, regional, and national burden of pancreatitis in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. BMC Med. 2020, 18, 388. [Google Scholar] [CrossRef]
- Kim, H.G.; Han, J. Obesity and pancreatic diseases. Korean J. Gastroenterol. 2012, 59, 35–39. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Portincasa, P. Fat, epigenome and pancreatic diseases. Interplay and common pathways from a toxic and obesogenic environment. Eur. J. Intern. Med. 2014, 25, 865–873. [Google Scholar] [CrossRef]
- Lilly, A.C.; Astsaturov, I.; Golemis, E.A. Intrapancreatic fat, pancreatitis, and pancreatic cancer. Cell. Mol. Life Sci. 2023, 80, 206. [Google Scholar] [CrossRef]
- Gonçalves, T.C.; Capela, T.L.; Cotter, J. Nutrition in Pancreatic Diseases: A Roadmap for the Gastroenterologist. GE Port. J. Gastroenterol. 2024, 31, 1–13. [Google Scholar] [CrossRef]
- Cañamares-Orbís, P.; García-Rayado, G.; Alfaro-Almajano, E. Nutritional Support in Pancreatic Diseases. Nutrients 2022, 14, 4570. [Google Scholar] [CrossRef]
- Iannuzzi, J.P.; King, J.A.; Leong, J.H.; Quan, J.; Windsor, J.W.; Tanyingoh, D.; Coward, S.; Forbes, N.; Heitman, S.J.; Shaheen, A.A.; et al. Global Incidence of Acute Pancreatitis Is Increasing Over Time: A Systematic Review and Meta-Analysis. Gastroenterology 2022, 162, 122–134. [Google Scholar] [CrossRef]
- Quan, Y.; Yang, X.J. Metabolic syndrome and acute pancreatitis: Current status and future prospects. World J. Gastroenterol. 2024, 30, 4859–4863. [Google Scholar] [CrossRef]
- Aune, D.; Mahamat-Saleh, Y.; Norat, T.; Riboli, E. High Body Mass Index and Central Adiposity Is Associated with Increased Risk of Acute Pancreatitis: A Meta-Analysis. Dig. Dis. Sci. 2021, 66, 1249–1267. [Google Scholar] [CrossRef]
- Pang, Y.; Kartsonaki, C.; Turnbull, I.; Guo, Y.; Yang, L.; Bian, Z.; Chen, Y.; Millwood, I.Y.; Bragg, F.; Gong, W.; et al. Metabolic and lifestyle risk factors for acute pancreatitis in Chinese adults: A prospective cohort study of 0.5 million people. PLoS Med. 2018, 15, e1002618. [Google Scholar] [CrossRef]
- Sadr-Azodi, O.; Orsini, N.; Andrén-Sandberg, Å.; Wolk, A. Abdominal and total adiposity and the risk of acute pancreatitis: A population-based prospective cohort study. Am. J. Gastroenterol. 2013, 108, 133–139. [Google Scholar] [CrossRef]
- Hong, S.; Qiwen, B.; Ying, J.; Wei, A.; Chaoyang, T. Body mass index and the risk and prognosis of acute pancreatitis: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2011, 23, 1136–1143. [Google Scholar] [CrossRef]
- Radmard, A.R.; Merat, S.; Kooraki, S.; Ashraf, M.; Keshtkar, A.; Sharafkhah, M.; Jafari, E.; Malekzadeh, R.; Poustchi, H. Gallstone disease and obesity: A population-based study on abdominal fat distribution and gender differences. Ann. Hepatol. 2015, 14, 702–709. [Google Scholar] [CrossRef]
- Flint, R. Differences in acute general surgical admissions between obese or overweight patients compared to normal-sized patients. N. Z. Med. J. 2015, 128, 35–41. [Google Scholar]
- Cruz-Monserrate, Z.; Conwell, D.L.; Krishna, S.G. The Impact of Obesity on Gallstone Disease, Acute Pancreatitis, and Pancreatic Cancer. Gastroenterol. Clin. 2016, 45, 625–637. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, Y.; Wang, Y.; Cui, H.; Zhang, W.; Zhang, L.; Yan, P.; Tang, M.; Liu, Y.; Jiang, X.; et al. Independent association of general and central adiposity with risk of gallstone disease: Observational and genetic analyses. Front. Endocrinol. 2024, 15, 1367229. [Google Scholar] [CrossRef]
- Shah, A.S.; Wilson, D.P. Primary hypertriglyceridemia in children and adolescents. J. Clin. Lipidol. 2015, 9, S20–S28. [Google Scholar] [CrossRef] [PubMed]
- Blackett, P.R.; Wilson, D.P.; McNeal, C.J. Secondary hypertriglyceridemia in children and adolescents. J. Clin. Lipidol. 2015, 9, S29–S40. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, W. Hypertriglyceridemia and acute pancreatitis: Clinical and basic research—A narrative review. J. Pancreatol. 2024, 7, 53–60. [Google Scholar] [CrossRef]
- Acharya, C.; Navina, S.; Singh, V.P. Role of pancreatic fat in the outcomes of pancreatitis. Pancreatology 2014, 14, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Huang, M.Y.; Hsu, C.Y.; Su, Y.C. Bidirectional Relationship Between Diabetes and Acute Pancreatitis: A Population-Based Cohort Study in Taiwan. Medicine 2016, 95, e2448. [Google Scholar] [CrossRef]
- Girman, C.J.; Kou, T.D.; Cai, B.; Alexander, C.M.; O’Neill, E.A.; Williams-Herman, D.E.; Katz, L. Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes. Metab. 2010, 12, 766–771. [Google Scholar] [CrossRef]
- Solanki, N.S.; Barreto, S.G.; Saccone, G.T. Acute pancreatitis due to diabetes: The role of hyperglycaemia and insulin resistance. Pancreatology 2012, 12, 234–239. [Google Scholar] [CrossRef]
