Selenium Concentrations in Soccer Players During a Sports Season: Sex Differences
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. The Participants
2.3. Anthropometry, Body Composition, and Physical Fitness Assessments
2.4. The Nutritional Assessment
2.5. Sample Collection
2.6. Hormone Sample Collection and Determination of the Hematological Parameters
2.7. Determination of Se
2.8. The Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Pipkin, F.B.; Redman, C.W.G.; Poston, L. Selenium in Reproductive Health. Am. J. Obstet. Gynecol. 2012, 206, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Navascués, L.J.; Córdova Martínez, A.; Seco-Calvo, J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients 2020, 12, 1790. [Google Scholar] [CrossRef]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative Stress: Role of Physical Exercise and Antioxidant Nutraceuticals in Adulthood and Aging. Oncotarget 2018, 9, 17181. [Google Scholar] [CrossRef]
- Baltaci, A.; Mogulkoc, R.; Akil, M.; Bicer, M. Selenium—Its Metabolism and Relation to Exercise. Pak. J. Pharm. Sci. 2016, 29, 1719–1725. [Google Scholar]
- Clarkson, P.M.; Thompson, H.S. Antioxidants: What Role Do They Play in Physical Activity and Health? Am. J. Clin. Nutr. 2000, 72, 637S–646S. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, M.A.; Filaire, E.; Matran, R.; Robin, S.; Fabre, C. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int. J. Sports Med. 2018, 40, 21–28. [Google Scholar] [CrossRef]
- Mena, P.; Maynar, M.; Gutierrez, J.M.; Maynar, J.; Timon, J.; Campillo, J.E. Erythrocyte Free Radical Scavenger Enzymes in Bicycle Professional Racers. Adaptation to Training. Int. J. Sports Med. 1991, 12, 563–566. [Google Scholar] [CrossRef]
- Akimoto, A.K.; Ana Luisa, M.-V.; Penha Cristina Zaidan, A.; Luiz Carlos da Silva, P.; Graciana Souza, L.; Cassia de Oliveira, H.; da Silva, I.C.R.; Cesar Koppe, G.; Klautau-Guimarães, M.d.N. Evaluation of Gene Polymorphisms in Exercise-Induced Oxidative Stress and Damage. Free Radic. Res. 2010, 44, 322–331. [Google Scholar] [CrossRef]
- Ji, L.L.; Stratman, F.W.; Lardy, H.A. Antioxidant Enzyme Systems in Rat Liver and Skeletal Muscle: Influences of Selenium Deficiency, Chronic Training, and Acute Exercise. Arch. Biochem. Biophys. 1988, 263, 150–160. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Muñoz, D.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Llerena, F. Influence of an Acute Exercise Until Exhaustion on Serum and Urinary Concentrations of Molybdenum, Selenium, and Zinc in Athletes. Biol. Trace Elem. Res. 2018, 186, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Llerena, F.; Bartolomé, I.; Alves, J.; Robles, M.-C.; Grijota, F.-J.; Muñoz, D. Seric Concentrations of Copper, Chromium, Manganesum, Nickel and Selenium in Aerobic, Anaerobic and Mixed Professional Sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar] [CrossRef]
- Maynar, M.; Bartolomé, I.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Munõz, D. Influence of a 6-Month Physical Training Program on Serum and Urinary Concentrations of Trace Metals in Middle Distance Elite Runners. J. Int. Soc. Sports Nutr. 2019, 16, 53. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Bustamante-Sanchez, Á.; Mielgo-Ayuso, J.; Martínez-Guardado, I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Antioxidants and Sports Performance. Nutrients 2023, 15, 2371. [Google Scholar] [CrossRef]
