Effects of Prebiotics Inulin and Oat β-Glucan on Colonic Architecture and Hepatic Proteome in Mice with Circadian-Disruption-Aggravated Metabolic Dysfunction-Associated Steatohepatitis
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Animal Experiment
2.2. Histological Examination of Colon and Endotoxemia Evaluation
2.3. Proteomic Mass Spectrometry Analysis
3. Results and Discussion
3.1. Effects of Circadian Disruption and Prebiotic Supplementation on Colon Histopathology and Endotoxemia
3.2. Effects of Circadian Disruption and Prebiotic Supplementation on Hepatic Proteome Structure
3.3. Comparative Analysis of Hepatic Proteome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | Circadian disruption |
DEPs | Differentially expressed proteins |
FPC | Fructose, palmitate, cholesterol, and trans-fat |
MASH | Metabolic dysfunction-associated steatohepatitis |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
NSC | Non-shifted chow |
NSFPC | Non-shifted FPC diet |
PCA | Principal component analysis |
SC | Shifted chow |
SFPC | Shifted FPC diet |
SINU | Shifted FPC diet with inulin supplementation |
SOBG | Shifted FPC diet with oat β-glucan supplementation |
References
- Do, A.; Zahrawi, F.; Mehal, W.Z. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat. Rev. Drug Discov. 2025, 24, 171–189. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Approves First Treatment for Patients with Liver Scarring Due to Fatty Liver Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-patients-liver-scarring-due-fatty-liver-disease (accessed on 26 December 2024).
- Wang, S.; Zhang, R.; Guo, P.; Yang, H.; Liu, Y.; Zhu, H. Association of prebiotic/probiotic intake with MASLD: Evidence from NHANES and randomized controlled trials in the context of prediction, prevention, and a personalized medicine framework. EPMA J. 2025, 16, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Y.; Dai, X.; Wang, B.; Zhang, J.; Cao, H. Polysaccharides: The potential prebiotics for metabolic associated fatty liver disease (MAFLD). Nutrients 2023, 15, 3722. [Google Scholar] [CrossRef]
- Han, H.; Jiang, Y.; Wang, M.; Melaku, M.; Liu, L.; Zhao, Y.; Everaert, N.; Yi, B.; Zhang, H. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): Focusing on the gut-liver axis. Crit. Rev. Food Sci. Nutr. 2023, 63, 1689–1706. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.C.; Littlejohn, P.T.; Ayala, V.; Creus-Cuadros, A.; Finlay, B.B. Nonalcoholic fatty liver disease and the gut-liver axis: Exploring an undernutrition perspective. Gastroenterology 2022, 162, 1858–1875.e2. [Google Scholar] [CrossRef]
- Kei, N.; Wong, V.W.S.; Lauw, S.; You, L.; Cheung, P.C.K. Utilization of food-derived β-glucans to prevent and treat non-alcoholic fatty liver disease (NAFLD). Foods 2023, 12, 3279. [Google Scholar] [CrossRef]
- Kei, N.; Lauw, S.; Wong, V.W.S.; Cheung, P.C.K. A mini-review on prebiotic inulin to prevent and treat non-alcoholic fatty liver disease. Food Biosci. 2024, 61, 104679. [Google Scholar] [CrossRef]