- Albai, O.; Roman, D.; Frandes, M. Hypertriglyceridemia, an important and independent risk factor for acute pancreatitis in patients with type 2 diabetes mellitus. Ther. Clin. Risk Manag. 2017, 13, 515–522. [Google Scholar] [CrossRef]
- Paragomi, P.; Papachristou, G.I.; Jeong, K.; Hinton, A.; Pothoulakis, I.; Talukdar, R.; Kochhar, R.; Goenka, M.K.; Gulla, A.; Gonzalez, J.A.; et al. The relationship between pre-existing diabetes mellitus and the severity of acute pancreatitis: Report from a large international registry. Pancreatology 2022, 22, 85–91. [Google Scholar] [CrossRef]
- Singh, S.; Chang, H.Y.; Richards, T.M.; Weiner, J.P.; Clark, J.M.; Segal, J.B. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: A population-based matched case-control study. JAMA Intern. Med. 2013, 173, 534–539. [Google Scholar] [CrossRef]
- Rehman, M.B.; Tudrej, B.V.; Soustre, J.; Buisson, M.; Archambault, P.; Pouchain, D.; Vaillant-Roussel, H.; Gueyffier, F.; Faillie, J.L.; Perault-Pochat, M.C.; et al. Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: Meta-analysis of placebo-controlled randomized clinical trials. Diabetes Metab. 2017, 43, 48–58. [Google Scholar] [CrossRef]
- Alenzi, K.A.; Alsuhaibani, D.; Batarfi, B.; Alshammari, T.M. Pancreatitis with use of new diabetic medications: A real-world data study using the post-marketing FDA adverse event reporting system (FAERS) database. Front. Pharmacol. 2024, 15, 1364110. [Google Scholar] [CrossRef]
- Egan, A.G.; Blind, E.; Dunder, K.; Graeff, P.A.d.; Hummer, B.T.; Bourcier, T.; Rosebraugh, C. Pancreatic Safety of Incretin-Based Drugs—FDA and EMA Assessment. N. Engl. J. Med. 2014, 370, 794–797. [Google Scholar] [CrossRef]
- Huh, J.H.; Jeon, H.; Park, S.M.; Choi, E.; Lee, G.S.; Kim, J.W.; Lee, K.J. Diabetes Mellitus is Associated With Mortality in Acute Pancreatitis. J. Clin. Gastroenterol. 2018, 52, 178–183. [Google Scholar] [CrossRef]
- Méndez-Bailón, M.; de Miguel Yanes, J.M.; Jiménez-García, R.; Hernández-Barrera, V.; Pérez-Farinós, N.; López-de-Andrés, A. National trends in incidence and outcomes of acute pancreatitis among type 2 diabetics and non-diabetics in Spain (2001–2011). Pancreatology 2015, 15, 64–70. [Google Scholar] [CrossRef]
- Saisho, Y.; Butler, A.E.; Meier, J.J.; Monchamp, T.; Allen-Auerbach, M.; Rizza, R.A.; Butler, P.C. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 2007, 20, 933–942. [Google Scholar] [CrossRef]
- Schmitz-Moormann, P.; Pittner, P.M.; Heinze, W. Lipomatosis of the pancreas: A morphometrical investigation. Pathol. Res. Pract. 1981, 173, 45–53. [Google Scholar] [CrossRef]
- Navina, S.; Acharya, C.; DeLany, J.P.; Orlichenko, L.S.; Baty, C.J.; Shiva, S.S.; Durgampudi, C.; Karlsson, J.M.; Lee, K.; Bae, K.T.; et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl. Med. 2011, 3, 107ra110. [Google Scholar] [CrossRef]
- Martínez, J.; Johnson, C.D.; Sánchez-Payá, J.; de Madaria, E.; Robles-Díaz, G.; Pérez-Mateo, M. Obesity is a definitive risk factor of severity and mortality in acute pancreatitis: An updated meta-analysis. Pancreatology 2006, 6, 206–209. [Google Scholar] [CrossRef]
- Martínez, J.; Sánchez-Payá, J.; Palazón, J.M.; Suazo-Barahona, J.; Robles-Díaz, G.; Pérez-Mateo, M. Is obesity a risk factor in acute pancreatitis? A meta-analysis. Pancreatology 2004, 4, 42–48. [Google Scholar] [CrossRef]
- Chen, S.M.; Xiong, G.S.; Wu, S.M. Is obesity an indicator of complications and mortality in acute pancreatitis? An updated meta-analysis. J. Dig. Dis. 2012, 13, 244–251. [Google Scholar] [CrossRef]
- Dobszai, D.; Mátrai, P.; Gyöngyi, Z.; Csupor, D.; Bajor, J.; Erőss, B.; Mikó, A.; Szakó, L.; Meczker, Á.; Hágendorn, R.; et al. Body-mass index correlates with severity and mortality in acute pancreatitis: A meta-analysis. World J. Gastroenterol. 2019, 25, 729–743. [Google Scholar] [CrossRef]
- de Oliveira, C.; Khatua, B.; Noel, P.; Kostenko, S.; Bag, A.; Balakrishnan, B.; Patel, K.S.; Guerra, A.A.; Martinez, M.N.; Trivedi, S.; et al. Pancreatic triglyceride lipase mediates lipotoxic systemic inflammation. J. Clin. Investig. 2020, 130, 1931–1947. [Google Scholar] [CrossRef]
- Mössner, J.; Bödeker, H.; Kimura, W.; Meyer, F.; Böhm, S.; Fischbach, W. Isolated rat pancreatic acini as a model to study the potential role of lipase in the pathogenesis of acinar cell destruction. Int. J. Pancreatol. 1992, 12, 285–296. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Ockenga, J.; Eshraghian, A.; Barazzoni, R.; Busetto, L.; Campmans-Kuijpers, M.; Cardinale, V.; Chermesh, I.; Kani, H.T.; Khannoussi, W.; et al. Practical guideline on obesity care in patients with gastrointestinal and liver diseases—Joint ESPEN/UEG guideline. Clin. Nutr. 2023, 42, 987–1024. [Google Scholar] [CrossRef]
