Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis
Abstract
1. Introduction
2. Essential Functions of Trace Minerals
3. Essential Trace Mineral Imbalances (Deficiencies and Excesses)
3.1. Iron
3.2. Zinc
3.3. Iodine
3.4. Selenium
3.5. Copper
3.6. Chromium
3.7. Manganese
3.8. Molybdenum
4. Toxic Element Adverse Effects
4.1. Arsenic
4.2. Cadmium
4.3. Lead
4.4. Mercury
5. Trace Minerals and Disease Associations
5.1. Cardiovascular Diseases
5.2. Diabetes Mellitus
5.3. Cancer
5.4. Neurodegenerative Diseases
5.5. Infectious Disease Response
6. Global Challenges of Trace Minerals: Deficiencies and Toxicities
7. Trace Minerals in Low-Income Countries: Scarce Essentials and High Toxics
8. Trace Minerals in High-Income Countries: Nutritional Gaps and Toxic Risks in an Aging Society
9. Trace Minerals in Middle-Income Countries: Dual Challenges of Nutrition and Toxicity
10. Trace Mineral Assessment of the Population
11. The Need for Biomarkers in Assessing Mineral Status
12. The Power of Micromineral Serum Analysis in Public Health Interventions
13. Overcoming Challenges in Serum Trace Element Analysis for Future Healthcare
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mertz, W. The essential trace elements. Science 1981, 213, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Skalnaya, M.G.; Skalny, A.V. Essential Trace Elements in Human Health: A Physician’s View, 1st ed.; Publishing House of Tomsk State University: Tomsk, Russia, 2018. [Google Scholar]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; Hotz, C. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- Laur, N.; Kinscherf, R.; Pomytkin, K.; Kaiser, L.; Knes, O.; Deigner, H.-P. ICP-MS trace element analysis in serum and whole blood. PLoS ONE 2020, 15, e0233357. [Google Scholar] [CrossRef]
- Kassem, H.; Beevi, A.; Basheer, S.; Lutfi, G.; Cheikh Ismail, L.; Papandreou, D. Investigation and assessment of AI’s role in nutrition—An updated narrative review of the evidence. Nutrients 2025, 17, 190. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific opinion on dietary reference values for iron. EFSA J. 2015, 13, 4254. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific opinion on dietary reference values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific opinion on dietary reference values for iodine. EFSA J. 2014, 12, 3660. [Google Scholar]
- EFSA NDA Panel. Scientific opinion on dietary reference values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific opinion on dietary reference values for copper. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific opinion on dietary reference values for chromium. EFSA J. 2014, 12, 3845. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific opinion on dietary reference values for manganese. EFSA J. 2013, 11, 3419. [Google Scholar]
- EFSA NDA Panel. Scientific opinion on dietary reference values for molybdenum. EFSA J. 2013, 11, 3333. [Google Scholar] [CrossRef]
- World Health Organization; International Atomic Energy Agency; Food and Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health, 1st ed.; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Vijiyakumar, N.; Prince, S. A comprehensive review of cadmium-induced toxicity, signalling pathways, and potential mitigation strategies. Toxicol. Environ. Health Sci. 2025, 17, 79–94. [Google Scholar] [CrossRef]
- Tran, T.; Dinh, Q.T.; Zhou, F.; Zhai, H.; Xue, M.; Du, Z.; Bañuelos, G.S.; Liang, D. Mechanisms underlying mercury detoxification in soil–plant systems after selenium application: A review. Environ. Sci. Pollut. Res. 2021, 28, 46852–46876. [Google Scholar] [CrossRef] [PubMed]
- Ganie, S.Y.; Javaid, D.; Hajam, Y.A.; Reshi, M.S. Arsenic toxicity: Sources, pathophysiology and mechanism. Toxicol. Res. 2024, 13, tfad111. [Google Scholar] [CrossRef]
- Patrick, L. Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern. Med. Rev. 2006, 11, 2–22. [Google Scholar]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L. Modern Nutrition in Health and Disease, 11th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2020. [Google Scholar]
- World Health Organization. Anaemia in Women and Children. Available online: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 30 June 2025).
