Exploratory Study on Microbiota and Immune Responses to Short-Term L. paracasei CNCM I-1518 Consumption in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Dietary Assessment
2.2. Nutritional Intervention
2.3. Biochemistry and Hematology
2.4. Measurement of Immune System Function Markers
2.4.1. Immunochemistry
2.4.2. Cellular Immunity
2.5. Gut Microbiota Analyses
2.6. Data Analysis
3. Results
3.1. Biochemistry and Hematology
3.2. Lymphocyte Subpopulations
3.3. Immunochemistry
3.4. Gut Microbiota Analyses
3.5. Correlation Among Variables
4. Discussion
4.1. Biochemistry and Hematology
4.2. Innate Immunity
Humoral Immunity
4.3. Cellular Immunity
4.4. Adaptive Immunity
Humoral Immunity
4.5. Cellular Immunity
4.6. Fecal Flora Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vojdani, A.; Vojdani, E.; Vojdani, C. The Immune System: Our Body’s Homeland Security Against Disease. In Integrative and Functional Medical Nutrition Therapy: Principles and Practices; Noland, D., Drisko, J.A., Wagner, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 285–302. ISBN 978-3-030-30730-1. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Front. Nutr. 2021, 8, 634897. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Singh, A. Gut Microbiome and Human Health: Exploring How the Probiotic Genus Lactobacillus Modulate Immune Responses. Front. Pharmacol. 2022, 13, 1042189. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Immune Boosting Functional Foods and Their Mechanisms: A Critical Evaluation of Probiotics and Prebiotics. Biomed. Pharmacother. 2020, 130, 110625. [Google Scholar] [CrossRef]
- Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory Effects of Probiotics During Pathogenic Infections with Emphasis on Immune Regulation. Front. Immunol. 2021, 12, 616713. [Google Scholar] [CrossRef]
- López-Moreno, A.; Suárez, A.; Avanzi, C.; Monteoliva-Sánchez, M.; Aguilera, M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1921. [Google Scholar] [CrossRef]
- Yeşilyurt, N.; Yılmaz, B.; Ağagündüz, D.; Capasso, R. Involvement of Probiotics and Postbiotics in the Immune System Modulation. Biologics 2021, 1, 89–110. [Google Scholar] [CrossRef]
- Guillemard, E.; Tondu, F.; Lacoin, F.; Schrezenmeir, J. Consumption of a Fermented Dairy Product Containing the Probiotic Lactobacillus casei DN-114001 Reduces the Duration of Respiratory Infections in the Elderly in a Randomised Controlled Trial. Br. J. Nutr. 2010, 103, 58–68. [Google Scholar] [CrossRef]
- Panitsidis, I.; Barbe, F.; Chevaux, E.; Giannenas, I.; Demey, V. Probiotics, Prebiotics, Paraprobiotics, Postbiotics. In Sustainable Use of Feed Additives in Livestock: Novel Ways for Animal Production; Arsenos, G., Giannenas, I., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 173–227. ISBN 978-3-031-42855-5. [Google Scholar]
- Poon, T.; Juana, J.; Noori, D.; Jeansen, S.; Pierucci-Lagha, A.; Musa-Veloso, K. Effects of a Fermented Dairy Drink Containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 (Lactobacillus casei CNCM I-1518) and the Standard Yogurt Cultures on the Incidence, Duration, and Severity of Common Infectious Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 3443. [Google Scholar] [CrossRef]