- Simha, V. Management of hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef]
- Nøjgaard, C. Prognosis of acute and chronic pancreatitis—A 30-year follow-up of a Danish cohort. Dan. Med. Bull. 2010, 57, B4228. [Google Scholar]
- Takita, M.; Naziruddin, B.; Matsumoto, S.; Noguchi, H.; Shimoda, M.; Chujo, D.; Itoh, T.; Sugimoto, K.; Tamura, Y.; Olsen, G.S.; et al. Body mass index reflects islet isolation outcome in islet autotransplantation for patients with chronic pancreatitis. Cell Transplant. 2011, 20, 313–322. [Google Scholar] [CrossRef]
- Uc, A.; Zimmerman, M.B.; Wilschanski, M.; Werlin, S.L.; Troendle, D.; Shah, U.; Schwarzenberg, S.J.; Rhee, S.; Pohl, J.F.; Perito, E.R.; et al. Impact of Obesity on Pediatric Acute Recurrent and Chronic Pancreatitis. Pancreas 2018, 47, 967–973. [Google Scholar] [CrossRef]
- Acharya, C.; Cline, R.A.; Jaligama, D.; Noel, P.; Delany, J.P.; Bae, K.; Furlan, A.; Baty, C.J.; Karlsson, J.M.; Rosario, B.L.; et al. Fibrosis reduces severity of acute-on-chronic pancreatitis in humans. Gastroenterology 2013, 145, 466–475. [Google Scholar] [CrossRef]
- Sarles, H. An international survey on nutrition and pancreatitis. Digestion 1973, 9, 389–403. [Google Scholar] [CrossRef]
- Ammann, R.W.; Raimondi, S.; Maisonneuve, P.; Mullhaupt, B. Is obesity an additional risk factor for alcoholic chronic pancreatitis? Pancreatology 2010, 10, 47–53. [Google Scholar] [CrossRef]
- Yadav, D.; O’Connell, M.; Papachristou, G.I. Natural history following the first attack of acute pancreatitis. Am. J. Gastroenterol. 2012, 107, 1096–1103. [Google Scholar] [CrossRef]
- Nøjgaard, C.; Becker, U.; Matzen, P.; Andersen, J.R.; Holst, C.; Bendtsen, F. Progression from acute to chronic pancreatitis: Prognostic factors, mortality, and natural course. Pancreas 2011, 40, 1195–1200. [Google Scholar] [CrossRef]
- Shah, I.; Bocchino, R.; Ahmed, A.; Freedman, S.D.; Kothari, D.J.; Sheth, S.G. Impact of recurrent acute pancreatitis on the natural history and progression to chronic pancreatitis. Pancreatology 2022, 22, 1084–1090. [Google Scholar] [CrossRef]
- Pinnick, K.E.; Collins, S.C.; Londos, C.; Gauguier, D.; Clark, A.; Fielding, B.A. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 2008, 16, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Tirkes, T.; Jeon, C.Y.; Li, L.; Joon, A.Y.; Seltman, T.A.; Sankar, M.; Persohn, S.A.; Territo, P.R. Association of Pancreatic Steatosis With Chronic Pancreatitis, Obesity, and Type 2 Diabetes Mellitus. Pancreas 2019, 48, 420–426. [Google Scholar] [CrossRef]
- Fujii, M.; Ohno, Y.; Yamada, M.; Kamada, Y.; Miyoshi, E. Impact of fatty pancreas and lifestyle on the development of subclinical chronic pancreatitis in healthy people undergoing a medical checkup. Environ. Health Prev. Med. 2019, 24, 10. [Google Scholar] [CrossRef] [PubMed]
- Tirkes, T.; Yadav, D.; Conwell, D.L.; Territo, P.R.; Zhao, X.; Persohn, S.A.; Dasyam, A.K.; Shah, Z.K.; Venkatesh, S.K.; Takahashi, N.; et al. Quantitative MRI of chronic pancreatitis: Results from a multi-institutional prospective study, magnetic resonance imaging as a non-invasive method for assessment of pancreatic fibrosis (MINIMAP). Abdom. Radiol. 2022, 47, 3792–3805. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Heni, M.; Wagner, R.; Fukuhara, S.; Grossman, S.R.; Han, S.; Wu, L.; Streicher, S.A.; Huang, B.Z. The Causal Effect of Intrapancreatic Fat Deposition on Acute and Chronic Pancreatitis: A Mendelian Randomization Study. Am. J. Gastroenterol. 2024, 119, 2540–2544. [Google Scholar] [CrossRef]
- Arvanitakis, M.; Ockenga, J.; Bezmarevic, M.; Gianotti, L.; Krznarić, Ž.; Lobo, D.N.; Löser, C.; Madl, C.; Meier, R.; Phillips, M.; et al. ESPEN practical guideline on clinical nutrition in acute and chronic pancreatitis. Clin. Nutr. 2024, 43, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Sikkens, E.C.; Cahen, D.L.; Koch, A.D.; Braat, H.; Poley, J.W.; Kuipers, E.J.; Bruno, M.J. The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology 2013, 13, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef]
- Sarantis, P.; Koustas, E.; Papadimitropoulou, A.; Papavassiliou, A.G.; Karamouzis, M.V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World J. Gastrointest. Oncol. 2020, 12, 173–181. [Google Scholar] [CrossRef]
- Lang, J.; Kunovský, L.; Kala, Z.; Trna, J. Risk factors of pancreatic cancer and their possible uses in diagnostics. Neoplasma 2021, 68, 227–239. [Google Scholar] [CrossRef]
- Ma, D.M.; Dong, X.W.; Han, X.; Ling, Z.; Lu, G.T.; Sun, Y.Y.; Yin, X.D. Pancreatitis and Pancreatic Cancer Risk. Technol. Cancer Res. Treat. 2023, 22, 15330338231164875. [Google Scholar] [CrossRef]