- Karimi, I.; Ghowsi, M.; Mohammed, L.J.; Haidari, Z.; Nazari, K.; Schioth, H.B. Inulin as a biopolymer; Chemical structure, anticancer effects, nutraceutical potential and industrial applications: A comprehensive review. Polymers 2025, 17, 412. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of a health claim related to “native chicory inulin” and maintenance of normal defecation by increasing stool frequency pursuant to Article 13.5 of Regulation (EC) No 1924/2006. EFSA J. 2015, 13, 3951. [Google Scholar] [CrossRef]
- Singla, A.; Gupta, O.P.; Sagwal, V.; Kumar, A.; Patwa, N.; Mohan, N.; Ankush; Kumar, D.; Vir, O.; Singh, J.; et al. Beta-glucan as a soluble dietary fiber source: Origins, biosynthesis, extraction, purification, structural characteristics, bioavailability, biofunctional attributes, industrial utilization, and global trade. Nutrients 2024, 16, 900. [Google Scholar] [CrossRef] [PubMed]
- Mathews, R.; Kamil, A.; Chu, Y. Global review of heart health claims for oat beta-glucan products. Nutr. Rev. 2020, 78, 78–97. [Google Scholar] [CrossRef]
- Kei, N.; Cheung, K.K.; Ma, K.L.; Yau, T.K.; Lauw, S.; Wong, V.W.S.; You, L.; Cheung, P.C.K. Effects of oat β-glucan and inulin on alleviation of nonalcoholic steatohepatitis aggravated by circadian disruption in C57BL/6J mice. J. Agric. Food Chem. 2024, 72, 3520–3535. [Google Scholar] [CrossRef] [PubMed]
- Pirola, C.J.; Fernandez Gianotti, T.; Sookoian, S. The proteomics of MASLD progression: Insights from functional analysis to drive the development of new therapeutic solutions. Aliment. Pharmacol. Ther. 2025, 61, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Garcia-Rodriguez, N.S.; Arriaga, M.A.; Perez, R.; Bala, A.A.; Leandro, A.C.; Diego, V.P.; Almeida, M.; Parsons, J.G.; Manusov, E.G.; et al. The hepatocellular model of fatty liver disease: From current imaging diagnostics to innovative proteomics technologies. Front. Med. 2025, 12, 1513598. [Google Scholar] [CrossRef]
- Zhu, C.; Kim, K.; Wang, X.; Bartolome, A.; Salomao, M.; Dongiovanni, P.; Meroni, M.; Graham, M.J.; Yates, K.P.; Diehl, A.M.; et al. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 2018, 10, eaat0344. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Caviglia, J.M.; Corey, K.E.; Herfel, T.M.; Cai, B.; Masia, R.; Chung, R.T.; Lefkowitch, J.H.; Schwabe, R.F.; et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016, 24, 848–862. [Google Scholar] [CrossRef]
- Kanagasabapathy, G.; Malek, S.N.; Mahmood, A.A.; Chua, K.H.; Vikineswary, S.; Kuppusamy, U.R. Beta-glucan-rich extract from Pleurotus sajor-caju (Fr.) Singer prevents obesity and oxidative stress in C57BL/6J mice fed on a high-fat diet. Evid.-Based Complement. Alternat. Med. 2013, 2013, 185259. [Google Scholar] [CrossRef]
- Wang, S.; Kang, X.; Alenius, H.; Wong, S.H.; Karisola, P.; El-Nezami, H. Oral exposure to Ag or TiO2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem. Toxicol. 2022, 169, 113368. [Google Scholar] [CrossRef]
- Li, J.; Jia, S.; Yuan, C.; Yu, B.; Zhang, Z.; Zhao, M.; Liu, P.; Li, X.; Cui, B. Jerusalem artichoke inulin supplementation ameliorates hepatic lipid metabolism in type 2 diabetes mellitus mice by modulating the gut microbiota and fecal metabolome. Food Funct. 2022, 13, 11503–11517. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yue, F.; Xing, L.; Wu, S.; Shi, Y.; Li, J.; Xiang, X.; Lam, S.M.; Shui, G.; Russell, R.; et al. Constant light exposure alters gut microbiota and promotes the progression of steatohepatitis in high fat diet rats. Front. Microbiol. 