Ultra-Processed Foods Consumption and Metabolic Syndrome in European Children, Adolescents, and Adults: Results from the I.Family Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Information
2.3. Physical Measurements and Laboratory Analyses
2.4. Metabolic Syndrome and Its Components
2.5. Socio-Economic Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.E.; Illner, A.K.; Dokova, K.; Usheva, N.; Kostadinova, T.; Aleksandrova, K. Mapping the global evidence on nutrition transition: A scoping review protocol. BMJ Open 2020, 10, e034730. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Cannon, G.; Lawrence, M.; Louzada, M.L.; Machado, P.P. Ultra-Processed Foods, Diet Quality, and Health Using the Nova Classification System; FAO: Rome, Italy, 2019; ISBN 9789251317013. [Google Scholar]
- Lauria, F.; Dello Russo, M.; Formisano, A.; De Henauw, S.; Hebestreit, A.; Hunsberger, M.; Krogh, V.; Intemann, T.; Lissner, L.; Molnar, D.; et al. Ultra-processed foods consumption and diet quality of European children, adolescents and adults: Results from the I.Family study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3031–3043. [Google Scholar] [CrossRef]
- Steele, E.M.; Baraldi, L.G.; Da Costa Louzada, M.L.; Moubarac, J.C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef]
- Moubarac, J.C.; Batal, M.; Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017, 108, 512–520. [Google Scholar] [CrossRef]
- Rauber, F.; Louzada, M.L.; Steele, E.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef]
- Levy, R.B.; Rauber, F.; Chang, K.; Louzada, M.L.; Monteiro, C.A.; Millett, C.; Vamos, E.P. Ultra-processed food consumption and type 2 diabetes incidence: A prospective cohort study. Clin. Nutr. 2021, 40, 3608–3614. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- De Deus Mendonça, R.; Souza Lopes, A.C.; Pimenta, A.M.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra project. Am. J. Hypertens. 2017, 30, 358–366. [Google Scholar] [CrossRef]
- Mehrabani, S.; Shoaei, N.; Shateri, Z.; Askarpour, M.; Nouri, M.; Keshani, P.; Honarvar, B.; Homayounfar, R. Consumption of ultra-processed foods could influence the metabolic syndrome odds: A cross-sectional study. Food Sci. Nutr. 2024, 12, 2567–2577. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q.H. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Wang, Z.; Wang, H.; Zhang, J.; Su, C.; Jia, X.; Du, W.; Jiang, H.; Li, W.; Wang, L.; et al. Association between ultra-processed food consumption and metabolic syndrome among adults in China—Results from the China Health and Nutrition Survey. Nutrients 2023, 15, 752. [Google Scholar] [CrossRef]
- Canhada, S.L.; Vigo, A.; Luft, V.C.; Levy, R.B.; Matos, S.M.A.; Molina, M.D.C.; Giatti, L.; Barreto, S.; Duncan, B.B.; Schmidt, M.I. Ultra-processed food consumption and increased risk of metabolic syndrome in adults: The ELSA-Brasil. Diabetes Care 2023, 46, 369–376. [Google Scholar] [CrossRef]