- Molina-Montes, E.; Van Hoogstraten, L.; Gomez-Rubio, P.; Löhr, M.; Sharp, L.; Molero, X.; Márquez, M.; Michalski, C.W.; Farré, A.; Perea, J.; et al. Pancreatic Cancer Risk in Relation to Lifetime Smoking Patterns, Tobacco Type, and Dose-Response Relationships. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1009–1018. [Google Scholar] [CrossRef]
- Kim, Y. The association between red, processed and white meat consumption and risk of pancreatic cancer: A meta-analysis of prospective cohort studies. Cancer Causes Control 2023, 34, 569–581. [Google Scholar] [CrossRef]
- Okita, Y.; Sobue, T.; Zha, L.; Kitamura, T.; Iwasaki, M.; Inoue, M.; Yamaji, T.; Tsugane, S.; Sawada, N. Association Between Alcohol Consumption and Risk of Pancreatic Cancer: The Japan Public Health Center-Based Prospective Study. Cancer Epidemiol. Biomark. Prev. 2022, 31, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.E.; Hernandez, Y.G.; Frucht, H.; Lucas, A.L. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J. Gastroenterol. 2014, 20, 11182–11198. [Google Scholar] [CrossRef] [PubMed]
- Zottl, J.; Sebesta, C.G.; Tomosel, E.; Sebesta, M.C.; Sebesta, C. Unraveling the Burden of Pancreatic Cancer in the 21st Century: Trends in Incidence, Mortality, Survival, and Key Contributing Factors. Cancers 2025, 17, 1607. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Dalerba, P.; Terry, M.B.; Yang, W. Global obesity epidemic and rising incidence of early-onset cancers. J. Glob. Health 2024, 14, 04205. [Google Scholar] [CrossRef]
- Silverman, D.T.; Swanson, C.A.; Gridley, G.; Wacholder, S.; Greenberg, R.S.; Brown, L.M.; Hayes, R.B.; Swanson, G.M.; Schoenberg, J.B.; Pottern, L.M.; et al. Dietary and nutritional factors and pancreatic cancer: A case-control study based on direct interviews. J. Natl. Cancer Inst. 1998, 90, 1710–1719. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Aune, D.; Greenwood, D.C.; Chan, D.S.; Vieira, R.; Vieira, A.R.; Navarro Rosenblatt, D.A.; Cade, J.E.; Burley, V.J.; Norat, T. Body mass index, abdominal fatness and pancreatic cancer risk: A systematic review and non-linear dose-response meta-analysis of prospective studies. Ann. Oncol. 2012, 23, 843–852. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Body mass index and pancreatic cancer risk: A meta-analysis of prospective studies. Int. J. Cancer 2007, 120, 1993–1998. [Google Scholar] [CrossRef]
- Arslan, A.A.; Helzlsouer, K.J.; Kooperberg, C.; Shu, X.O.; Steplowski, E.; Bueno-de-Mesquita, H.B.; Fuchs, C.S.; Gross, M.D.; Jacobs, E.J.; Lacroix, A.Z.; et al. Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Arch. Intern. Med. 2010, 170, 791–802. [Google Scholar] [CrossRef]
- Li, D.; Morris, J.S.; Liu, J.; Hassan, M.M.; Day, R.S.; Bondy, M.L.; Abbruzzese, J.L. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 2009, 301, 2553–2562. [Google Scholar] [CrossRef]
- Bao, Y.; Giovannucci, E.L.; Kraft, P.; Stampfer, M.J.; Ogino, S.; Ma, J.; Buring, J.E.; Sesso, H.D.; Lee, I.M.; Gaziano, J.M.; et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J. Natl. Cancer Inst. 2013, 105, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Brocco, D.; Florio, R.; De Lellis, L.; Veschi, S.; Grassadonia, A.; Tinari, N.; Cama, A. The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers 2020, 12, 1849. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Jung, X.; Hines, O.J.; Eibl, G.; Chen, Y. Obesity and Pancreatic Cancer: Overview of Epidemiology and Potential Prevention by Weight Loss. Pancreas 2018, 47, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.M.; Singh, J.; Lawres, L.; Dorans, K.J.; Garcia, C.; Burkhardt, D.B.; Robbins, R.; Bhutkar, A.; Cardone, R.; Zhao, X.; et al. Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell 2020, 181, 832–847.e18. [Google Scholar] [CrossRef]
- Li, Q.; Jin, M.; Liu, Y.; Jin, L. Gut Microbiota: Its Potential Roles in Pancreatic Cancer. Front. Cell Infect. Microbiol. 2020, 10, 572492. [Google Scholar] [CrossRef]
- Majumder, K.; Gupta, A.; Arora, N.; Singh, P.P.; Singh, S. Premorbid Obesity and Mortality in Patients With Pancreatic Cancer: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2016, 14, 355–368.e2. [Google Scholar] [CrossRef]
- Shinoda, S.; Nakamura, N.; Roach, B.; Bernlohr, D.A.; Ikramuddin, S.; Yamamoto, M. Obesity and Pancreatic Cancer: Recent Progress in Epidemiology, Mechanisms and Bariatric Surgery. Biomedicines 2022, 10, 1284. [Google Scholar] [CrossRef]
- Téoule, P.; Rasbach, E.; Oweira, H.; Otto, M.; Rahbari, N.N.; Reissfelder, C.; Rückert, F.; Birgin, E. Obesity and Pancreatic Cancer: A Matched-Pair Survival Analysis. J. Clin. Med. 2020, 9, 3526. [Google Scholar] [CrossRef]