- Fodor, J.; Al-Gaadi, D.; Czirják, T.; Oláh, T.; Dienes, B.; Csernoch, L.; Szentesi, P. Improved Calcium Homeostasis and Force by Selenium Treatment and Training in Aged Mouse Skeletal Muscle. Sci. Rep. 2020, 10, 1707. [Google Scholar] [CrossRef]
- Maynar, M.; Grijota, F.J.; Siquier-Coll, J.; Bartolome, I.; Robles, M.C.; Muñoz, D. Erythrocyte Concentrations of Chromium, Copper, Manganese, Molybdenum, Selenium and Zinc in Subjects with Different Physical Training Levels. J. Int. Soc. Sports Nutr. 2020, 17, 1–9. [Google Scholar] [CrossRef]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Muñoz, D.; Robles, M.C.; Maynar-Mariño, M. Influence of a High-Temperature Programme on Serum, Urinary and Sweat Levels of Selenium and Zinc. J. Therm. Biol. 2020, 88, 102492. [Google Scholar] [CrossRef] [PubMed]
- Toro-Román, V.; Bartolomé, I.; Siquier-Coll, J.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level. Nutrients 2022, 14, 1857. [Google Scholar] [CrossRef]
- Siquier-Coll, J.; Bartolomé, I.; Perez-Quintero, M.; Grijota, F.J.; Arroyo, J.; Muñoz, D.; Maynar-Mariño, M. Serum, Erythrocyte and Urinary Concentrations of Iron, Copper, Selenium and Zinc Do Not Change during an Incremental Test to Exhaustion in Either Normothermic or Hyperthermic Conditions. J. Therm. Biol. 2019, 86, 102425. [Google Scholar] [CrossRef]
- Piomelli, S.; Seaman, C. Mechanism of Red Blood Cell Aging: Relationship of Cell Density and Cell Age. Am. J. Hematol. 1993, 42, 46–52. [Google Scholar] [CrossRef]
- Neve, J. Human Selenium Supplementation as Assessed by Changes in Blood Selenium Concentration and Glutathione Peroxidase Activity. J. Trace Elem. Med. Biol. 1995, 9, 65–73. [Google Scholar] [CrossRef]
- Bangsbo, J. The Physiology of Soccer—With Special Reference to Intense Intermittent Exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar] [PubMed]
- Stankiewicz, B.; Cieślicka, M.; Kujawski, S.; Piskorska, E.; Kowalik, T.; Korycka, J.; Skarpańska-Stejnborn, A. Effects of Antioxidant Supplementation on Oxidative Stress Balance in Young Footballers-a Randomized Double-Blind Trial. J. Int. Soc. Sports Nutr. 2021, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Toro-Román, V.; Robles-Gil, M.C.; Muñoz, D.; Bartolomé, I.; Siquier-Coll, J.; Maynar-Mariño, M. Extracellular and Intracellular Concentrations of Molybdenum and Zinc in Soccer Players: Sex Differences. Biology 2022, 11, 1710. [Google Scholar] [CrossRef] [PubMed]
- Porta, J.; Galiano, D.; Tejedo, A.; González, J.M. Valoración de La Composición Corporal: Utopías y Realidades. In Manual de Cineantropometría; Esparza Ros, F., Ed.; Grupo Español de Cineantropometría: Madrid, Spain, 1993; pp. 113–170. [Google Scholar]
- Yuhasz, M.S. Physical Fitness Manual, 1st ed.University of Western Ontario: London, ON, Canada, 1974. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composicion de Alimentos: Guia de Prácticas; Pirámide: Madrid, Spain, 2016; ISBN 9788436836233. [Google Scholar]