- Camaschella, C.; Girelli, D. The changing landscape of iron deficiency. Mol. Asp. Med. 2020, 75, 100861. [Google Scholar] [CrossRef]
- Clark, S.F. Iron deficiency anemia. Nutr. Clin. Pract. 2008, 23, 128–141. [Google Scholar] [CrossRef]
- Rolić, T.; Yazdani, M.; Mandić, S.; Distante, S. Iron metabolism, calcium, magnesium and trace elements: A review. Biol. Trace Elem. Res. 2025, 203, 2216–2225. [Google Scholar] [CrossRef] [PubMed]
- Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J. Mol. Neurosci. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- Harrison, R.K.; Lauhon, S.R.; Colvin, Z.A.; McIntosh, J.J. Maternal anemia and severe maternal morbidity in a US cohort. Am. J. Obstet. Gynecol. MFM 2021, 3, 100395. [Google Scholar] [CrossRef]
- Siddique, A.; Kowdley, K.V. The iron overload syndromes. Aliment. Pharmacol. Ther. 2012, 35, 876–893. [Google Scholar] [CrossRef]
- Barnham, K.J.; Bush, A.I. Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol. 2008, 12, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Kimura, T.; Kambe, T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Garner, T.B.; Hester, J.M.; Carothers, A.; Diaz, F.J. Role of zinc in female reproduction. Biol. Reprod. 2021, 104, 976–994. [Google Scholar] [CrossRef]
- Blasiak, J.; Pawlowska, E.; Chojnacki, J.; Szczepanska, J.; Chojnacki, C.; Kaarniranta, K. Zinc and autophagy in age-related macular degeneration. Int. J. Mol. Sci. 2020, 21, 4994. [Google Scholar] [CrossRef]
- Duncan, A.; Yacoubian, C.; Watson, N.; Morrison, I. The risk of copper deficiency in patients prescribed zinc supplements. J. Clin. Pathol. 2015, 68, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Andersson, M. Assessment of iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Pearce, E.N. The importance of adequate iodine during pregnancy and infancy. In Iodine Deficiency Disorders and Their Elimination, 1st ed.; Pearce, E.N., Ed.; S. Karger AG: Basel, Switzerland, 2016; Volume 115, pp. 118–124. [Google Scholar]
- Farebrother, J.; Zimmermann, M.B.; Andersson, M. Excess iodine intake: Sources, assessment, and effects on thyroid function. Ann. N. Y. Acad. Sci. 2019, 1446, 44–65. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015, 7, 1213–1228. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kitts, D.; Giovannucci, E.L.; Sahye-Pudaruth, S.; Paquette, M.; Blanco Mejia, S.; Patel, D.; Kavanagh, M.; Tsirakis, T.; Kendall, C.W.; et al. Selenium, antioxidants, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2020, 112, 1642–1652. [Google Scholar] [CrossRef]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for selenium in metabolic homeostasis and human reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef]
- Khan, M.A.K.; Wang, F. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 2009, 28, 1567–1577. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Q.; Gao, J.; Lin, Z.; Bañuelos, G.; Yuan, L.; Yin, X. Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients 2013, 5, 700–710. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol. 2022, 50, 102236. [Google Scholar] [CrossRef]
- Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: Anemia, leucopenia, and myeloneuropathy. J. Community Hosp. Intern. Med. Perspect. 2017, 7, 265–268. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A.; Peroni, G. Copper as dietary supplement for bone metabolism: A review. Nutrients 2021, 13, 2246. [Google Scholar] [CrossRef] [PubMed]
- Urso, E.; Maffia, M. Behind the link between copper and angiogenesis: Established mechanisms and an overview on the role of vascular copper transport systems. J. Vasc. Res. 2015, 52, 172–196. [Google Scholar] [CrossRef]
- Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015, 14, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative stress in cardiovascular diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Vincent, J.B. Chromium: Celebrating 50 years as an essential element? Dalton Trans. 2010, 39, 3787–3794. [Google Scholar] [CrossRef]
- Proctor, D.M.; Bhat, V.; Suh, M.; Reichert, H.; Jiang, X.; Thompson, C.M. Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regul. Toxicol. Pharmacol. 2021, 124, 104969. [Google Scholar] [CrossRef]
- Erikson, K.M.; Aschner, M. Manganese: Its role in disease and health. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, 1st ed.; Sigel, A., Sigel, H., Sigel, R., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 253–266. [Google Scholar]
- Miah, M.R.; Ijomone, O.M.; Okoh, C.O.A.; Ijomone, O.K.; Akingbade, G.T.; Ke, T.; Krum, B.; da Cunha Martins, A.; Akinyemi, A.; Aranoff, N.; et al. The effects of manganese overexposure on brain health. Neurochem. Int. 2020, 135, 104688. [Google Scholar] [CrossRef] [PubMed]
- Johannes, L.; Fu, C.-Y.; Schwarz, G. Molybdenum cofactor deficiency in humans. Molecules 2022, 27, 6896. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.; Belaidi, A.A. Molybdenum in human health and disease. In Interrelations between Essential Metal Ions and Human Diseases, 1st ed.; Sigel, A., Sigel, H., Sigel, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 13, pp. 415–450. [Google Scholar]
- World Health Organization. Arsenic: Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 20 April 2025).