- Tsai, S.; Choti, M.A.; Assumpcao, L.; Cameron, J.L.; Gleisner, A.L.; Herman, J.M.; Eckhauser, F.; Edil, B.H.; Schulick, R.D.; Wolfgang, C.L.; et al. Impact of obesity on perioperative outcomes and survival following pancreaticoduodenectomy for pancreatic cancer: A large single-institution study. J. Gastrointest. Surg. 2010, 14, 1143–1150. [Google Scholar] [CrossRef]
- Incio, J.; Liu, H.; Suboj, P.; Chin, S.M.; Chen, I.X.; Pinter, M.; Ng, M.R.; Nia, H.T.; Grahovac, J.; Kao, S.; et al. Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov. 2016, 6, 852–869. [Google Scholar] [CrossRef]
- Winters, E.; Poole, C. Challenges and impact of patient obesity in radiation therapy practice. Radiography 2020, 26, e158–e163. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Grinstead, C.; Yoon, S.L. Geriatric Nutritional Risk Index (GNRI) and Survival in Pancreatic Cancer: A Retrospective Study. Nutrients 2025, 17, 509. [Google Scholar] [CrossRef] [PubMed]
- van Eijck, C.W.F.; Vadgama, D.; van Eijck, C.H.J.; Wilmink, J.W. Metformin boosts antitumor immunity and improves prognosis in upfront resected pancreatic cancer: An observational study. J. Natl. Cancer Inst. 2024, 116, 1374–1383. [Google Scholar] [CrossRef]
- Nair, V.; Pathi, S.; Jutooru, I.; Sreevalsan, S.; Basha, R.; Abdelrahim, M.; Samudio, I.; Safe, S. Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors. Carcinogenesis 2013, 34, 2870–2879. [Google Scholar] [CrossRef]
- Gyawali, M.; Venkatesan, N.; Ogeyingbo, O.D.; Bhandari, R.; Botleroo, R.A.; Kareem, R.; Ahmed, R.; Elshaikh, A.O. Magic of a Common Sugar Pill in Cancer: Can Metformin Raise Survival in Pancreatic Cancer Patients? Cureus 2021, 13, e16916. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, K.G. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells 2013, 36, 279–287. [Google Scholar] [CrossRef]
- Di Daniele, N.; Noce, A.; Vidiri, M.F.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef]
- Kazeminasab, F.; Mahboobi, M.H.; Mohebinejad, M.; Nojoumi, M.; Belyani, S.; Camera, D.M.; Moradi, S.; Bagheri, R. The Impact of Exercise Training Plus Dietary Interventions on Ectopic Fat in Population with Overweight/Obesity with and without Chronic Disease: A Systematic Review, Meta-analysis, and Metaregression of Randomized Clinical Trials. Curr. Dev. Nutr. 2025, 9, 104574. [Google Scholar] [CrossRef]
- Tene, L.; Shelef, I.; Schwarzfuchs, D.; Gepner, Y.; Yaskolka Meir, A.; Tsaban, G.; Zelicha, H.; Bilitzky, A.; Komy, O.; Cohen, N.; et al. The effect of long-term weight-loss intervention strategies on the dynamics of pancreatic-fat and morphology: An MRI RCT study. Clin. Nutr. ESPEN 2018, 24, 82–89. [Google Scholar] [CrossRef]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Fantin, F.; Zamboni, G.A.; Mazzali, G.; Zoico, E.; Bambace, C.; Antonioli, A.; Pozzi Mucelli, R.; Zamboni, M. Effect of moderate weight loss on hepatic, pancreatic and visceral lipids in obese subjects. Nutr. Diabetes 2012, 2, e32. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Banks, M.R.; Patterson, B.W.; Polonsky, K.S.; Klein, S. Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity 2008, 16, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.E.; Lashinger, L.M.; Hays, D.; Harrison, L.M.; Lewis, K.; Fischer, S.M.; Hursting, S.D. Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS ONE 2014, 9, e94151. [Google Scholar] [CrossRef]
- Lanza-Jacoby, S.; Yan, G.; Radice, G.; LePhong, C.; Baliff, J.; Hess, R. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer. Exp. Biol. Med. 2013, 238, 787–797. [Google Scholar] [CrossRef]
- Dragano, N.R.V.; Fernø, J.; Diéguez, C.; López, M.; Milbank, E. Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020, 437, 215–239. [Google Scholar] [CrossRef]
- Napier, S.; Thomas, M. 36 year old man presenting with pancreatitis and a history of recent commencement of orlistat case report. Nutr. J. 2006, 5, 19. [Google Scholar] [CrossRef]
- Kose, M.; Emet, S.; Akpinar, T.S.; Ilhan, M.; Gok, A.F.; Dadashov, M.; Tukek, T. An Unexpected Result of Obesity Treatment: Orlistat-Related Acute Pancreatitis. Case Rep. Gastroenterol. 2015, 9, 152–155. [Google Scholar] [CrossRef]
- Ahmad, F.A.; Mahmud, S. Acute pancreatitis following orlistat therapy: Report of two cases. J. Pancreas 2010, 11, 61–63. [Google Scholar]
- Zhu, J.; Hu, M.; Liang, Y.; Zhong, M.; Chen, Z.; Wang, Z.; Yang, Y.; Luo, Z.; Zeng, W.; Li, J.; et al. Pharmacovigilance analysis of orlistat adverse events based on the FDA adverse event reporting system (FAERS) database. Heliyon 2024, 10, e34837. [Google Scholar] [CrossRef]