- Toro-Román, V.; Muñoz, D.; Maynar-Mariño, M.; Clemente-Gil, S.; Robles-Gil, M.C. Sex Differences in Copper Concentrations during a Sports Season in Soccer Players. Nutrients 2023, 15, 495. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of Soccer. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Mujika, I.; Santisteban, J.; Impellizzeri, F.M.; Castagna, C. Fitness Determinants of Success in Men’s and Women’s Football. J. Sports Sci. 2009, 27, 107–114. [Google Scholar] [CrossRef]
- Meckel, Y.; Doron, O.; Eliakim, E.; Eliakim, A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports 2018, 6, 14. [Google Scholar] [CrossRef]
- Caldwell, B.P.; Peters, D.M. Seasonal Variation in Physiological Fitness of a Semiprofessional Soccer Team. J. Strength Cond. Res. 2009, 23, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong Correlation of Maximal Squat Strength with Sprint Performance and Vertical Jump Height in Elite Soccer Players. Br. J. Sports Med. 2004, 38, 285. [Google Scholar] [CrossRef]
- Loturco, I.; Jeffreys, I.; Abad, C.C.C.; Kobal, R.; Zanetti, V.; Pereira, L.A.; Nimphius, S. Change-of-Direction, Speed and Jump Performance in Soccer Players: A Comparison across Different Age-Categories. J. Sports Sci. 2020, 38, 1279–1285. [Google Scholar] [CrossRef]
- Castagna, C.; Castellini, E. Vertical Jump Performance in Italian Male and Female National Team Soccer Players. J. Strength Cond. Res. 2013, 27, 1156–1161. [Google Scholar] [CrossRef]
- Slimani, M.; Znazen, H.; Miarka, B.; Bragazzi, N.L. Maximum Oxygen Uptake of Male Soccer Players According to Their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. J. Hum. Kinet. 2019, 66, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Snarr, R.L.; Flatt, A.; Leatherwood, M.; Whittaker, A. Tracking Changes in Maximal Oxygen Consumption with the Heart Rate Index in Female Collegiate Soccer Players. J. Hum. Kinet. 2014, 42, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Thierry-Aguilera, R.; Congleton, J.J.; Amendola, A.A. Seasonal Changes in VO2max among Division 1A Collegiate Women Soccer Players. J. Strength Cond. Res. 2007, 21, 48. [Google Scholar] [CrossRef]
- Kalapotharakos, V.I.; Ziogas, G.; Tokmakidis, S.P. Seasonal Aerobic Performance Variations in Elite Soccer Players. J. Strength Cond. Res. 2011, 25, 1502–1507. [Google Scholar] [CrossRef]
- Metaxas, T.; Sendelides, T.; Koutlianos, N.; Mandroukas, K. Seasonal Variation of Aerobic Performance in Soccer Players According to Positional Role. J. Sports Med. Phys. Fit. 2006, 46, 520. [Google Scholar]
- Calleja, C.A.; Hurtado, M.M.C.; Daschner, Á.; Escámez, P.F.; Abuín, C.M.F.; Pons, R.M.G.; Fandos, M.E.G.; Muñoz, M.J.G.; López-García, E.; Vinuesa, J.M. Informe Del Comité Científico de La Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) Sobre Ingestas Nutricionales de Referencia Para La Población Española. Rev. Com. Científico AESAN 2019, 29, 43–68. [Google Scholar]
- McCrink, C.M.; McSorley, E.M.; Grant, K.; McNeilly, A.M.; Magee, P.J. An Investigation of Dietary Intake, Nutrition Knowledge and Hydration Status of Gaelic Football Players. Eur. J. Nutr. 2021, 60, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Anđelković, M.; Baralić, I.; Đorđević, B.; Stevuljević, J.K.; Radivojević, N.; Dikić, N.; Škodrić, S.R.; Stojković, M. Hematological and Biochemical Parameters in Elite Soccer Players during a Competitive Half Season. J. Med. Biochem. 2015, 34, 460. [Google Scholar] [CrossRef]