- Rochet, V.; Rigottier-Gois, L.; Sutren, M.; Krementscki, M.-N.; Andrieux, C.; Furet, J.-P.; Tailliez, P.; Levenez, F.; Mogenet, A.; Bresson, J.-L.; et al. Effects of Orally Administered Lactobacillus casei DN-114 001 on the Composition or Activities of the Dominant Faecal Microbiota in Healthy Humans. Br. J. Nutr. 2006, 95, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Mataix-Verdú, J.; Mañas-Almendros, M.; Llopis-González, J.; Martínez de Victoria, E.; García-Diz, L. Tabla de Composición de Alimentos, 5th ed.; Editorial Universidad de Granada: Granada, Spain, 2009; 555p, ISBN 978-84-338-4980-9. [Google Scholar]
- Rivero-Pino, F.; Casquete, M.; Castro, M.J.; Redondo Del Rio, P.; Gutierrez, E.; Mayo-Iscar, A.; Nocito, M.; Corell, A. Prospective, Randomized, Double-Blind Parallel Group Nutritional Study to Evaluate the Effects of Routine Intake of Fresh vs. Pasteurized Yogurt on the Immune System in Healthy Adults. Nutrients 2024, 16, 1969. [Google Scholar] [CrossRef] [PubMed]
- Homburger, H.A.; Singh, R.J. 96—Assessment of Proteins of the Immune System. In Clinical Immunology, 3rd ed.; Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., Eds.; Mosby: Edinburgh, UK, 2008; pp. 1419–1434. ISBN 978-0-323-04404-2. [Google Scholar]
- Cossarizza, A.; Chang, H.-D.; Radbruch, A.; Abrignani, S.; Addo, R.; Akdis, M.; Andrä, I.; Andreata, F.; Annunziato, F.; Arranz, E.; et al. Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies (Third Edition). Eur. J. Immunol. 2021, 51, 2708–3145. [Google Scholar] [CrossRef]
- Stene, C.; Röme, A.; Palmquist, I.; Linninge, C.; Molin, G.; Ahrné, S.; Johnson, L.B.; Jeppsson, B. Administration of Probiotics to Healthy Volunteers: Effects on Reactivity of Intestinal Mucosa and Systemic Leukocytes. BMC Gastroenterol. 2022, 22, 100. [Google Scholar] [CrossRef]
- Le Roy, C.I.; Štšepetova, J.; Sepp, E.; Songisepp, E.; Claus, S.P.; Mikelsaar, M. New Insights into the Impact of Lactobacillus Population on Host-Bacteria Metabolic Interplay. Oncotarget 2015, 6, 30545–30556. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.S.; Tap, J.; Chambaud, I.; Cools-Portier, S.; Quinquis, L.; Bourlioux, P.; Marteau, P.; Guillemard, E.; Schrezenmeir, J.; Derrien, M. Safety and Functional Enrichment of Gut Microbiome in Healthy Subjects Consuming a Multi-Strain Fermented Milk Product: A Randomised Controlled Trial. Sci. Rep. 2020, 10, 15974. [Google Scholar] [CrossRef]
- Johnson, R.J. 2.2.4—The Complement System. In Biomaterials Science, 4th ed.; Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Academic Press: London, UK, 2020; pp. 777–790. ISBN 978-0-12-816137-1. [Google Scholar]
- Zinellu, A.; Mangoni, A.A. Serum Complement C3 and C4 and COVID-19 Severity and Mortality: A Systematic Review and Meta-Analysis With Meta-Regression. Front. Immunol. 2021, 12, 696085. [Google Scholar] [CrossRef]