- EFSA CONTAM Panel; Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; et al. Update of the risk assessment of inorganic arsenic in food. EFSA J. 2024, 22, e8488. [Google Scholar]
- EFSA CONTAM Panel. Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- World Health Organization. Preventing Disease Through Healthy Environments: Exposure to Cadmium: A Major Public Health Concern, 1st ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization. Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 2 June 2025).
- EFSA CONTAM Panel. Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar]
- U.S. Environmental Protection Agency. Health Effects of Exposures to Mercury. Available online: https://www.epa.gov/mercury/health-effects-exposures-mercury (accessed on 20 April 2025).
- 15orld Health Organization. Mercury and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 20 April 2025).
- EFSA CONTAM Panel. Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Guo, Q.; Cai, J.; Qu, Q.; Cheang, I.; Shi, J.; Pang, H.; Li, X. Association of blood trace elements levels with cardiovascular disease in US adults: A cross-sectional study from the National Health and Nutrition Examination Survey 2011–2016. Biol. Trace Elem. Res. 2024, 202, 3037–3050. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Ruan, J.; Chen, Y.; Yan, Z.; Meng, X.; Li, X.; Liu, J.; Mao, C.; Yang, P. Serum zinc ion concentration associated with coronary heart disease: A systematic review and meta-analysis. Cardiol. Res. Pract. 2022, 2022, 123456. [Google Scholar] [CrossRef]
- Muñoz-Bravo, C.; Soler-Iborte, E.; Lozano-Lorca, M.; Kouiti, M.; González-Palacios Torres, C.; Barrios-Rodríguez, R.; Jiménez-Moleón, J.J. Serum copper levels and risk of major adverse cardiovascular events: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 10, 123. [Google Scholar] [CrossRef]
- Zhao, H.; Mei, K.; Hu, Q.; Wu, Y.; Xu, Y.; Qinling; Yu, P.; Deng, Y.; Zhu, W.; Yan, Z.; et al. Circulating copper levels and the risk of cardio-cerebrovascular diseases and cardiovascular and all-cause mortality: A systematic review and meta-analysis of longitudinal studies. Environ. Pollut. 2024, 340, 123456. [Google Scholar] [CrossRef]
- Barragán, R.; Sánchez-González, C.; Aranda, P.; Sorlí, J.V.; Asensio, E.M.; Portolés, O.; Ortega-Azorín, C.; Villamil, L.V.; Coltell, O.; Llopis, J. Single and combined associations of plasma and urine essential trace elements (Zn, Cu, Se, and Mn) with cardiovascular risk factors in a Mediterranean population. Antioxidants 2022, 11, 1991. [Google Scholar] [CrossRef]
- Wechselberger, C.; Messner, B.; Bernhard, D. The role of trace elements in cardiovascular diseases. Toxics 2023, 11, 956. [Google Scholar] [CrossRef]
- Vera, E.; Vallvé, J.-C.; Linares, V.; Paredes, S.; Ibarretxe, D.; Bellés, M. Serum levels of trace elements (magnesium, iron, zinc, selenium, and strontium) are differentially associated with surrogate markers of cardiovascular disease risk in patients with rheumatoid arthritis. Biol. Trace Elem. Res. 2024, 202, 4567–4578. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sánchez, G.; Salas-Salvadó, J.; Esmailzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Nigra, A.E.; Ruiz-Hernandez, A.; Redon, J.; Navas-Acien, A.; Tellez-Plaza, M. Environmental metals and cardiovascular disease in adults: A systematic review beyond lead and cadmium. Curr. Environ. Health Rep. 2016, 3, 416–433. [Google Scholar] [CrossRef]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Jia, M.-J.; Chen, L. Effect of trace elements and nutrients on diabetes and its complications: A Mendelian randomization study. Front. Nutr. 2024, 11, 1439217. [Google Scholar] [CrossRef]
- Cancarini, A.; Fostinelli, J.; Napoli, L.; Gilberti, M.E.; Apostoli, P.; Semeraro, F. Trace elements and diabetes: Assessment of levels in tears and serum. Exp. Eye Res. 2017, 154, 47–52. [Google Scholar] [CrossRef]