- Wardenaar, F.; Brinkmans, N.; Ceelen, I.; Van Rooij, B.; Mensink, M.; Witkamp, R.; De Vries, J. Micronutrient Intakes in 553 Dutch Elite and Sub-Elite Athletes: Prevalence of Low and High Intakes in Users and Non-Users of Nutritional Supplements. Nutrients 2017, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, I.; Rousseau, A.; Hininger, I.; Palazzetti, S.; Arnaud, J.; Roussel, A.-M. Increase in Selenium Requirements with Physical Activity Loads in Well-Trained Athletes Is Not Linear. BioFactors 2005, 23, 45–55. [Google Scholar] [CrossRef]
- Margaritis, I.; Palazzetti, S.; Rousseau, A.S.; Richard, M.J.; Favier, A. Antioxidant Supplementation and Tapering Exercise Improve Exercise-Induced Antioxidant Response. J. Am. Coll. Nutr. 2003, 22, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Driskell, J.; Wolinsky, I. Sports Nutrition: Vitamins and Trace Elements; Taylor & Francis: New York, NY, USA, 2005; ISBN 1420037919. [Google Scholar]
- Ashton, K.; Hooper, L.; Harvey, L.J.; Hurst, R.; Casgrain, A.; Fairweather-Tait, S.J. Methods of Assessment of Selenium Status in Humans: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 2025s–2039s. [Google Scholar] [CrossRef]
- Lu, Y.; Ahmed, S.; Harari, F.; Vahter, M. Impact of Ficoll Density Gradient Centrifugation on Major and Trace Element Concentrations in Erythrocytes and Blood Plasma. J. Trace Elem. Med. Biol. 2015, 29, 249–254. [Google Scholar] [CrossRef]
- Combs, F., Jr. Biomarkers of Selenium Status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef]
- Thomson, C. Assessment of Requirements for Selenium and Adequacy of Selenium Status: A Review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef]
- Milias, G.A.; Nomikos, T.; Fragopoulou, E.; Athanasopoulos, S.; Antonopoulou, S. Effects of Baseline Serum Levels of Se on Markers of Eccentric Exercise-Induced Muscle Injury. Biofactors 2006, 26, 161–170. [Google Scholar] [CrossRef]
- Thomson, C. Selenium and Iodine Intakes and Status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: New York, NY, USA, 2005; ISBN 0195171691. [Google Scholar]
- Tessier, F.; Margaritis, I.; Richard, M.-J.; Moynot, C.; Marconnet, P. Selenium and Training Effects on the Glutathione System and Aerobic Performance. Med. Sci. Sports Exerc. 1995, 27, 390–396. [Google Scholar] [CrossRef]
- Huggins, R.A.; Fortunati, A.R.; Curtis, R.M.; Looney, D.P.; West, C.A.; Lee, E.C.; Fragala, M.S.; Hall, M.L.; Casa, D.J. Monitoring Blood Biomarkers and Training Load throughout a Collegiate Soccer Season. J. Strength Cond. Res. 2019, 33, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
- Pograjc, L.; Stibilj, V.; Falnoga, I. Impact of Intensive Physical Activity on Selenium Status. Biol. Trace Elem. Res. 2012, 145, 291–299. [Google Scholar] [CrossRef]
- Rokitzki, L.; Logemann, E.; Sagredos, A.N.; Murphy, M.; Wetzel-Roth, W.; Keul, J. Lipid Peroxidation and Antioxidative Vitamins under Extreme Endurance Stress. Acta Physiol. Scand. 1994, 151, 149–158. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Selenomethionine: A Review of Its Nutritional Significance, Metabolism and Toxicity. J. Nutr. 2000, 130, 1653–1656. [Google Scholar] [CrossRef] [PubMed]
- Hać, E.; Krechniak, J.; Szyszko, M. Selenium Levels in Human Plasma and Hair in Northern Poland. Biol. Trace Elem. Res. 2002, 85, 277–285. [Google Scholar] [CrossRef]