- Magalhães, E.I.S.; de Oliveira, B.R.; Rudakoff, L.C.S.; de Carvalho, V.A.; Viola, P.C.A.; Arruda, S.P.M.; de Carvalho, C.A.; Coelho, C.C.N.d.S.; Bragança, M.L.B.M.; Bettiol, H.; et al. Sex-dependent effects of the intake of NOVA classified ultra-processed foods on syndrome metabolic components in Brazilian adults. Nutrients 2022, 14, 3126. [Google Scholar] [CrossRef]
- Barbosa, L.B.; Vasconcelos, N.B.R.; dos Santos, E.A.; dos Santos, T.R.; Ataide-Silva, T.; Ferreira, H.S. Ultra-processed food consumption and metabolic syndrome: A cross-sectional study in Quilombola communities of Alagoas, Brazil. Int. J. Equity Health 2023, 22, 14. [Google Scholar] [CrossRef]
- Tavares, L.F.; Fonseca, S.C.; Garcia Rosa, M.L.; Yokoo, E.M. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian family doctor program. Public Health Nutr. 2012, 15, 82–87. [Google Scholar] [CrossRef]
- Khoury, N.; Martínez, M.Á.; Garcidueñas-Fimbres, T.E.; Pastor-Villaescusa, B.; Leis, R.; De Las Heras-Delgado, S.; Miguel-Berges, M.L.; Navas-Carretero, S.; Portoles, O.; Pérez-Vega, K.A.; et al. Ultra-processed food consumption and cardiometabolic risk factors in children. JAMA Netw. Open 2024, 7, E2411852. [Google Scholar]
- Ahrens, W.; Siani, A.; Adan, R.; De Henauw, S.; Eiben, G.; Gwozdz, W.; Hebestreit, A.; Hunsberger, M.; Kaprio, J.; Krogh, V.; et al. Cohort profile: The transition from childhood to adolescence in European children—How I.Family extends the IDEFICS cohort. Int. J. Epidemiol. 2017, 46, 1394–1395J. [Google Scholar] [CrossRef]
- Hebestreit, A.; Wolters, M.; Jilani, H.; Eiben, G.; Pala, V. Web-Based 24-h Dietary Recall: The SACANA Program; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-98857-3. [Google Scholar]
- Intemann, T.; Pigeot, I.; De Henauw, S.; Eiben, G.; Lissner, L.; Krogh, V.; Dereń, K.; Molnár, D.; Moreno, L.A.; Russo, P.; et al. Urinary sucrose and fructose to validate self-reported sugar intake in children and adolescents: Results from the I.Family study. Eur. J. Nutr. 2019, 58, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.B.E.; Robson, P.J. Measurement of dietary intake in children. Proc. Nutr. Soc. 2000, 59, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Julián-Almárcegui, C.; Bel-Serrat, S.; Kersting, M.; Vicente-Rodriguez, G.; Nicolas, G.; Vyncke, K.; Vereecken, C.; De Keyzer, W.; Beghin, L.; Sette, S.; et al. Comparison of different approaches to calculate nutrient intakes based upon 24-h recall data derived from a multicenter study in European adolescents. Eur. J. Nutr. 2016, 55, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Bundeslebensmittelschlüssel. German Nutrient Database (Bundeslebensmittelschlüssel, BLS). 2025. Available online: https://www.blsdb.de/behaviour/translate-to-english-arbeitsbereiche/german-nutrient-database-bundeslebensmittelschluessel-bl/ (accessed on 14 April 2025).