- Praveeena, S.; Pasula, S.; Sameera, K. Trace elements in diabetes mellitus. J. Clin. Diagn. Res. 2013, 7, 1863–1865. [Google Scholar]
- Zhang, H.; Yan, C.; Yang, Z.; Zhang, W.; Niu, Y.; Li, X.; Qin, L.; Su, Q. Alterations of serum trace elements in patients with type 2 diabetes. J. Trace Elem. Med. Biol. 2017, 40, 91–96. [Google Scholar] [CrossRef]
- Sanjeevi, N.; Freeland-Graves, J.; Beretvas, N.S.; Sachdev, P.K. Trace element status in type 2 diabetes: A meta-analysis. J. Clin. Diagn. Res. 2018, 12, OE01–OE08. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A.; Rothman, K.J. A systematic review and dose-response meta-analysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies. Environ. Res. 2021, 197, 111210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Yang, C.Y.; Huang, C.F.; Hung, D.Z.; Leung, Y.M.; Liu, S.H. Heavy metals, islet function and diabetes development. Islets 2009, 1, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Lefta, R.M.; Hjazi, A.; Skakodub, A.A.; Dham, A.; Sapaev, I.B.; Khlewee, I.H.; Alawadi, A.H.; Alsaalamy, A.; Habash, R.T.; Lari Najafi, M. A systematic review and meta-analysis of the association between exposure to potentially toxic elements and gestational diabetes mellitus. Environ. Sci. Eur. 2024, 36, 49. [Google Scholar] [CrossRef]
- Yan, M.; Song, Y.; Wong, C.P.; Hardin, K.; Ho, E. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J. Nutr. 2008, 138, 667–673. [Google Scholar] [CrossRef]
- Finney, L.; Vogt, S.; Fukai, T.; Glesne, D. Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 2009, 36, 88–94. [Google Scholar] [CrossRef]
- Lossow, K.; Schwarz, M.; Kipp, A.P. Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol. 2021, 42, 101900. [Google Scholar] [CrossRef]
- Szwiec, M.; Marciniak, W.; Derkacz, R.; Huzarski, T.; Gronwald, J.; Cybulski, C.; Dębniak, T.; Jakubowska, A.; Lener, M.; Falco, M.; et al. Serum selenium level predicts 10-year survival after breast cancer. Nutrients 2021, 13, 953. [Google Scholar] [CrossRef]
- Sandsveden, M.; Nilsson, E.; Borgquist, S.; Rosendahl, A.H.; Manjer, J. Prediagnostic serum selenium levels in relation to breast cancer survival and tumor characteristics. Int. J. Cancer 2020, 147, 2424–2436. [Google Scholar] [CrossRef]
- Lobb, R.J.; Jacobson, G.M.; Cursons, R.T.; Jameson, M.B. The interaction of selenium with chemotherapy and radiation on normal and malignant human mononuclear blood cells. Int. J. Mol. Sci. 2018, 19, 3167. [Google Scholar] [CrossRef]
- Evans, S.O.; Khairuddin, P.F.; Jameson, M.B. Optimising selenium for modulation of cancer treatments. Anticancer Res. 2017, 37, 6497–6509. [Google Scholar] [PubMed]
- Ribeiro, S.M.d.F.; Braga, C.B.M.; Peria, F.M.; Martinez, E.Z.; Rocha, J.J.R.d.; Cunha, S.F.C. Effects of zinc supplementation on fatigue and quality of life in patients with colorectal cancer. Einstein 2017, 15, 24–28. [Google Scholar] [CrossRef]
- Rambod, M.; Pasyar, N.; Ramzi, M. The effect of zinc sulfate on prevention, incidence, and severity of mucositis in leukemia patients undergoing chemotherapy. Eur. J. Oncol. Nurs. 2018, 33, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Coradduzza, D.; Congiargiu, A.; Azara, E.; Mammani, I.M.A.; De Miglio, M.R.; Zinellu, A.; Carru, C.; Medici, S. Heavy metals in biological samples of cancer patients: A systematic literature review. BioMetals 2024, 37, 803–817. [Google Scholar] [CrossRef]
- Parida, L.; Patel, T.N. Systemic impact of heavy metals and their role in cancer development: A review. Environ. Monit. Assess. 2023, 195, 766. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Wei, P.; Yuan, H.; Yi, X.; Aschner, M.; Jiang, Y.; Li, S. Inflammation in metal-induced neurological disorders and neurodegenerative diseases. Biol. Trace Elem. Res. 2024, 202, 4459–4481. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: Role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 646–652. [Google Scholar] [CrossRef]
- Rana, M.; Sharma, A.K. Cu and Zn interactions with Aβ peptides: Consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 2019, 11, 64–84. [Google Scholar] [CrossRef]