- Kim, H.; Lim, H.; Lee, K.; Choi, M.H.; Kang, N.M.; Lee, C.H.; Oh, E.J.; Park, H.K. Determination of Trace Metal Levels in the General Population of Korea. Int. J. Environ. Res. Public Health 2017, 14, 702. [Google Scholar] [CrossRef]
- Jain, R.; Choi, Y. Normal Reference Ranges for and Variability in the Levels of Blood Manganese and Selenium by Gender, Age, and Race/Ethnicity for General US Population. J. Trace Elem. Med. Biol. 2015, 30, 142–152. [Google Scholar] [CrossRef]
- Sesana, G.; Baj, A.; Toffoletto, F.; Sega, R.; Ghezzi, L. Plasma Selenium Levels of the General Population of an Area in Northern Italy. Sci. Total Environ. 1992, 120, 97–102. [Google Scholar] [CrossRef]
- Verlinden, M.; Van Sprundel, M.; Van der Auwera, J.C.; Eylenbosch, W.J. The Selenium Status of Belgian Population Groups: I. Healthy Adults. Biol. Trace Elem. Res. 1983, 5, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Chang, M.; Medeiros, L. Generational Differences in Selenium Status of Women. Biol. Trace Elem. Res. 2000, 75, 157–165. [Google Scholar] [CrossRef]
- Toro-Román, V.; Siquier-Coll, J.; Grijota Pérez, F.J.; Maynar-Mariño, M.; Bartolomé-Sánchez, I.; Robles-Gil, M.C. Plasma, Urinary, Erythrocyte and Platelet Zinc Concentrations in Soccer Players. Nutrients 2024, 16, 2789. [Google Scholar] [CrossRef] [PubMed]
- Toro-Román, V.; Grijota, F.J.; Maynar-Mariño, M.; Campos, A.; Martínez-Sánchez, A.; Robles-Gil, M.C. Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season. Appl. Sci. 2024, 14, 9370. [Google Scholar] [CrossRef]
- Stoedter, M.; Renko, K.; Hög, A.; Schomburg, L. Selenium Controls the Sex-Specific Immune Response and Selenoprotein Expression during the Acute-Phase Response in Mice. Biochem. J. 2010, 429, 43–51. [Google Scholar] [CrossRef]
- Yoneyama, S.; Miura, K.; Itai, K.; Yoshita, K.; Nakagawa, H.; Shimmura, T.; Okayama, A.; Sakata, K.; Saitoh, S.; Ueshima, H. Dietary Intake and Urinary Excretion of Selenium in the Japanese Adult Population: The INTERMAP Study Japan. Eur. J. Clin. Nutr. 2008, 62, 1187–1193. [Google Scholar] [CrossRef]
- Urbano, T.; Filippini, T.; Lasagni, D.; De Luca, T.; Sucato, S.; Polledri, E.; Bruzziches, F.; Malavolti, M.; Baraldi, C.; Santachiara, A. Associations between Urinary and Dietary Selenium and Blood Metabolic Parameters in a Healthy Northern Italy Population. Antioxidants 2021, 10, 1193. [Google Scholar] [CrossRef]
- McAdam, P.A.; Smith, D.K.; Feldman, E.B.; Hames, C. Effect of Age, Sex, and Race on Selenium Status of Healthy Residents of Augusta, Georgia. Biol. Trace Elem. Res. 1984, 6, 3–9. [Google Scholar] [CrossRef]
- Pinto, R.E.; Bartley, W. Changes in Glutathione Reductase and Glutathione Peroxidase Activities in Rat Liver Related to Age and Sex. Biochem. J. 1968, 109, 34P. [Google Scholar] [CrossRef]
- Seale, L.A.; Ogawa-Wong, A.N.; Berry, M.J. Sexual Dimorphism in Selenium Metabolism and Selenoproteins. Free Radic. Biol. Med. 2018, 127, 198–205. [Google Scholar] [CrossRef]