- Cortes-Perez, N.G.; de Moreno de LeBlanc, A.; Gomez-Gutierrez, J.G.; LeBlanc, J.G.; Bermúdez-Humarán, L.G. Probiotics and Trained Immunity. Biomolecules 2021, 11, 1402. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Munitz, A.; Ackerman, S.J.; Drake, M.G.; Jackson, D.J.; Wardlaw, A.J.; Dougan, S.K.; Berdnikovs, S.; Schleich, F.; Matucci, A.; et al. Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clin. Proc. 2021, 96, 2694–2707. [Google Scholar] [CrossRef]
- Tiollier, E.; Chennaoui, M.; Gomez-Merino, D.; Drogou, C.; Filaire, E.; Guezennec, C.Y. Effect of a Probiotics Supplementation on Respiratory Infections and Immune and Hormonal Parameters during Intense Military Training. Mil. Med. 2007, 172, 1006–1011. [Google Scholar] [CrossRef]
- Paluero, J.-E.; Tokhi, L.; Roglic, M.; Labor, M. Eosinopenia in COPD Patients with Severe Acute Respiratory Virus 2 (SARS-CoV-2) Infection as a Potential Fatal Outcome Predictor. Eur. Respir. J. 2021, 58, PA961. [Google Scholar]
- Napodano, C.; Marino, M.; Stefanile, A.; Pocino, K.; Scatena, R.; Gulli, F.; Rapaccini, G.L.; Delli Noci, S.; Capozio, G.; Rigante, D.; et al. Immunological Role of IgG Subclasses. Immunol. Investig. 2021, 50, 427–444. [Google Scholar] [CrossRef]
- Gui, Q.; Wang, A.; Zhao, X.; Huang, S.; Tan, Z.; Xiao, C.; Yang, Y. Effects of Probiotic Supplementation on Natural Killer Cell Function in Healthy Elderly Individuals: A Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr. 2020, 74, 1630–1637. [Google Scholar] [CrossRef]
- Shi, C.-W.; Zeng, Y.; Yang, G.-L.; Jiang, Y.-L.; Yang, W.-T.; Chen, Y.-Q.; Wang, J.-Y.; Wang, J.-Z.; Kang, Y.-H.; Huang, H.-B.; et al. Effect of Lactobacillus Rhamnosus on the Development of B Cells in Gut-Associated Lymphoid Tissue of BALB/c Mice. J. Cell. Mol. Med. 2020, 24, 8883–8886. [Google Scholar] [CrossRef]
- Ibrahim, N.S.; Ooi, F.K.; Chen, C.K.; Muhamad, A.S. Effects of Probiotics Supplementation and Circuit Training on Immune Responses among Sedentary Young Males. J. Sports Med. Phys. Fitness 2018, 58, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, A.; Brosseau, C.; Bodinier, M. Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies. Nutrients 2023, 15, 269. [Google Scholar] [CrossRef]
- Marcos, A.; Wärnberg, J.; Nova, E.; Gómez, S.; Alvarez, A.; Alvarez, R.; Mateos, J.A.; Cobo, J.M. The Effect of Milk Fermented by Yogurt Cultures plus Lactobacillus casei DN-114001 on the Immune Response of Subjects under Academic Examination Stress. Eur. J. Nutr. 2004, 43, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.L.; Micksche, M.; Herbacek, I.; Elmadfa, I. Daily Intake of Probiotic as Well as Conventional Yogurt Has a Stimulating Effect on Cellular Immunity in Young Healthy Women. Ann. Nutr. Metab. 2006, 50, 282–289. [Google Scholar] [CrossRef]
- Ortiz-Andrellucchi, A.; Sánchez-Villegas, A.; Rodríguez-Gallego, C.; Lemes, A.; Molero, T.; Soria, A.; Peña-Quintana, L.; Santana, M.; Ramírez, O.; García, J.; et al. Immunomodulatory Effects of the Intake of Fermented Milk with Lactobacillus casei DN114001 in Lactating Mothers and Their Children. Br. J. Nutr. 2008, 100, 834–845. [Google Scholar] [CrossRef]
- Rocha-Ramírez, L.M.; Hernández-Chiñas, U.; Moreno-Guerrero, S.S.; Ramírez-Pacheco, A.; Eslava, C.A. Probiotic Properties and Immunomodulatory Activity of Lactobacillus Strains Isolated from Dairy Products. Microorganisms 2021, 9, 825. [Google Scholar] [CrossRef]