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Buckman, D.W.; Dodd, K.W.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Tooze, J.A.; Carroll, R.J.; Freedman, L.S.; et al. Modeling data with excess zeros and measurement error: Application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 2009, 65, 1003–1010. [Google Scholar] [CrossRef]
- Waijers, P.M.C.M.; Feskens, E.J.M.; Ocké, M.C. A critical review of predefined diet quality scores. Br. J. Nutr. 2007, 97, 219–231. [Google Scholar] [CrossRef]
- Arvidsson, L.; Eiben, G.; Hunsberger, M.; De Bourdeaudhuij, I.; Molnar, D.; Jilani, H.; Thumann, B.; Veidebaum, T.; Russo, P.; Tornatitis, M.; et al. Bidirectional associations between psychosocial well-being and adherence to healthy dietary guidelines in European children: Prospective findings from the IDEFICS study. BMC Public Health 2017, 17, 926. [Google Scholar] [CrossRef]
- Stomfai, S.; Ahrens, W.; Bammann, K.; Kovács, E.; Mårild, S.; Michels, N.; Moreno, L.A.; Pohlabeln, H.; Siani, A.; Tornaritis, M.; et al. Intra- and inter-observer reliability in anthropometric measurements in children. Int. J. Obes. 2011, 35, S45–S51. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Nagy, P.; Kovacs, E.; Moreno, L.A.; Veidebaum, T.; Tornaritis, M.; Kourides, Y.; Siani, A.; Lauria, F.; Sioen, I.; Claessens, M.; et al. Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study. Int. J. Obes. 2014, 38, S15–S25. [Google Scholar] [CrossRef] [PubMed]
- Barba, G.; Buck, C.; Bammann, K.; Hadjigeorgiou, C.; Hebestreit, A.; Mårild, S.; Molnár, D.; Russo, P.; Veidebaum, T.; Vyncke, K.; et al. Blood pressure reference values for European non-overweight school children: The IDEFICS study. Int. J. Obes. 2014, 38, S48–S56. [Google Scholar] [CrossRef] [PubMed]
- De Henauw, S.; Michels, N.; Vyncke, K.; Hebestreit, A.; Russo, P.; Intemann, T.; Peplies, J.; Fraterman, A.; Eiben, G.; de Lorgeril, M.; et al. Blood lipids among young children in Europe: Results from the European IDEFICS study. Int. J. Obes. 2014, 38, S67–S75. [Google Scholar] [CrossRef] [PubMed]
- Peplies, J.; Jiménez-Pavón, D.; Savva, S.C.; Buck, C.; Günther, K.; Fraterman, A.; Russo, P.; Iacoviello, L.; Veidebaum, T.; Tornaritis, M.; et al. Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort. Int. J. Obes. 2014, 38, S39–S47. [Google Scholar] [CrossRef]
- Ahrens, W.; Moreno, L.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38, S4–S14. [Google Scholar] [CrossRef]
- Schneider, S.L. The International Standard Classification of Education 2011; Emerald Group Publishing Limited: Bingley, UK, 2013; ISBN 9781781905371. [Google Scholar]