- Sokolowska, E.; Presler, M.; Goyke, E.; Milczarek, R.; Swierczynski, J.; Sledzinski, T. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1). Anticancer Res. 2017, 37, 6321–6327. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 2011, 141, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shen, J.; Bala, M.M.; Busse, J.W.; Ebrahim, S.; Vandvik, P.O.; Rios, L.P.; Malaga, G.; Wong, E.; Sohani, Z.; et al. Incretin treatment and risk of pancreatitis in patients with type 2 diabetes mellitus: Systematic review and meta-analysis of randomised and non-randomised studies. BMJ 2014, 348, g2366. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yang, S.; Zhou, Z. GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: Data from cardiovascular outcome trials. Endocrine 2020, 68, 518–525. [Google Scholar] [CrossRef]
- Monami, M.; Nreu, B.; Scatena, A.; Cresci, B.; Andreozzi, F.; Sesti, G.; Mannucci, E. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes. Metab. 2017, 19, 1233–1241. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Nreu, B.; Dicembrini, I.; Tinti, F.; Mannucci, E.; Monami, M. Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: An updated meta-analysis of randomized controlled trials. Minerva Endocrinol. 2023, 48, 206–213. [Google Scholar] [CrossRef]
- Ayoub, M.; Faris, C.; Juranovic, T.; Chela, H.; Daglilar, E. The Use of Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus Does Not Increase the Risk of Pancreatic Cancer: A U.S.-Based Cohort Study. Cancers 2024, 16, 1625. [Google Scholar] [CrossRef]
- Chang, J.T.; Liang, Y.J.; Hsu, C.Y.; Chen, C.Y.; Chen, P.J.; Yang, Y.F.; Chen, Y.L.; Pei, D.; Chang, J.B.; Leu, J.G. Glucagon-like peptide receptor agonists attenuate advanced glycation end products-induced inflammation in rat mesangial cells. BMC Pharmacol. Toxicol. 2017, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.A.; Kain, T.; Drucker, D.J. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology 2011, 152, 3362–3372. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Peng, T.; Chen, Y.; Sha, L.; Dai, H.; Xiang, Y.; Zou, Z.; He, H.; Wang, S. Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway. Front. Pharmacol. 2022, 13, 901559. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.J.; Jiang, X.; Hu, L.J.; Yang, L.; Deng, L.D.; Wang, Y.P.; Ren, Z.P. Activation of GLP-1 receptor enhances the chemosensitivity of pancreatic cancer cells. J. Mol. Endocrinol. 2020, 64, 103–113. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, R.; Wang, L.; Tian, Q.; Tao, M.; Ke, J.; Liu, Y.; Hou, W.; Zhang, L.; Yang, J.; et al. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1431–E1441. [Google Scholar] [CrossRef]
- Bjerre Knudsen, L.; Madsen, L.W.; Andersen, S.; Almholt, K.; de Boer, A.S.; Drucker, D.J.; Gotfredsen, C.; Egerod, F.L.; Hegelund, A.C.; Jacobsen, H.; et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010, 151, 1473–1486. [Google Scholar] [CrossRef]
- Kupnicka, P.; Król, M.; Żychowska, J.; Łagowski, R.; Prajwos, E.; Surówka, A.; Chlubek, D. GLP-1 Receptor Agonists: A Promising Therapy for Modern Lifestyle Diseases with Unforeseen Challenges. Pharmaceuticals 2024, 17, 1470. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Roux, C.W.l.; Stefanski, A.; Aronne, L.J.; Halpern, B.; Wharton, S.; Wilding, J.P.H.; Perreault, L.; Zhang, S.; Battula, R.; et al. Tirzepatide for Obesity Treatment and Diabetes Prevention. N. Engl. J. Med. 2025, 392, 958–971. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Manghi, F.C.P.; Landó, L.F.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Aronne, L.J.; Horn, D.B.; Roux, C.W.l.; Ho, W.; Falcon, B.L.; Valderas, E.G.; Das, S.; Lee, C.J.; Glass, L.C.; Senyucel, C.; et al. Tirzepatide as Compared with Semaglutide for the Treatment of Obesity. N. Engl. J. Med. 2025, 393, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Xu, J.; Mu, X.; Shi, Y.; Fan, H.; Li, S. Safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes and obesity: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1214334. [Google Scholar] [CrossRef] [PubMed]
- Kamrul-Hasan, A.B.M.; Mondal, S.; Dutta, D.; Nagendra, L.; Kabir, M.R.; Pappachan, J.M. Pancreatic Safety of Tirzepatide and Its Effects on Islet Cell Function: A Systematic Review and Meta-Analysis. Obes. Sci. Pract. 2024, 10, e70032. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.M.; Varghese, E.; Kubatka, P.; Büsselberg, D. Tirzepatide-Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022, 12, 1580. [Google Scholar] [CrossRef]
- Kamrul-Hasan, A.B.M.; Alam, M.S.; Dutta, D.; Sasikanth, T.; Aalpona, F.T.Z.; Nagendra, L. Tirzepatide and Cancer Risk in Individuals with and without Diabetes: A Systematic Review and Meta-Analysis. Endocrinol. Metab. 2025, 40, 112–124. [Google Scholar] [CrossRef]
- Jirapinyo, P.; Hadefi, A.; Thompson, C.C.; Patai, Á.V.; Pannala, R.; Goelder, S.K.; Kushnir, V.; Barthet, M.; Apovian, C.M.; Boskoski, I.; et al. American Society for Gastrointestinal Endoscopy-European Society of Gastrointestinal Endoscopy guideline on primary endoscopic bariatric and metabolic therapies for adults with obesity. Endoscopy 2024, 56, 437–456. [Google Scholar] [CrossRef]