2020, 11, 1975. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; He, Y.; Liu, S.; Gan, L.; Zhang, Z.; Wang, J.; Liang, J.; Dong, Y.; Wang, Q.; Hou, Z.; et al. Integrative transcriptomic analysis of NAFLD animal model reveals dysregulated genes and pathways in metabolism. Gene 2016, 595, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, L.; Liu, Y.; Zhang, R.; Wu, Z.; Cheng, K.; Zhang, X. Omics analyses of intestinal microbiota and hypothalamus clock genes in circadian disturbance model mice fed with green tea polyphenols. J. Agric. Food Chem. 2022, 70, 1890–1901. [Google Scholar] [CrossRef]
- Kim, J.; Sun, W. Circadian coordination: Understanding interplay between circadian clock and mitochondria. Anim. Cells Syst. 2024, 28, 228–236. [Google Scholar] [CrossRef]
- Peng, X.; Chen, Y. The emerging role of circadian rhythms in the development and function of thermogenic fat. Front. Endocrinol. 2023, 14, 1175845. [Google Scholar] [CrossRef]
- Joyce, S.A.; Kamil, A.; Fleige, L.; Gahan, C.G.M. The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome. Front. Nutr. 2019, 6, 171. [Google Scholar] [CrossRef]
Group Comparison | No. of Total DEPs |
---|---|
NSFPC vs. NSC | 213 |
SFPC vs. SC | 242 |
SC vs. NSC | 191 |
SFPC vs. NSFPC | 246 |
SINU vs. SFPC | 226 |
SOBG vs. SFPC | 230 |
NSFPC vs. NSC | SFPC vs. SC | SC vs. NSC | SFPC vs. NSFPC | SINU vs. SFPC | SOBG vs. SFPC |
---|---|---|---|---|---|
Cysteine and methionine metabolism | Biosynthesis of unsaturated fatty acids | Adrenergic signaling in cardiomyocytes | Phagosome | RNA degradation | Arachidonic acid metabolism |
Histidine metabolism | Fatty acid elongation | Dopaminergic synapse | / | / | Cholesterol metabolism |
Lysosome | Fatty acid metabolism | Focal adhesion | / | / | Complement and coagulation cascades |
Pantothenate and CoA biosynthesis | Phenylalanine metabolism | HIF-1 signaling pathway | / | / | Drug metabolism—cytochrome P450 |
Tryptophan metabolism | / | Insulin signaling pathway | / | / | Ferroptosis |
Valine, leucine, and isoleucine degradation | / | Oocyte meiosis | / | / | / |
beta-Alanine metabolism | / | Oxytocin signaling pathway | / | / | / |
/ | / | Primary bile acid biosynthesis | / | / | / |
NSFPC vs. NSC | SFPC vs. SC | SC vs. NSC | SFPC vs. NSFPC | SINU vs. SFPC | SOBG vs. SFPC |
---|---|---|---|---|---|
/ | / | / | / | Drug metabolism—other enzymes | Drug metabolism—other enzymes |
/ | / | / | Ribosome | Ribosome | / |
/ | / | Alzheimer disease | Alzheimer disease | Alzheimer disease | / |
/ | / | Inflammatory mediator regulation of TRP channels | / | / | Inflammatory mediator regulation of TRP channels |
/ | / | Oxidative phosphorylation | Oxidative phosphorylation | Oxidative phosphorylation | Oxidative phosphorylation |
/ | / | Protein processing in endoplasmic reticulum | / | Protein processing in endoplasmic reticulum | / |
/ | / | Retinol metabolism | / | / | Retinol metabolism |
/ | / | Thermogenesis | Thermogenesis | Thermogenesis | / |
/ | Amyotrophic lateral sclerosis | / | Amyotrophic lateral sclerosis | Amyotrophic lateral sclerosis | / |
/ | Cardiac muscle contraction | Cardiac muscle contraction | / | Cardiac muscle contraction | Cardiac muscle contraction |