- Baker, P.; Friel, S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Glob. Health 2016, 12, 80. [Google Scholar] [CrossRef]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical Evaluation of Energy Intake Data Using Fundamental Principles of Energy Physiology: 1. Derivation of Cut-off Limits to Identify under-Recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar]
- Braesco, V.; Souchon, I.; Sauvant, P.; Haurogné, T.; Maillot, M.; Féart, C.; Darmon, N. Ultra-Processed Foods: How Functional Is the NOVA System? Eur. J. Clin. Nutr. 2022, 76, 1245–1253. [Google Scholar] [CrossRef]
Age Groups | |||
---|---|---|---|
Characteristics | Children (6–9 Years) N = 147 | Adolescents (10–19 Years) N = 645 | Adults ≥ 20 N = 1493 |
Age (years) | 9.24 ± 0.50 | 12.39 ± 1.28 | 43.54 ± 5.57 |
Sex (%) | |||
Male | 48.3 | 47.8 | 29.9 |
Female | 51.7 | 52.2 | 70.1 |
BMI (kg m−2) | 20.41 ± 3.52 | 23.09 ± 4.09 | 26.04 ± 4.78 |
WC (cm) | 68.31 ± 9.05 | 76.43 ± 10.09 | 86.53 ± 13.07 |
SBP (mmHg) | 107.09 ± 7.63 | 111.90 ± 8.77 | 117.84 ± 13.63 |
DBP (mmHg) | 65.64 ± 5.56 | 67.30 ± 6.20 | 75.84 ± 8.86 |
TRG (mmol−1) | 71.29 ± 31.46 | 81.88 ± 40.54 | 93.12 ± 66.47 |
HDL–C (mmol−1) | 55.28 ± 11.60 | 51.73 ± 11.54 | 58.84 ± 15.51 |
GLU (mmol−1) | 93.33 ± 5.53 | 95.28 ± 6.33 | 97.70 ± 16.38 |
Income (%) | |||
low | 29.9 | 33.9 | 15.2 |
low–medium | 10.2 | 15.1 | 8.3 |
medium | 39.4 | 34.3 | 40.1 |
medium–high | 6.3 | 7.0 | 16.3 |
high | 14.2 | 9.8 | 20.1 |
ISCED (%) | |||
low | 11.1 | 11.9 | 3.6 |
medium | 52.8 | 53.0 | 40.9 |
high | 36.1 | 35.0 | 55.6 |
Country (%) | |||
ITA | 40.8 | 47.7 | 11.6 |
EST | 2.0 | 0.9 | 2.1 |
CYP | 7.5 | 10.1 | 16.9 |
BEL | 14.3 | 4.5 | 7.4 |
SWE | 12.2 | 7.0 | 20.2 |
GER | 11.6 | 17.3 | 31.7 |
HUNG | 8.8 | 6.2 | 2.0 |
ESP | 2.7 | 6.2 | 8.2 |
BMI categories (%) | |||
Normal weight | 42.2 | 39.9 | 46.9 |
Overweight | 35.4 | 41.1 | 36.0 |
Obese | 22.4 | 19.1 | 17.1 |
UPFs (%TEI) | |||
48.63 ± 9.64 | 47.49 ± 10.08 | 40.53 ± 9.78 |
A | UPFs (%TEI) Quintiles | |||||
---|---|---|---|---|---|---|
Children (6–9 Years) | Q1 | Q2 | Q3 | Q4 | Q5 | p Value |
MetS score | ||||||
Crude | 3.48 (2.79–4.2) | 3.76 (3.02–4.49) | 3.51 (2.82–4.19) | 3.70 (2.95–4.45) | 3.78 (3.10–4.45) | 0.956 |
Adjusted | 3.35 (2.60–4.10) | 3.75 (2.99–4.51) | 3.69 (3.00–4.39) | 3.61 (2.84–4.38) | 3.70 (2.92–4.48) | 0.938 |
WC z-score | ||||||
Crude | 1.66 (1.23–2.09) | 1.73 (1.27–2.19) | 1.59 (1.16–2.02) | 1.82 (1.42–2.36) | 1.90 (1.47–2.32) | 0.823 |
Adjusted | 1.59 (1.28–1.89) | 1.72 (1.41–2.04) | 1.72 (1.43–2.00) | 2.01 (1.69–2.33) | 1.70 (1.38–2.01) | 0.377 |
SBP z-score | ||||||
Crude | 0.38 (0.09–0.69) | 0.44 (0.12–0.76) | 0.42 (0.12–0.72) | 0.25 (0.13–0.52) | 0.38 (0.09–0.67) | 0.839 |
Adjusted | 0.32 (0.08–0.72) | 0.46 (0.16–0.86) | 0.50 (0.11–0.87) | 0.17 (−0.08–0.42) | 0.49 (0.07–0.91) | 0.368 |
DBP z-score | ||||||
Crude | 0.47 (0.16–0.76) | 0.28 (0.08–0.60) | 0.36 (0.06–0.66) | 0.15 (−0.25–0.41) | 0.30 (0.04–0.59) | 0.536 |
