Least Significant Change (LSC) for Serum Concentrations of 25-Hydroxyvitamin D
Highlights
- This is the first study to provide the least significant change for 25(OH)D concentration.
- A least significant change of 4 ng/mL was calculated when comparing two (or more) results.
- Determining the least significant change allows us to compare results that reflect a true change in 25(OH)D values.
- A difference of 4 ng/mL or higher when comparing two (or more) 25(OH)D concentrations should be considered clinically important.
- When the difference between two (or more) 25(OH)D concentrations is less than 4 ng/mL, it is not clinically significant.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Methods
3. Results
3.1. General Characteristics
3.2. Calculation of Root Mean Square Precision Error (RMSCV) and Least Significant Change (LSC)
3.3. Absolute and Percentage Root Mean Square Precision Errors
3.4. Least Significant Change (LSC) in Relation to Age, Gender, Time of Assays, and 25(OH)D Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cochran, W.G. The distribution of the largest of a set of estimated variances as a fraction of their total. Ann. Hum. Genet. 1941, 11, 47–52. [Google Scholar] [CrossRef]
- Diez-Perez, A.; Naylor, K.E.; Abrahamsen, B.; Agnusdei, D.; Brandi, M.L.; Cooper, C.; Dennison, E.; Eriksen, E.F.; Gold, D.T.; Guañabens, N.; et al. Adherence Working Group of the International Osteoporosis Foundation and the European Calcified Tissue Society. International Osteoporosis Foundation and European calcified tissue society working group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos. Int. 2017, 28, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Souberbielle, J.-C.; Prié, D.; Piketty, M.-L.; Rothenbuhler, A.; Delanaye, P.; Chanson, P.; Cavalier, E. Evaluation of a new fully automated assay for plasma intact FGF23. Calcif. Tissue Int. 2017, 101, 510–518. [Google Scholar] [CrossRef] [PubMed]
- van Ballegooijen, A.J.; Beulens, J.W.J.; Schurgers, L.J.; de Koning, E.J.; Lips, P.; van Schoor, N.M.; Vervloet, M.G. Effect of 6-month vitamin D supplementation on plasma matrix Gla protein in older adults. Nutrients 2019, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E.; Eastell, R.; Jørgensen, N.R.; Makris, K.; Tournis, S.; Vasikaran, S.; Kanis, J.A.; Cooper, C.; Pottel, H.; Morris, H.A.; et al. A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (P1NP): A report from the IFCC-IOF Joint Committee for Bone Metabolism. Clin. Chem. Lab. Med. 2019, 57, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Dębowski, T. The Minimal Clinically Important Difference (MCID) for reducing the freqency of exacerbations of chronic pulmonary obstructive disease—Which theraphy is felt by the patient. Pol. J. Allergol. 2017, 4, 32–38. [Google Scholar]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J. Clin. Endocrinol. Metab. 2012, 97, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Glüer, C.C.; Blake, G.; Lu, Y.; Blunt, B.A.; Jergas, M.; Genant, H.K. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques. Osteoporos. Int. 1995, 5, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, M.; Pludowski, P. Precision Errors, Least Significant Change, and Monitoring Time Interwal in pediatric measurements of bone mineral density, body composition, and mechanostat paremetrs by GE Lunar Prodigy. J. Clin. Densitom. 2013, 4, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, M.; Kobylińska, M. Precision errors and least significant changes in paediatric forearm measurements of bone density, mass, dimensions, mechanostat parameters and soft tissue composition by Stratec XCT-2000L. J. Musculoskelet. Neuronal Interact. 2023, 23, 397–406. [Google Scholar] [PubMed]