- Mathys, Z.K.; White, A.R. Copper and Alzheimer’s disease. In Metal Ions in Neurodegenerative Diseases, 1st ed.; White, A.R., Bush, A.I., Eds.; Springer: Cham, Switzerland, 2017; pp. 199–216. [Google Scholar]
- Ward, R.J.; Dexter, D.T.; Crichton, R.R. Iron, neuroinflammation and neurodegeneration. Int. J. Mol. Sci. 2022, 23, 7267. [Google Scholar] [CrossRef]
- Pajarillo, E.; Nyarko-Danquah, I.; Adinew, G.; Rizor, A.; Aschner, M.; Lee, E. Neurotoxicity mechanisms of manganese in the central nervous system. Adv. Neurotoxicol. 2021, 5, 215–238. [Google Scholar] [PubMed]
- Pillai, R.; Uyehara-Lock, J.H.; Bellinger, F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014, 66, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Murumulla, L.; Bandaru, L.J.M.; Challa, S. Heavy metal mediated progressive degeneration and its noxious effects on brain microenvironment. Biol. Trace Elem. Res. 2024, 202, 1411–1427. [Google Scholar] [CrossRef]
- Carmona, A.; Roudeau, S.; Ortega, R. Molecular mechanisms of environmental metal neurotoxicity: A focus on the interactions of metals with synapse structure and function. Toxics 2021, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yang, B.; Ke, T.; Li, S.; Yang, X.; Aschner, M.; Chen, P. Mechanisms of metal-induced mitochondrial dysfunction in neurological disorders. Toxics 2021, 9, 142. [Google Scholar] [CrossRef]
- Zhou, R.; Zhao, J.; Li, D.; Chen, Y.; Xiao, Y.; Fan, A.; Chen, X.-T.; Wang, H.-L. Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. Chemosphere 2020, 252, 126589. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev. 2017, 332, 30–37. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system—Working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef]
- de Jesus, J.R.; de Araújo Andrade, T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: Implications for COVID-19. Metallomics 2020, 12, 1912–1930. [Google Scholar] [CrossRef]
- Bego, T.; Meseldžić, N.; Prnjavorac, B.; Prnjavorac, L.; Marjanović, D.; Azevedo, R.; Pinto, E.; Duro, M.; Couto, C.; Almeida, A. Association of trace element status in COVID-19 patients with disease severity. J. Trace Elem. Med. Biol. 2022, 74, 127055. [Google Scholar] [CrossRef]
- Du Laing, G.; Petrovic, M.; Lachat, C.; De Boevre, M.; Klingenberg, G.J.; Sun, Q.; De Saeger, S.; De Clercq, J.; Ide, L.; Vandekerckhove, L. Course and survival of COVID-19 patients with comorbidities in relation to the trace element status at hospital admission. Nutrients 2021, 13, 3304. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Marquès, M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem. Toxicol. 2021, 152, 112161. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.K.; Head, J.R.; Gould, C.F.; Carlton, E.J.; Remais, J.V. Environmental factors influencing COVID-19 incidence and severity. Annu. Rev. Public Health 2022, 43, 271–291. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global estimation of dietary micronutrient inadequacies: A modelling analysis. Lancet Glob. Health 2024, 12, e1590–e1599. [Google Scholar] [CrossRef]
- Combs, G.F. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef]
- Conzade, R.; Koenig, W.; Heier, M.; Schneider, A.; Grill, E.; Peters, A.; Thorand, B. Prevalence and predictors of subclinical micronutrient deficiency in German older adults: Results from the population-based KORA-Age study. Nutrients 2017, 9, 1276. [Google Scholar] [CrossRef]
- Kennedy, G.; Nantel, G.; Shetty, P. The scourge of “hidden hunger”: Global dimensions of micronutrient deficiencies. Food Nutr. Agric. 2003, 32, 6–16. [Google Scholar]