Adjusted | 0.50 (0.15–0.85) | 0.35 (0.03–0.70) | 0.30 (0.02–0.62) | 0.17 (−0.18–−0.29) | 0.43 (0.07–0.79) | 0.204 |
TRG z-score | ||||||
Crude | 0.24 (0.08–0.57) | 0.38 (0.22–0.74) | 0.35 (0.15–0.68) | 0.58 (0.22–0.95) | 0.40 (0.13–0.70) | 0.738 |
Adjusted | 0.15 (−0.37–−0.67) | 0.31 (0.18–0.84) | 0.42 (0.18–0.88) | 0.58 (0.04–0.97) | 0.43 (0.03–0.97) | 0.821 |
HDL–C z-score | ||||||
Crude | −0.38 (−0.71–−0.06) | −0.59 (−0.94–−0.25) | −0.37 (−0.69–−0.04) | −0.57 (−0.92–−0.21) | −0.71 (−0.99–−0.38) | 0.533 |
Adjusted | −0.37 (−0.73–−0.04) | −0.46 (−0.73–−0.08) | −0.44 (−0.78–−0.09) | −0.52 (−0.90–−0.14) | −0.83 (−1.21–−0.44) | 0.510 |
HOMA index z-score | ||||||
Crude | 1.08 (0.76–1.39) | 1.18 (0.84–1.52) | 1.16 (0.85–1.48) | 1.09 (0.75–1.44) | 1.00 (0.69–1.31) | 0.941 |
Adjusted | 1.09 (0.60–1.59) | 1.24 (0.73–1.74) | 1.15 (0.69–1.61) | 1.08 (0.56–1.59) | 0.92 (0.40–1.43) | 0.930 |
B | UPFs (%TEI) Quintiles | |||||
Adolescents (10–19 Years) | Q1 | Q2 | Q3 | Q4 | Q5 | p Value |
MetS score | ||||||
Crude | 3.89 (3.57–4.23) | 3.96 (3.62–4.29) | 3.29 (2.93–3.64) | 3.86 (3.48–4.24) | 3.32 (2.94–3.69) | 0.009 |
Adjusted | 3.84 (3.51–4.16) | 3.91 (3.57–4.25) | 3.38 (3.04–3.72) | 3.94 (3.57–4.31) | 3.76 (3.40–4.12) | 0.147 |
WC z-score | ||||||
Crude | 1.90 a (1.72–2.09) | 1.94 b (1.76–2.13) | 1.61 (1.42–1.81) | 1.83 (1.61–2.04) | 1.35 (1.16–1.53) | <0.001 |
Adjusted | 1.64 c (1.51–1.77) | 1.95 (1.81–2.08) | 1.73 (1.59–1.86) | 1.90 (1.75–2.04) | 1.77 (1.62–1.91) | 0.011 |
SBP z-score | ||||||
Crude | 0.51 (0.36–0.65) | 0.56 (0.42–0.71) | 0.48 (0.32–0.63) | 0.47 (0.30–0.64) | 0.50 (0.33–0.66) | 0.920 |
Adjusted | 0.54 (0.35–0.74) | 0.55 (0.35–0.75) | 0.45 (0.25–0.65) | 0.48 (0.26–0.69) | 0.51 (0.29–0.72) | 0.952 |
DBP z-score | ||||||
Crude | 0.37 (0.22–0.52) | 0.49 (0.34–0.64) | 0.38 (0.23–0.54) | 0.49 (0.32–0.66) | 0.51 (0.34–0.69) | 0.595 |
Adjusted | 0.48 (0.28–0.68) | 0.51 (0.30–0.72) | 0.29 (0.08–0.50) | 0.52 (0.29–0.75) | 0.59 (0.37–0.82) | 0.364 |
TRG z-score | ||||||
Crude | 0.47 (0.32–0.62) | 0.46 (0.31–0.62) | 0.33 (0.17–0.50) | 0.50 (0.33–0.69) | 0.63 (0.45–0.80) | 0.222 |
Adjusted | 0.57 (0.34–0.80) | 0.58 (0.35–0.82) | 0.41 (0.17–0.65) | 0.47 (0.21–0.73) | 0.58 (0.33–0.83) | 0.795 |
HDL–C z-score | ||||||
Crude | −0.73 (−0.87–−0.58) | −0.64 (−0.79–−0.50) | −0.45 (−0.61–−0.29) | −0.50 (−0.68–−0.33) | −0.52 (−068–−0.35) | 0.079 |
Adjusted | −0.73 (−0.93–−0.54) | −0.67 (−0.87–−0.46) | −0.50 (−0.71–−0.30) | −0.63 (−0.85–−0.41) | −0.57 (−0.79–−0.36) | 0.579 |
HOMA index z-score | ||||||
Crude | 0.96 (0.80–1.11) | 0.93 (0.78–1.08) | 0.85 (0.69–1.01) | 1.05 (0.87–1.22) | 0.89 (0.72–1.06) | 0.567 |
Adjusted | 1.02 (0.82–1.24) | 0.81 (0.60–1.02) | 0.82 (0.61–1.04) | 1.00 (0.76–1.23) | 0.86 (0.64–1.01) | 0.479 |
C | UPFs (%TEI) Quintiles | |||||