- Schomburg, L.; Riese, C.; Renko, K.; Schweizer, U. Effect of Age on Sexually Dimorphic Selenoprotein Expression in Mice. Biol. Chem. 2007, 388, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Letsiou, S.; Nomikos, T.; Panagiotakos, D.B.; Pergantis, S.A.; Fragopoulou, E.; Pitsavos, C.; Stefanadis, C.; Antonopoulou, S. Gender-specific Distribution of Selenium to Serum Selenoproteins: Associations with Total Selenium Levels, Age, Smoking, Body Mass Index, and Physical Activity. Biofactors 2014, 40, 524–535. [Google Scholar] [CrossRef] [PubMed]
Men Soccer Players (n = 22) | Women Soccer Players (n = 24) | ||
---|---|---|---|
Age (years) | 20 ± 2 | 23 ± 4 | |
Height (m) | 1.76 ± 0.06 | 1.65 ± 0.06 | |
Weight (kg) | 71.50 ± 5.93 | 59.58 ± 7.17 | |
Σ6 Skinfold (mm) | 60.34 ± 12.35 | 94.62 ± 18.54 | |
Experience (years) | 14.73 ± 3.13 | 14.51 ± 4.94 | |
Position on the Field (%) | Goalkeeper | 7.70 | 11.10 |
Defender | 30.80 | 33.30 | |
Midfielder | 38.50 | 29.60 | |
Forward | 23.10 | 25.90 | |
Total Training (weeks) | 36 | 39 | |
Total Training (nº) | 128.27 ± 18.59 | 133.54 ± 25.86 | |
Total Training (min) | 11,814.23 ± 1673.40 | 10,578.46 ± 3227.80 | |
Absence from Training (days) | 12.07 ± 9.34 | 14.14 ± 10.79 |
Women Soccer Players | |
---|---|
Age of onset (years) | 13.5 ± 1.15 |
Regular menses (%) | 100.00 |
Duration of bleeding (days) | 4.77 ± 1.47 |
Menstrual cycle (days) | 27.93 ± 2.78 |
Use of contraceptive methods (%) | 0 |
Men Soccer Players | Women Soccer Players | Sex Effect | Measured Effect | Sex × Measured | ||
---|---|---|---|---|---|---|
Weight (kg) | Preseason | 71.50 ± 5.93 | 59.58 ± 7.17 | <0.001 | 0.748 | 0.931 |
Midseason | 71.95 ± 5.87 | 60.44 ± 6.77 | ||||
End of season | 72.80 ± 5.68 | 66.39 ± 8.99 | ||||
Fat (%) | Preseason | 9.46 ± 1.30 | 18.16 ± 2.74 | <0.001 | 0.005 | 0.007 |
Midseason | 9.45 ± 1.31 | 15.56 ± 2.16 * | ||||
End of season | 9.14 ± 1.23 | 16.54 ± 2.68 | ||||
VO2max (mL/min/kg) | Preseason | 52.21 ± 2.91 | 39.72 ± 6.22 | <0.001 | 0.032 | 0.268 |
Midseason | 54.79 ± 3.70 * | 42.32 ± 4.19 * | ||||
End of season | 53.30 ± 5.11 | 41.06 ± 4.51 | ||||
CMJ (cm) | Preseason | 56.94 ± 6.39 | 40.21 ± 7.46 | <0.001 | 0.571 | 0.717 |
Midseason | 55.34 ± 4.72 | 39.70 ± 4.18 | ||||
End of season | 56.05 ± 6.39 | 41.45 ± 5.80 | ||||
Erythrocytes (millions) | Preseason | 4.92 ± 0.36 | 4.37 ± 0.22 | <0.001 | 0.031 | 0.063 |
Midseason | 4.83 ± 0.32 ** | 4.19 ± 0.27 ** | ||||
End of season | 4.99 ± 0.29 ++ | 4.35 ± 0.27 ++ | ||||
Platelets (thousands) | Preseason | 204.50 ± 57.65 | 196.00 ± 38.01 | 0.274 | 0.542 | 0.222 |
Midseason | 196.60 ± 39.79 | 219.08 ± 34.19 | ||||
End of season | 195.13 ± 37.82 | 204.39 ± 31.52 |
Men Soccer Players | Women Soccer Players | Sex Effect | Measured Effect | Sex × Measured | ||
---|---|---|---|---|---|---|
Proteins (g/day) | Preseason | 106.1 ± 25.5 | 90.4 ± 21.6 | 0.047 | 0.469 | 0.218 |
Midseason | 115.5 ± 23.4 | 96.2 ± 18.3 | ||||
End of season | 108.9 ± 24.8 | 92.6 ± 20.4 | ||||
Proteins (g/kg/day) | Preseason | 1.53 ± 0.35 | 1.42 ± 0.31 | 0.061 | 0.571 | 0.317 |
Midseason | 1.56 ± 0.41 | 1.39 ± 0.17 | ||||
End of season | 1.50 ± 0.29 | 1.40 ± 0.31 | ||||
Lipids (g/day) | Preseason | 54.8 ± 19.1 | 48.3 ± 12.3 | 0.116 | 0.241 | 0.471 |
Midseason | 64.1 ± 15.4 | 55.6 ± 15.3 | ||||
End of season | 58.6 ± 17.4 | 60.3 ± 20.6 | ||||
Lipids (g/kg/day) | Preseason | 0.54 ± 0.14 | 0.51 ± 0.11 | 0.248 | 0.366 | 0.589 |
Midseason | 0.57 ± 0.25 | 0.58 ± 0.15 | ||||
End of season | 0.53 ± 0.17 | 0.62 ± 0.21 | ||||