- Jaworski, M.; Kobylińska, M. Precision Errors of Lower Leg Measurement by pQCT in Children With Medical Conditions: Bone Density, Mass, Dimensions, Mechanostat Parameters and Soft Tissue Composition. J. Musculoskelet. Neuronal Interact. 2025, 25, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Jaworski, M.; Płudowski, P. 25(OH)D Concentration in Neonates, Infants, Toddlers, Older Children and Teenagers from Poland-Evaluation of Trends during Years 2014–2019. Nutrients 2023, 15, 3477. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Jaworski, M.; Pludowski, P. 25(OH)D Concentration in Neonates, Infants, and toddlers From Poland-Evaluation of Trends During Years 1981-2011. Front. Endocrinol. 2018, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Cluse, Z.N.; Fudge, A.N.; Whiting, M.J.; McWhinney, B.; Parkinson, I.; O’Loughlin, P.D. Evaluation of 25-hydroxy vitamin D assay on the immunodiagnostic systems iSYS analyser. Ann. Clin. Biochem. 2012, 49, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Denimal, D.; Roux, S.; Duvillard, L. Evaluation of the new restandardized 25-hydroxyvitamin D assay on the iSYS platform. Clin. Biochem. 2018, 52, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.A.; Cusano, A.M.; Bihuniak, J.; Walker, J.; Insogna, K.L. Effect of 25(OH) vitamin D reference method procedure (RMP) alignment on clinical measurements obtained with the IDS-iSYS chemiluminescent-based automated analyzer. J. Steroid Biochem. Mol. Biol. 2015, 148, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hypponen, E.; Power, C. Hypovitaminosis D in British adults at age 45 y: Nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 2007, 85, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.W.; Liu, D.; Caston-Balderrama, A.; Zhang, K.; Clarke, N.; Xie, M.; Reitz, R.E.; Suffin, S.C.; Holick, M.F. Temporal relationship between vitamin D status and parathyroid hormone in the United States. PLoS ONE 2015, 10, e0118108. [Google Scholar] [CrossRef]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed]
Variable | Number of Patients | Number of Samples | Calculated Value |
---|---|---|---|
RMSCV-absolute [ng/mL] | 150 | 450 | 1.5 ng/mL |
RMSCV%-percentage [%] | 150 | 450 | 4.8% |
LSC-absolute [ng/mL] | 150 | 450 | 4.0 ng/mL |
LSC%-percentage [%] | 150 | 450 | 13.2% |
Variable | Gender | Number of Patients | Number of Samples | Calculated Value |
---|---|---|---|---|
RMSCV [ng/mL] | F | 67 | 201 | 1.6 ng/mL |
RMSCV% [%] | 4.7% | |||
LSC [ng/mL] | 4.4 ng/mL | |||
LSC [%] | 13.0% | |||
RMSCV [ng/mL] | M | 83 | 249 | 1.4 ng/mL |
RMSCV% [%] | 4.8% | |||
LSC [ng/mL] | 3.8 ng/mL | |||
LSC% [%] | 13.4% |
Variable | Age [Years Old] | Number of Patients | Number of Samples | Calculated Value |
---|---|---|---|---|
RMSCV [ng/mL] | <1 | 17 | 51 | 2.5 ng/mL |