Adults (≥20 Years) | Q1 | Q2 | Q3 | Q4 | Q5 | pValue |
WC | ||||||
Crude | 88.82 b,d (87.33–90.30) | 85.07 (83.59–86.55) | 86.60 (85.06–88.15) | 85.30 (83.82–86.79) | 86.85 (85.44–88.25) | 0.004 |
Adjusted | 87.44 (86.52–88.35) | 86.71 (85.82–87.60) | 87.29 (86.39–88.21) | 86.80 (85.92–87.68) | 86.73 (85.81–87.65) | 0.704 |
SBP | ||||||
Crude | 118.39 (116.84–119.95) | 116.32 (114.77–117.87) | 118.36 (116.74–119.98) | 117.74 (116.19–119.30) | 118.36 (116.89–119.82) | 0.281 |
Adjusted | 117.95 (115.94–119.95) | 117.13 (115.17–119.08) | 118.80 (116.80–120.80) | 118.60 (116.66–120.53) | 119.07 (117.06–121.09) | 0.683 |
DBP | ||||||
Crude | 75.99 (74.98–77.00) | 74.61 (73.60–75.61) | 76.69 (75.64–77.75) | 75.72 (74.71–76.73) | 76.22 (75.27–77.17) | 0.059 |
Adjusted | 76.44 (75.06–77.81) | 75.45 (74.11–76.80) | 76.25 (74.88–77.62) | 75.76 (74.44–77.09) | 76.43 (75.05–77.82) | 0.798 |
TRG | ||||||
Crude | 96.82 (89.25–104.40) | 90.58 (83.03–98.13) | 91.16 (83.26–99.07) | 87.67 (80.08–95.25) | 98.52 (91.37–105.67) | 0.217 |
Adjusted | 92.80 (83.57–102.04) | 94.45 (85.43–103.47) | 96.89 (87.68–106.09) | 94.40 (85.50–103.31) | 116.31 (97.02–115.61) | 0.275 |
HDL–C | ||||||
Crude | 56.37 b,c,d (54.61–58.13) | 60.62 (58.87–62.38) | 59.85 (58.01–61.69) | 59.45 (57.68–61.21) | 58.07 (56.41–59.74) | 0.008 |
Adjusted | 57.19 (54.96–59.42) | 59.16 (56.99–61.34) | 58.20 (55.98–60.42) | 56.45 (54.30–58.60) | 55.81 (53.57–58.05) | 0.232 |
GLU | ||||||
Crude | 98.94 (97.07–101.80) | 93.38 (96.52–100.23) | 96.45 (94.51–98.40) | 95.97 (94.10–97.83) | 98.57 (96.80–100.32) | 0.091 |
Adjusted | 99.64 (97.28–101.99) | 98.81 (96.51–101.11) | 98.50 (96.15–100.84) | 96.13 (93.86–98.40) | 101.07 e (98.70–103.45) | 0.047 |
A | ||||
---|---|---|---|---|
Children (6–9 Years) | Q2 OR (95%CI) | Q3 OR (95%CI) | Q4 OR (95%CI) | Q5 OR (95%CI) |
MetS score > 90 percentile | 0.94 (0.13–6.80) | 0.83 (0.12–5.93) | 0.52 (0.07–4.01) | 0.51 (0.06–4.13) |
WC z-score > 90 percentile | 1.24 (0.21–7.17) | 0.46 (0.08–2.73) | 0.53 (0.09–3.27) | 0.14 (0.02–1.01) |
SBP z-score > 90 percentile | 0.88 (0.10–7.78) | 0.63 (0.06–6.33) | 0.12 (0.02–2.30) | 0.65 (0.07–6.30) |
DBP z-score > 90 percentile | 0.25 (0.06–1.03) | 0.37 (0.14–1.54) | 0.28 (0.06–1.35) | 0.21 (0.04–1.10) |
TRG z-score > 90 percentile | 0.53 (0.11–2.52) | 0.77 (0.14–4.18) | 0.66 (0.12–3.56) | 0.19 (0.03–1.29) |
HDL–C z-score < 10 percentile | 2.52 (0.35–8.89) | 2.35 (0.66–8.95) | 2.55 (0.77–10.03) | 2.65 (1.76–11.14) |
HOMA index z-score > 90 percentile | 1.76 (0.33–9.37) | 0.44 (0.08–2.39) | 0.32 (0.05–1.95) | 0.53 (0.04–1.54) |
B | ||||
Adolescents (10–19 Years) | Q2 OR (95%CI) | Q3 OR (95%CI) | Q4 OR (95%CI) | Q5 OR (95%CI) |
MetS score > 90 percentile | 0.75 (0.31–1.82) | 0.42 (0.15–1.19) | 1.14 (0.45–2.89) | 1.14 (0.45–2.89) |