Carbohydrates (g/day) | Preseason | 231.0 ± 69.1 | 206.1 ± 81.3 | 0.471 | 0.856 | 0.683 |
Midseason | 235.8 ± 60.3 | 241.5 ± 56.1 | ||||
End of season | 242.0 ± 57.0 | 235.8 ± 61.7 | ||||
Carbohydrates (g/kg/day) | Preseason | 4.27 ± 1.60 | 4.11 ± 1.34 | 0.372 | 0.215 | 0.481 |
Midseason | 4.33 ± 1.91 | 4.20 ± 1.80 | ||||
End of season | 4.40 ± 1.38 | 4.34 ± 1.59 | ||||
Se (µg/day) | Preseason | 150.0 ± 61.1 | 136.6 ± 71.6 | 0.141 | 0.920 | 0.538 |
Midseason | 156.0 ± 31.7 | 141.7 ± 69.2 | ||||
End of season | 159.0 ± 81.7 | 140.6 ± 49.5 |
Women Soccer Players | p | ||
---|---|---|---|
Progesterone (ng/mL) | Preseason | 2.65 ± 3.88 | 0.998 |
Midseason | 2.38 ± 3.21 | ||
End of season | 2.31 ± 2.89 | ||
Estradiol-17β (pg/mL) | Preseason | 74.04 ± 45.30 | 0.894 |
Midseason | 71.32 ± 39.25 | ||
End of season | 68.30 ± 40.93 |
Men Soccer Players | Women Soccer Players | Sex Effect | Measured Effect | Sex × Measured | ||
---|---|---|---|---|---|---|
Plasma (µg/L) | Preseason | 80.79 ± 18.90 | 70.44 ± 19.66 | 0.001 ## | <0.001 ## | 0.189 |
Midseason | 88.88 ± 12.19 ^^ | 80.86 ± 15.28 ^^ | ||||
End of season | 116.50 ± 16.20 ** | 97.25 ± 16.29 ** | ||||
Urine (µg/L) | Preseason | 24.09 ± 14.13 | 29.97 ± 14.92 | 0.006 ## | <0.001 ## | 0.178 |
Midseason | 33.90 ± 16.53 ^^ | 12.95 ± 10.66 ^^ | ||||
End of season | 14.30 ± 5.79 ** | 9.43 ± 6.35 ** | ||||
Absolute erythrocytes (µg/L) | Preseason | 65.23 ± 25.57 | 70.96 ± 32.94 | <0.001 ## | 0.085 # | 0.078 |
Midseason | 54.58 ± 25.40 | 77.23 ± 52.14 | ||||
End of season | 46.15 ± 33.08 | 120.90 ± 32.39 | ||||
Relative erythrocytes (pg/cell−6) | Preseason | 14.98 ± 4.95 | 16.41 ± 7.01 | <0.001 ## | 0.212 | 0.097 # |
Midseason | 12.48 ± 5.51 ^^ | 16.96 ± 12.17 ^^ | ||||
End of season | 9.58 ± 6.99 ** | 26.98 ± 7.09 ** | ||||
Absolute platelets (µg/L) | Preseason | 5.84 ± 2.25 | 4.36 ± 2.47 | <0.001 ## | <0.001 ## | 0.312 |
Midseason | 9.07 ± 2.30 | 6.70 ± 1.66 | ||||
End of season | 11.34 ± 4.16 ** | 8.41 ± 3.78 ** | ||||
Relative platelets (pg/cell−3) | Preseason | 0.033 ± 0.013 | 0.023 ± 0.014 | <0.001 ## | <0.001 ## | 0.056 ## |
Midseason | 0.045 ± 0.012 | 0.032 ± 0.008 | ||||
End of season | 0.085 ± 0.019 ** | 0.059 ± 0.013 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Román, V.; Siquier-Coll, J.; Grijota, F.J.; Maynar-Mariño, M.; Bartolomé, I.; Robles-Gil, M.C. Selenium Concentrations in Soccer Players During a Sports Season: Sex Differences. Nutrients 2025, 17, 2257. https://doi.org/10.3390/nu17142257
Toro-Román V, Siquier-Coll J, Grijota FJ, Maynar-Mariño M, Bartolomé I, Robles-Gil MC. Selenium Concentrations in Soccer Players During a Sports Season: Sex Differences. Nutrients. 2025; 17(14):2257. https://doi.org/10.3390/nu17142257
Chicago/Turabian StyleToro-Román, Víctor, Jesús Siquier-Coll, Francisco J. Grijota, Marcos Maynar-Mariño, Ignacio Bartolomé, and María Concepción Robles-Gil. 2025. "Selenium Concentrations in Soccer Players During a Sports Season: Sex Differences" Nutrients 17, no. 14: 2257. https://doi.org/10.3390/nu17142257
APA StyleToro-Román, V., Siquier-Coll, J., Grijota, F. J., Maynar-Mariño, M., Bartolomé, I., & Robles-Gil, M. C. (2025). Selenium Concentrations in Soccer Players During a Sports Season: Sex Differences. Nutrients, 17(14), 2257. https://doi.org/10.3390/nu17142257