/ | Huntington disease | Huntington disease | Huntington disease | Huntington disease | / |
/ | Non-alcoholic fatty liver disease | Non-alcoholic fatty liver disease | Non-alcoholic fatty liver disease | Non-alcoholic fatty liver disease | / |
/ | PPAR signaling pathway | / | PPAR signaling pathway | / | PPAR signaling pathway |
/ | Parkinson disease | Parkinson disease | Parkinson disease | Parkinson disease | / |
/ | Prion disease | Prion disease | Prion disease | Prion disease | Prion disease |
Alanine, aspartate, and glutamate metabolism | Alanine, aspartate, and glutamate metabolism | / | / | / | / |
Arginine biosynthesis | Arginine biosynthesis | / | / | / | / |
Biosynthesis of amino acids | Biosynthesis of amino acids | / | / | / | / |
Carbon metabolism | Carbon metabolism | / | / | Carbon metabolism | / |
Chemical carcinogenesis | Chemical carcinogenesis | / | / | / | Chemical carcinogenesis |
Fatty acid degradation | / | / | / | / | Fatty acid degradation |
Glutathione metabolism | / | / | Glutathione metabolism | Glutathione metabolism | Glutathione metabolism |
Glycine, serine, and threonine metabolism | Glycine, serine, and threonine metabolism | / | / | / | Glycine, serine, and threonine metabolism |
Metabolic pathways | Metabolic pathways | Metabolic pathways | Metabolic pathways | Metabolic pathways | Metabolic pathways |
Metabolism of xenobiotics by cytochrome P450 | / | / | / | / | Metabolism of xenobiotics by cytochrome P450 |
Nitrogen metabolism | Nitrogen metabolism | / | / | / | / |
Platinum drug resistance | / | / | / | Platinum drug resistance | Platinum drug resistance |
Steroid hormone biosynthesis | Steroid hormone biosynthesis | / | / | / | Steroid hormone biosynthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kei, N.; Cheung, K.K.; Ma, K.L.; Yau, T.K.; Lauw, S.; Kang, X.; Sun, K.W.Y.; Wang, Y.; Wong, V.W.S.; Wong, S.H.; et al. Effects of Prebiotics Inulin and Oat β-Glucan on Colonic Architecture and Hepatic Proteome in Mice with Circadian-Disruption-Aggravated Metabolic Dysfunction-Associated Steatohepatitis. Nutrients 2025, 17, 2245. https://doi.org/10.3390/nu17132245
Kei N, Cheung KK, Ma KL, Yau TK, Lauw S, Kang X, Sun KWY, Wang Y, Wong VWS, Wong SH, et al. Effects of Prebiotics Inulin and Oat β-Glucan on Colonic Architecture and Hepatic Proteome in Mice with Circadian-Disruption-Aggravated Metabolic Dysfunction-Associated Steatohepatitis. Nutrients. 2025; 17(13):2245. https://doi.org/10.3390/nu17132245
Chicago/Turabian StyleKei, Nelson, Kam Kuen Cheung, Ka Lee Ma, Tsz Kwan Yau, Susana Lauw, Xing Kang, Kiwi Wai Yan Sun, Yu Wang, Vincent Wai Sun Wong, Sunny Hei Wong, and et al. 2025. "Effects of Prebiotics Inulin and Oat β-Glucan on Colonic Architecture and Hepatic Proteome in Mice with Circadian-Disruption-Aggravated Metabolic Dysfunction-Associated Steatohepatitis" Nutrients 17, no. 13: 2245. https://doi.org/10.3390/nu17132245
APA StyleKei, N., Cheung, K. K., Ma, K. L., Yau, T. K., Lauw, S., Kang, X., Sun, K. W. Y., Wang, Y., Wong, V. W. S., Wong, S. H., & Cheung, P. C. K. (2025). Effects of Prebiotics Inulin and Oat β-Glucan on Colonic Architecture and Hepatic Proteome in Mice with Circadian-Disruption-Aggravated Metabolic Dysfunction-Associated Steatohepatitis. Nutrients, 17(13), 2245. https://doi.org/10.3390/nu17132245