WC z-score > 90 percentile | 0.49 (0.24–1.01) | 0.39 (0.17–1.89) | 0.52 (0.22–1.24) | 0.45 (0.18–1.11) |
SBP z-score > 90 percentile | 1.51 (0.64–3.56) | 0.57 (0.20–1.66) | 1.16 (0.42–3.16) | 1.10 (0.40–3.05) |
DBP z-score > 90 percentile | 1.80 (0.81–3.98) | 1.31 (0.56–3.08) | 1.06 (0.40–2.77) | 1.09 (0.41–2.86) |
TRG z-score > 90 percentile | 0.95 (0.38–2.37) | 0.88 (0.35–2.21) | 1.29 (0.50–3.32) | 1.16 (0.44–3.07) |
HDL–C z-score < 10 percentile | 0.90 (0.41–1.96) | 0.37 (0.14–1.01) | 0.71 (0.28–1.78) | 0.68 (0.25–1.85) |
HOMA index z-score > 90 percentile | 1.42 (0.72–2.79) | 1.15 (0.56–2.35) | 1.15 (0.53–2.52) | 1.04 (0.45–2.39) |
C | ||||
Adults (≥20 Years) | Q2 OR (95%CI) | Q3 OR (95%CI) | Q4 OR (95%CI) | Q5 OR (95%CI) |
MetS | 0.96 (0.41–2.28) | 0.56 (0.21–1.49) | 0.28 (0.08–0.94) | 0.80 (0.32–2.00) |
Elevated WC | 1.04 (0.60–1.82) | 1.14 (0.65–2.00) | 1.17 (0.67–2.07) | 1.08 (0.60–1.93) |
Elevated BP | 0.61 (0.35–1.06) | 0.59 (0.33–1.03) | 0.84 (0.49–1.43) | 0.83 (0.49–1.42) |
Elevated GLU | 1.23 (0.66–2.30) | 1.05 (0.54–2.03) | 1.00 (0.50–1.93) | 1.25 (0.65–1.99) |
Elevated TRG | 0.72 (0.39–1.31) | 0.63 (0.34–1.17) | 0.92 (0.53–1.71) | 0.77 (0.42–1.41) |
Low HDL–C | 0.54 (0.34–0.85) | 0.78 (0.50–1.22) | 0.82 (0.53–1.28) | 0.91 (0.58–1.42) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, A.; Dello Russo, M.; Lissner, L.; Russo, P.; Ahrens, W.; De Henauw, S.; Hebestreit, A.; Intemann, T.; Hunsberger, M.; Molnár, D.; et al. Ultra-Processed Foods Consumption and Metabolic Syndrome in European Children, Adolescents, and Adults: Results from the I.Family Study. Nutrients 2025, 17, 2252. https://doi.org/10.3390/nu17132252
Formisano A, Dello Russo M, Lissner L, Russo P, Ahrens W, De Henauw S, Hebestreit A, Intemann T, Hunsberger M, Molnár D, et al. Ultra-Processed Foods Consumption and Metabolic Syndrome in European Children, Adolescents, and Adults: Results from the I.Family Study. Nutrients. 2025; 17(13):2252. https://doi.org/10.3390/nu17132252
Chicago/Turabian StyleFormisano, Annarita, Marika Dello Russo, Lauren Lissner, Paola Russo, Wolfgang Ahrens, Stefaan De Henauw, Antje Hebestreit, Timm Intemann, Monica Hunsberger, Dénes Molnár, and et al. 2025. "Ultra-Processed Foods Consumption and Metabolic Syndrome in European Children, Adolescents, and Adults: Results from the I.Family Study" Nutrients 17, no. 13: 2252. https://doi.org/10.3390/nu17132252
APA StyleFormisano, A., Dello Russo, M., Lissner, L., Russo, P., Ahrens, W., De Henauw, S., Hebestreit, A., Intemann, T., Hunsberger, M., Molnár, D., Moreno, L. A., Pala, V., Papoutsou, S., Reisch, L., Veidebaum, T., Williams, G., Wolters, M., Siani, A., & Lauria, F. (2025). Ultra-Processed Foods Consumption and Metabolic Syndrome in European Children, Adolescents, and Adults: Results from the I.Family Study. Nutrients, 17(13), 2252. https://doi.org/10.3390/nu17132252