- Rocha-Ramírez, L.M.; Hernández-Ochoa, B.; Gómez-Manzo, S.; Marcial-Quino, J.; Cárdenas-Rodríguez, N.; Centeno-Leija, S.; García-Garibay, M. Impact of Heat-Killed Lactobacillus casei Strain Imau60214 on the Immune Function of Macrophages in Malnourished Children. Nutrients 2020, 12, 2303. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.J.; Bennett, T.J.; La Gruta, N.L. CD8(+) T-Cell Memory: The Why, the When, and the How. Cold Spring Harb. Perspect. Biol. 2021, 13, a038661. [Google Scholar] [CrossRef]
- Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients 2019, 11, 2862. [Google Scholar] [CrossRef]
- Fehlbaum, S.; Chassard, C.; Schwab, C.; Voolaid, M.; Fourmestraux, C.; Derrien, M.; Lacroix, C. In Vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides Difficile Colonized Elderly Gut Microbiota. Front. Nutr. 2019, 6, 184. [Google Scholar] [CrossRef] [PubMed]
- Tormo Carnicer, R.; Infante Piña, D.; Roselló Mayans, E.; Bartolomé Comas, R. Efecto de La Ingesta de Leche Fermentada Con Lactobacillus casei DN-114 001 Sobre La Flora Intestinal. An. Pediatr. (Engl. Ed.) 2006, 65, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Nakanishi, Y.; Ohno, H. Microbial Metabolites and Gut Immunology. Annu. Rev. Immunol. 2024, 42, 153–178. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- Vujkovic-Cvijin, I.; Welles, H.C.; Ha, C.W.Y.; Huq, L.; Mistry, S.; Brenchley, J.M.; Trinchieri, G.; Devkota, S.; Belkaid, Y. The Systemic Anti-Microbiota IgG Repertoire Can Identify Gut Bacteria That Translocate across Gut Barrier Surfaces. Sci. Transl. Med. 2022, 14, eabl3927. [Google Scholar] [CrossRef]
- FitzGerald, J.; Patel, S.; Eckenberger, J.; Guillemard, E.; Veiga, P.; Schäfer, F.; Walter, J.; Claesson, M.J.; Derrien, M. Improved Gut Microbiome Recovery Following Drug Therapy Is Linked to Abundance and Replication of Probiotic Strains. Gut Microbes 2022, 14, 2094664. [Google Scholar] [CrossRef]
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal Microbiota in Human Health and Disease: The Impact of Probiotics. Genes Nutr. 2011, 6, 209–240. [Google Scholar] [CrossRef]
- Hameed, J.; Nazir, R. Probiotic Potential of Lactobacillus and Enterococcus Strains Isolated From the Faecal Microbiota of Critically Endangered Hangul Deer (Cervus hanglu hanglu): Implications for Conservation Management. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef] [PubMed]
- Colucci, R.; Moretti, S. Implication of Human Bacterial Gut Microbiota on Immune-Mediated and Autoimmune Dermatological Diseases and Their Comorbidities: A Narrative Review. Dermatol. Ther. 2021, 11, 363–384. [Google Scholar] [CrossRef] [PubMed]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef] [PubMed]
Parameter | Extraction 1 (n = 19) | Extraction 2 (n = 21) | Extraction 3 (n = 21) |
---|---|---|---|
% lymphocytes T CD3+ | 73.55 ± 5.57 (63.59–80.55) | 74.81 ± 6.04 (60.45–84.85) | 74.75 ± 5.74 (60.1–82.35) |
% lymphocytes T helper CD3+ CD4+ | 46.05 ± 5.87 (36.53–54.97) | 46.15 ± 5.68 (36.10–57.20) | 46.33 ± 4.59 (38.10–53.50) |