- Nieben, O.G.; Harboe, H. Intragastric balloon as an artificial bezoar for treatment of obesity. Lancet 1982, 1, 198–199. [Google Scholar] [CrossRef]
- Vicente, C.; Rábago, L.R.; Ortega, A.; Arias, M.; Vázquez Echarri, J. Usefulness of an intra-gastric balloon before bariatric surgery. Rev. Esp. Enferm. Dig. 2017, 109, 256–264. [Google Scholar] [CrossRef]
- Coffin, B.; Maunoury, V.; Pattou, F.; Hébuterne, X.; Schneider, S.; Coupaye, M.; Ledoux, S.; Iglicki, F.; Mion, F.; Robert, M.; et al. Impact of Intragastric Balloon Before Laparoscopic Gastric Bypass on Patients with Super Obesity: A Randomized Multicenter Study. Obes. Surg. 2017, 27, 902–909. [Google Scholar] [CrossRef]
- Fittipaldi-Fernandez, R.J.; Zotarelli-Filho, I.J.; Diestel, C.F.; Klein, M.; de Santana, M.F.; de Lima, J.H.F.; Bastos, F.S.S.; Dos Santos, N.T. Intragastric Balloon: A Retrospective Evaluation of 5874 Patients on Tolerance, Complications, and Efficacy in Different Degrees of Overweight. Obes. Surg. 2020, 30, 4892–4898. [Google Scholar] [CrossRef]
- Shah, R.H.; Vedantam, S.; Kumar, S.; Amin, S.; Pearlman, M.; Bhalla, S. Intragastric Balloon Significantly Improves Metabolic Parameters at 6 Months: A Meta-Analysis. Obes. Surg. 2023, 33, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Gore, N.; Ravindran, P.; Chan, D.L.; Das, K.; Cosman, P.H. Pancreatitis from intra-gastric balloon insertion: Case report and literature review. Int. J. Surg. Case Rep. 2018, 45, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Alsohaibani, F.I.; Alkasab, M.; Abufarhaneh, E.H.; Peedikayil, M.C.; Aldekhayel, M.K.; Zayied, M.M.; Alghamdi, M.; Al-Suliman, R.; Alghamdi, M.Y.; Almadi, M.A. Acute Pancreatitis as a Complication of Intragastric Balloons: A Case Series. Obes. Surg. 2019, 29, 1694–1696. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.C.; Chang, P.; Minteer, W.; Nguyen, D.; Gopalkrishnan, K.; Phan, J. Patient Complications and Device Issues Associated With FDA-Approved Intragastric Balloons Available in the USA: A Maude Database Study. Obes. Surg. 2024, 34, 1971–1974. [Google Scholar] [CrossRef]
- Ramai, D.; Bhandari, P.; Facciorusso, A.; Barakat, M.; Pasisnichenko, Y.; Saghir, S.; Ambrosi, A.; Tartaglia, N.; Chandan, S.; Dhindsa, B.; et al. Real-World Experience of Intragastric Balloons for Obesity: Insights from the FDA Manufacturer and User Facility Device Experience (MAUDE) Database. Obes. Surg. 2021, 31, 3360–3364. [Google Scholar] [CrossRef]
- Ryder, R.E.J.; Laubner, K.; Benes, M.; Haluzik, M.; Munro, L.; Frydenberg, H.; Teare, J.P.; Ruban, A.; Fishman, S.; Santo, E.; et al. Endoscopic Duodenal-Jejunal Bypass Liner Treatment for Type 2 Diabetes and Obesity: Glycemic and Cardiovascular Disease Risk Factor Improvements in 1,022 Patients Treated Worldwide. Diabetes Care 2023, 46, e89–e91. [Google Scholar] [CrossRef]
- Khatua, B.; El-Kurdi, B.; Singh, V.P. Obesity and pancreatitis. Curr. Opin. Gastroenterol. 2017, 33, 374–382. [Google Scholar] [CrossRef]
- O’Brien, P.E.; Hindle, A.; Brennan, L.; Skinner, S.; Burton, P.; Smith, A.; Crosthwaite, G.; Brown, W. Long-Term Outcomes After Bariatric Surgery: A Systematic Review and Meta-analysis of Weight Loss at 10 or More Years for All Bariatric Procedures and a Single-Centre Review of 20-Year Outcomes After Adjustable Gastric Banding. Obes. Surg. 2019, 29, 3–14. [Google Scholar] [CrossRef]
- Aminian, A.; Zajichek, A.; Arterburn, D.E.; Wolski, K.E.; Brethauer, S.A.; Schauer, P.R.; Kattan, M.W.; Nissen, S.E. Association of Metabolic Surgery With Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes and Obesity. JAMA 2019, 322, 1271–1282. [Google Scholar] [CrossRef]
- Kumaravel, A.; Zelisko, A.; Schauer, P.; Lopez, R.; Kroh, M.; Stevens, T. Acute pancreatitis in patients after bariatric surgery: Incidence, outcomes, and risk factors. Obes. Surg. 2014, 24, 2025–2030. [Google Scholar] [CrossRef]
- Warschkow, R.; Tarantino, I.; Ukegjini, K.; Beutner, U.; Güller, U.; Schmied, B.M.; Müller, S.A.; Schultes, B.; Thurnheer, M. Concomitant cholecystectomy during laparoscopic Roux-en-Y gastric bypass in obese patients is not justified: A meta-analysis. Obes. Surg. 2013, 23, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Corcelles, R.; Boules, M.; Jamal, M.H.; Schauer, P.R.; Kroh, M.D. Predictive factors of biliary complications after bariatric surgery. Surg. Obes. Relat. Dis. 2016, 12, 1706–1710. [Google Scholar] [CrossRef] [PubMed]
- Piero, P. EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J. Hepatol. 2016, 65, 146–181. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Timothy Garvey, W.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures—2019 Update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic and Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Obesity 2020, 28, O1–O58. [Google Scholar] [CrossRef]