RMSCV% [%] | 4.9% | |||
LSC [ng/mL] | 6.9 ng/mL | |||
LSC% [%] | 13.5% | |||
RMSCV [ng/mL] | 1–3 | 15 | 45 | 1.6 ng/mL |
RMSCV% [%] | 4.9% | |||
LSC [ng/mL] | 4.4 ng/mL | |||
LSC% [%] | 15.4% | |||
RMSCV [ng/mL] | >3–12 | 43 | 129 | 1.1 ng/mL |
RMSCV% [%] | 4.4% | |||
LSC [ng/mL] | 3.2 ng/mL | |||
LSC% [%] | 12.2% | |||
RMSCV [ng/mL] | >12–18 | 64 | 192 | 1.2 ng/ml |
RMSCV% [%] | 4.7% | |||
LSC [ng/mL] | 3.4 ng/mL | |||
LSC% [%] | 12.9% | |||
RMSCV [ng/mL] | >18 | 11 | 33 | 1.5 ng/mL |
RMSCV% [%] | 5.4% | |||
LSC [ng/mL] | 4.1 ng/mL | |||
LSC% [%] | 14.9% |
Variable | Time Period | Number of Patients | Number of Samples | Calculated Value |
---|---|---|---|---|
RMSCV [ng/mL] | Group I (Winter set) | 30 | 90 | 1.1 ng/mL |
RMSCV% [%] | 4.0% | |||
LSC [ng/mL] | 3.1 ng/mL | |||
LSC% [%] | 11.0% | |||
RMSCV [ng/mL] | Group II (late Winter-Spring set) | 30 | 90 | 1.2 ng/mL |
RMSCV% [%] | 4.8% | |||
LSC [ng/mL] | 3.2 ng/mL | |||
LSC% [%] | 13.2% | |||
RMSCV [ng/mL] | Group III (Spring set) | 30 | 90 | 2.0 ng/mL |
RMSCV% [%] | 5.8% | |||
LSC [ng/mL] | 5.5 ng/mL | |||
LSC% [%] | 16.0% | |||
RMSCV [ng/mL] | Group IV (late Spring-Summer set) | 30 | 90 | 1.4 ng/mL |
RMSCV% [%] | 4.7% | |||
LSC [ng/mL] | 4.0 ng/mL | |||
LSC% [%] | 13.1% | |||
RMSCV [ng/mL] | Group V (late Summer-Fall set) | 30 | 90 | 1.4 ng/mL |
RMSCV% [%] | 4.4% | |||
LSC [ng/mL] | 3.9 ng/mL | |||
LSC% [%] | 12.3% |
Variable | 25(OH)D Concentration [ng/mL] | Number of Patients | Number of Samples | Calculated Value |
---|---|---|---|---|
RMSCV [ng/mL] | <20 | 33 | 99 | 0.8 ng/mL |
RMSCV% [%] | 5.3% | |||
LSC [ng/mL] | 2.2 ng/mL | |||
LSC% [%] | 14.7% | |||
RMSCV [ng/mL] | >20–30 | 53 | 159 | 1.3 ng/mL |
RMSCV% [%] | 5.1% | |||
LSC [ng/mL] | 3.7 ng/mL | |||
LSC% [%] | 14.2% | |||
RMSCV [ng/mL] | >30–50 | 60 | 180 | 1.5 ng/mL |
RMSCV% [%] | 3.9% | |||
LSC [ng/mL] | 4.1 ng/mL | |||
LSC% [%] | 10.9% | |||
RMSCV [ng/mL] | >50–100 | 4 | 12 | 4.3 ng/mL |
RMSCV% [%] | 6.1% | |||
LSC [ng/mL] | 11.8 ng/mL | |||
LSC% [%] | 16.9% |
25(OH)D Concentration [ng/mL] | <20 | 20–30 | >30–50 | >50–100 |
---|---|---|---|---|
<20 | XXX | <0.05 | <0.0001 | <0.005 |
20–30 | <0.05 | XXX | ns | ns |
>30–50 | <0.0001 | ns | XXX | ns |
>50–100 | <0.005 | ns | ns | XXX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pludowski, P.; Wójcik, M.; Jaworski, M.; Ochocińska, A.; Grant, W.B.; Holick, M.F. Least Significant Change (LSC) for Serum Concentrations of 25-Hydroxyvitamin D. Nutrients 2025, 17, 2246. https://doi.org/10.3390/nu17132246
Pludowski P, Wójcik M, Jaworski M, Ochocińska A, Grant WB, Holick MF. Least Significant Change (LSC) for Serum Concentrations of 25-Hydroxyvitamin D. Nutrients. 2025; 17(13):2246. https://doi.org/10.3390/nu17132246
Chicago/Turabian StylePludowski, Pawel, Marek Wójcik, Maciej Jaworski, Agnieszka Ochocińska, William B. Grant, and Michael F. Holick. 2025. "Least Significant Change (LSC) for Serum Concentrations of 25-Hydroxyvitamin D" Nutrients 17, no. 13: 2246. https://doi.org/10.3390/nu17132246
APA StylePludowski, P., Wójcik, M., Jaworski, M., Ochocińska, A., Grant, W. B., & Holick, M. F. (2025). Least Significant Change (LSC) for Serum Concentrations of 25-Hydroxyvitamin D. Nutrients, 17(13), 2246. https://doi.org/10.3390/nu17132246