% lymphocytes cytotoxic T CD3+ CD8+ | 25.04 ± 4.88 (16.01–34.10) | 24.95 ± 3.77 (16.70–31.80) | 24.86 ± 4.17 (16.50–30.90) |
CD4/CD8 T cell ratio (T helper cells/cytotoxic T cells ratio). | 1.93 ± 0.55 (1.21–2.98) | 1.91 ± 0.47 (1.27–3.43) | 1.92 ± 0.42 (1.43–3.22) |
% lymphocytes T CD3+ CD4+ CD8+ | 4.63 ± 1.38 (2.01–7.05) 1 | 0.94 ± 0.44 (0.40–2.01) 2 | 0.65 ± 0.48 (0.16–2.47) 3 |
% lymphocytes T CD3+ CD4− CD8− | 7.30 ± 3.11 (3.50–16.10) 4 | 4.29 ± 2.21 (1.64–9.53) 5 | 5.49 ± 4.06 (1.62–15.94) |
% lymphocytes T CD3− CD8+ | 7.38 ± 2.97 (2.99–12.64) 6 | 5.87 ± 3.01 (2.20–11.70) 7 | 4.94 ± 2.22 (2.00–0.60) |
% lymphocytes B CD19+ | 9.52 ± 2.97 (5.30–15.41) 8 | 11.27 ± 3.75 (5.60–21.30) 9 | 11.87 ± 4.39 (4.60–23.70) |
Ratio of T/B CD3+/CD19+ lymphocytes | 8.55 ± 2.96 (4.13–14.95) 10 | 7.35 ± 2.50 (2.95–14.08) 11 | 7.25 ± 3.10 (2.59–16.97) |
% lymphocytes NK | 16.75 ± 6.00 (7.05–27.22) 12 | 13.29 ± 6.64 (4.20–31.70) 13 | 12.85 ± 5.65 (6.70–33.40) |
% lymphocytes CD3+ CD56+ | 7.84 ± 5.20 (0.97–22.08) | 6.14 ± 3.52 (1.80–16.20) 14 | 5.28 ± 3.80 (1.40–18.50) |
% naïve T lymphocytes | 39.11 ± 17.85 (3.03–86.83) 15 | 49.14 ± 14.86 (19.48–90.25) | 45.16 ± 15.40 (25.67–87.90) 16 |
Naïve T lymphocytes mean intensity of fluorescence (MFI) | 51.54 ± 29.13 (33.22–165.93) | 47.98 ± 9.83 (34.01–66.50) | 39.52 ± 6.30 (26.32–50.90) 17 |
% T memory lymphocytes | 42.19 ± 9.18 (27.89–57.69) 18 | 44.28 ± 8.48 (32.70–62.70) | 41.08 ± 6.71 (27.35–52.41) 19 |
T memory lymphocytes mean intensity of fluorescence (MFI) | 84.21 ± 35.89 (46.84–185.52) 20 | 130.50 ± 29.70 (87.92–197.30) | 96.51 ± 19.33 (66.39–141.18) 21 |
% Naïve helper T lymphocytes | 25.39 ± 10.12 (11.23–55.20) | 25.56 ± 8.79 (8.77–45.14) 22 | 21.05 ± 8.52 (7.67–45.51) 23 |
Naïve helper T lymphocytes mean intensity of fluorescence (MFI) | 38.05 ± 6.75 (26.96–52. 16) | 40.34 ± 8.32 (27.84–56.18) 24 | 34.92 ± 5.34 (24.82–46.15) 25 |
% Memory helper T lymphocytes | 30.50 ± 6.54 (18.41–46.54) | 30.27 ± 5.83 (20.56–40.41) | 28.41 ± 5.15 (18.50–38.69) 26 |
Memory helper T lymphocytes mean intensity of fluorescence (MFI) | 92.50 ± 44.82 (51.09–217.50) 27 | 146.17 ± 28.07 (110.67–212.87) 28 | 112.29 ± 20.39 (83.91–159.43) 29 |
% Naïve cytotoxic T lymphocytes | 23.64 ± 8.71 (10.77–48.39) 30 | 21.13 ± 6.14 (10.80–38.34) 31 | 19.35 ± 6.55 (6.73–36.83) 32 |
Naïve cytotoxic T lymphocytes mean intensity of fluorescence (MFI) | 50.75 ± 15.11 (36.43–84.82) | 58.67 ± 14.24 (37.52–81.03) | 44.21 ± 7.04 (26.63–53.85) 33 |
% Memory cytotoxic T lymphocytes | 16.61 ± 5.05 (4.44–26.72) 34 | 12.78 ± 3.77 (6.67–21.35) 35 | 11.18 ± 3.30 (4.99–17.03) 36 |
Memory cytotoxic T lymphocytes mean memory cytotoxic T lymphocytes | 77.91 ± 28.52 (43.06–159.68) 37 | 101.46 ± 26.91 (65.44–163.89) | 76.73 ± 14.99 (52.71–110.21) 38 |
Ratio of naïve T lymphocytes to memory | 1.04 ± 0.67 (0.07–2.76) | 1.19 ± 0.49 (0.32–2.26) | 1.17 ± 0.54 (0.49–2.24) |
Ratio of naïve helper T cells to memory | 0.91 ± 0.54 (0.34–2.38) | 0.92 ± 0.45 (0.23–2.11) | 0.80 ± 0.43 (0.26–1.98) 39 |
Ratio of naïve cytotoxic T lymphocytes to memory | 1.76 ± 1.50 (0.64–7.12) | 1.81 ± 0.79 (0.77–4.06) | 1.95 ± 1.03 (0.58–4.32) |