- Krishna, S.G.; Behzadi, J.; Hinton, A.; El-Dika, S.; Groce, J.R.; Hussan, H.; Hart, P.A.; Conwell, D.L. Effects of Bariatric Surgery on Outcomes of Patients With Acute Pancreatitis. Clin. Gastroenterol. Hepatol. 2016, 14, 1001–1010.e5. [Google Scholar] [CrossRef]
- Kröner, P.T.; Simons-Linares, C.R.; Kesler, A.M.; Abader, P.; Afsh, M.; Corral, J.; Rodriguez, J.; Vargo, J.J.; Raimondo, M.; Chahal, P. Acute Pancreatitis in Patients with a History of Bariatric Surgery: Is It Less Severe? Obes. Surg. 2020, 30, 2325–2330. [Google Scholar] [CrossRef]
- Song, Y.; Deng, H.; Zhou, J.; Sun, J.; Zhang, X.; Ren, Y. The Effects of Laparoscopic Sleeve Gastrectomy on Obesity-Related Hypertriglyceridemia-Induced Acute Pancreatitis. Obes. Surg. 2018, 28, 3872–3879. [Google Scholar] [CrossRef]
- Yu, Z.; Liang, D.; Zhang, Z.; Song, K.; Zhang, Y.; Xian, Y.; He, M.; Xie, X.; Xie, S.; Kong, X.; et al. Efficacy of Metabolic and Bariatric Surgery for the Treatment of Recurrent Hypertriglyceridemia-Induced Acute Pancreatitis. Obes. Surg. 2025, 35, 1297–1306. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Petrov, M.S. The Effects of Metabolic Bariatric Surgery on Intra-pancreatic Fat Deposition and Total Pancreas Volume: A Systematic Review and Meta-analysis. Obes. Surg. 2025, 35, 1513–1524. [Google Scholar] [CrossRef]
- Rebours, V.; Garteiser, P.; Ribeiro-Parenti, L.; Cavin, J.B.; Doblas, S.; Pagé, G.; Bado, A.; Couvineau, A.; Ruszniewski, P.; Paradis, V.; et al. Obesity-induced pancreatopathy in rats is reversible after bariatric surgery. Sci. Rep. 2018, 8, 16295. [Google Scholar] [CrossRef]
- Salman, A.A.; Salman, M.A.; Said, M.; El Sherbiny, M.; Elkassar, H.; Hassan, M.B.; Marwan, A.; Morad, M.A.; Ashoush, O.; Labib, S.; et al. Improvement of Pancreatic Steatosis and Indices of Insulin Resistance After Metabolic Surgery. Front. Med. 2022, 9, 894465. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, M.L.; Arterburn, D.E.; Van Scoyoc, L.; Smith, V.A.; Yancy, W.S., Jr.; Weidenbacher, H.J.; Livingston, E.H.; Olsen, M.K. Bariatric Surgery and Long-term Durability of Weight Loss. JAMA Surg. 2016, 151, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.D.; Gress, R.E.; Smith, S.C.; Halverson, R.C.; Simper, S.C.; Rosamond, W.D.; Lamonte, M.J.; Stroup, A.M.; Hunt, S.C. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 2007, 357, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, L.; Gummesson, A.; Sjöström, C.D.; Narbro, K.; Peltonen, M.; Wedel, H.; Bengtsson, C.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): A prospective, controlled intervention trial. Lancet Oncol. 2009, 10, 653–662. [Google Scholar] [CrossRef]
- Rustgi, V.K.; Li, Y.; Gupta, K.; Minacapelli, C.D.; Bhurwal, A.; Catalano, C.; Elsaid, M.I. Bariatric Surgery Reduces Cancer Risk in Adults With Nonalcoholic Fatty Liver Disease and Severe Obesity. Gastroenterology 2021, 161, 171–184.e110. [Google Scholar] [CrossRef]
- Schauer, D.P.; Feigelson, H.S.; Koebnick, C.; Caan, B.; Weinmann, S.; Leonard, A.C.; Powers, J.D.; Yenumula, P.R.; Arterburn, D.E. Bariatric Surgery and the Risk of Cancer in a Large Multisite Cohort. Ann. Surg. 2019, 269, 95–101. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Martinou, E.G.; Karamanis, D.G. Metabolic-Bariatric Surgery Reduces Pancreatic Cancer Risk: A Meta-Analysis of Over 3.7 Million Adults, Independent of Type 2 Diabetes Status. Diabetes Metab. Res. Rev. 2024, 40, e3844. [Google Scholar] [CrossRef]
- He, R.; Yin, Y.; Yin, W.; Li, Y.; Zhao, J.; Zhang, W. Prevention of pancreatic acinar cell carcinoma by Roux-en-Y Gastric Bypass Surgery. Nat. Commun. 2018, 9, 4183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, M.; Cúrdia Gonçalves, T.; Cotter, J. Obesity and Pancreatic Diseases: From Inflammation to Oncogenesis and the Impact of Weight Loss Interventions. Nutrients 2025, 17, 2310. https://doi.org/10.3390/nu17142310
Souto M, Cúrdia Gonçalves T, Cotter J. Obesity and Pancreatic Diseases: From Inflammation to Oncogenesis and the Impact of Weight Loss Interventions. Nutrients. 2025; 17(14):2310. https://doi.org/10.3390/nu17142310
Chicago/Turabian StyleSouto, Mariana, Tiago Cúrdia Gonçalves, and José Cotter. 2025. "Obesity and Pancreatic Diseases: From Inflammation to Oncogenesis and the Impact of Weight Loss Interventions" Nutrients 17, no. 14: 2310. https://doi.org/10.3390/nu17142310
APA StyleSouto, M., Cúrdia Gonçalves, T., & Cotter, J. (2025). Obesity and Pancreatic Diseases: From Inflammation to Oncogenesis and the Impact of Weight Loss Interventions. Nutrients, 17(14), 2310. https://doi.org/10.3390/nu17142310