Parameter (Unit) | Extraction 1 (n = 19) | Extraction 2 (n = 21) | Extraction 3 (n = 21) |
---|---|---|---|
C3 (mg/dL) | 107.94 ± 16.02 (87.10–147.60) 1 | 94.78 ± 11.77 (77.60–123.20) | 104.09 ± 15.84 (79.20–127.30) 2 |
C4 (mg/dL) | 19.49 ± 3.94 (13.50–27.00) 3 | 16.40 ± 2.96 (11.30–23.90) | 18.09 ± 5.38 (12.80–36.30) 4 |
IgG (mg/dL) | 1196.08 ± 152.16 (898.00–1476.00) | 1208.01 ± 181.95 (873.00–1630.00) | 1174.96 ± 201.88 (736.00–1638.00) |
IgA (mg/dL) | 221.14 ± 61.01 (132.00–347.00) | 210.99 ± 64.87 (109.00–340.90) | 225.53 ± 67.39 (111.40–352.8) |
IgM (mg/dL) | 124.02 ± 35.82 (62.70–206.90) | 131.78 ± 52.32 (62.20–298.10) | 133.08 ± 49.30 (71.00–303.00) |
IgG1 (mg/dL) | 564.06 ± 102.94 (320.00–763.00) 5 | 521.82 ± 108.15 (300.10–697.10) 6 | 613.32 ± 145.11 (290.90–862.10) 7 |
IgG2 (mg/dL) | 305.88 ± 80.21 (179.90–445.00) | 305.37 ± 88.17 (145.60–495.30) 8 | 359.46 ± 106.35 (183.10–592.00) 9 |
IgG3 (mg/dL) | 45.52 ± 18.21 (11.10–75.90) 10 | 45.93 ± 19.45 (13.70–91.10) | 46.60 ± 19.86 (12.00–103.70) |
IgG4 (mg/dL) | 43.83 ± 17.20 (19.90–84.50) 11 | 39.15 ± 15.32 (15.70–73.20) | 46.47 ± 19.31 (16.30–88.90) 12 |
Parameter (Unit) | Extraction 1 (n = 19) | Extraction 2 (n = 21) | Extraction 3 (n = 21) |
---|---|---|---|
E. coli (log) | 6.41 ± 2.04 (4.00–10.00) | 6.70 ± 1.66 (4.00–9.30) | 6.60 ± 1.31 (4.00–8.43) |
Clostridium (log) | 10.83 ± 0.73 (9.89–12.00) | 10.09 ± 1.05 (8.18–12.00) 1 | 9.98 ± 0.96 (8.40–12.00) |
Lactobacillus (log) | 7.05 ± 0.96 (5.85–9.25) | 7.70 ± 0.74 (6.03–8.56) | 7.41 ± 1.00 (5.86–9.18) |
Clostridium/E. coli | 4.42 ± 1.96 (1.34–7.68) 2 | 3.38 ± 1.42 (0.75–5.13) | 3.65 ± 1.17 (2.10–6.05) |
Lactobacillus/E. coli | 0.64 ± 2.00 (−2.75–3.81) | 1.00 ± 1.80 (−1.93–3.13) | 0.81 ± 1.23 (−1.02–3.81) |
Lactobacillus/Clostridium | −3.78 ± 1.02 (−5.16–−2.21) 3 | −2.38 ± 1.29 (−4.35–0.04) 4 | −2.39 ± 0.97 (−3.84–−1.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero-Pino, F.; Castro, M.J.; Redondo del Río, P.; Gutierrez, E.; Mayo-Iscar, A.; Nocito, M.; Corell, A. Exploratory Study on Microbiota and Immune Responses to Short-Term L. paracasei CNCM I-1518 Consumption in Healthy Adults. Nutrients 2025, 17, 2287. https://doi.org/10.3390/nu17142287
Rivero-Pino F, Castro MJ, Redondo del Río P, Gutierrez E, Mayo-Iscar A, Nocito M, Corell A. Exploratory Study on Microbiota and Immune Responses to Short-Term L. paracasei CNCM I-1518 Consumption in Healthy Adults. Nutrients. 2025; 17(14):2287. https://doi.org/10.3390/nu17142287
Chicago/Turabian StyleRivero-Pino, Fernando, Maria José Castro, Paz Redondo del Río, Eloina Gutierrez, Agustín Mayo-Iscar, Mercedes Nocito, and Alfredo Corell. 2025. "Exploratory Study on Microbiota and Immune Responses to Short-Term L. paracasei CNCM I-1518 Consumption in Healthy Adults" Nutrients 17, no. 14: 2287. https://doi.org/10.3390/nu17142287
APA StyleRivero-Pino, F., Castro, M. J., Redondo del Río, P., Gutierrez, E., Mayo-Iscar, A., Nocito, M., & Corell, A. (2025). Exploratory Study on Microbiota and Immune Responses to Short-Term L. paracasei CNCM I-1518 Consumption in Healthy Adults. Nutrients, 17(14), 2287. https://doi.org/10.3390/nu17142287