- World Health Organization. Ambition and Action in Nutrition: 2016–2025, 1st ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2024, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Victora, C.G.; Christian, P.; Vidaletti, L.P.; Gatica-Domínguez, G.; Menon, P.; Black, R.E. Revisiting maternal and child undernutrition in low-income and middle-income countries: Variable progress towards an unfinished agenda. Lancet 2021, 397, 1388–1399. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Wiemer, K.L.; Dary, O.; Keen, C.L.; King, J.C.; Miller, K.B.; Philbert, M.A.; Tarasuk, V.; Taylor, C.L.; Gaine, P.C.; et al. Fortification and health: Challenges and opportunities. Adv. Nutr. 2015, 6, 124–131. [Google Scholar] [CrossRef]
- Olson, R.; Gavin-Smith, B.; Ferraboschi, C.; Kraemer, K. Food fortification: The advantages, disadvantages and lessons from Sight and Life programs. Nutrients 2021, 13, 1118. [Google Scholar] [CrossRef]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef] [PubMed]
- Tam, E.; Keats, E.C.; Rind, F.; Das, J.K.; Bhutta, Z.A. Micronutrient supplementation and fortification interventions on health and development outcomes among children under-five in low- and middle-income countries: A systematic review and meta-analysis. Nutrients 2020, 12, 289. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Ngwenya, S.; Mashau, N.S.; Mudau, A.G.; Mhlongo, S.E.; Traoré, A.N. Community perceptions on health risks associated with toxic chemical pollutants in Kwekwe City, Zimbabwe: A qualitative study. Environ. Health Insights 2024, 18, 1. [Google Scholar] [CrossRef]
- Heng, Y.Y.; Asad, I.; Coleman, B.; Menard, L.; Benki-Nugent, S.; Hussein Were, F.; Karr, C.J.; McHenry, M.S. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS ONE 2022, 17, e0265536. [Google Scholar] [CrossRef]
- Kabir, F.; Chowdhury, S. Arsenic removal methods for drinking water in the developing countries: Technological developments and research needs. Environ. Sci. Pollut. Res. 2017, 24, 24102–24120. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental sustainability impacts of solid waste management practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Baudry, J.; Kopp, J.F.; Boeing, H.; Kipp, A.P.; Schwerdtle, T.; Schulze, M.B. Changes of trace element status during aging: Results of the EPIC-Potsdam cohort study. Eur. J. Nutr. 2020, 59, 3045–3058. [Google Scholar] [CrossRef] [PubMed]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, essential minerals, and toxic elements: Exploring interactions between nutrients and toxicants in clinical medicine. Sci. World J. 2015, 2015, 318595. [Google Scholar] [CrossRef] [PubMed]
- Beal, T.; Ortenzi, F.; Fanzo, J. Estimated micronutrient shortfalls of the EAT–Lancet planetary health diet. Lancet Planet. Health 2023, 7, e233–e237. [Google Scholar] [CrossRef]
- Beal, T.; Ortenzi, F. Priority micronutrient density in foods. Front. Nutr. 2022, 9, 806270. [Google Scholar] [CrossRef]
- Beal, T.; Manohar, S.; Miachon, L.; Fanzo, J. Nutrient-dense foods and diverse diets are important for ensuring adequate nutrition across the life course. Proc. Natl. Acad. Sci. USA 2024, 121, e2401608121. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Cappuccio, F.P. Common nutritional shortcomings in vegetarians and vegans. Dietetics 2024, 3, 114–128. [Google Scholar] [CrossRef]
- Xing, Y.; Gao, S.; Zhang, X.; Zang, J. Dietary heme-containing proteins: Structures, applications, and challenges. Foods 2022, 11, 3594. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition–Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78, 633S–639S. [Google Scholar] [CrossRef]
- Iguacel, I.; Miguel-Berges, M.L.; Gómez-Bruton, A.; Moreno, L.A.; Julián, C. Veganism, vegetarianism, bone mineral density, and fracture risk: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 1–18. [Google Scholar] [CrossRef]
- Gibson, R.S.; Raboy, V.; King, J.C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 2018, 76, 793–804. [Google Scholar] [CrossRef]
- Eveleigh, E.R.; Coneyworth, L.J.; Avery, A.; Welham, S.J.M. Vegans, vegetarians, and omnivores: How does dietary choice influence iodine intake? A systematic review. Nutrients 2020, 12, 1606. [Google Scholar] [CrossRef]
- Hoeflich, J.; Hollenbach, B.; Behrends, T.; Hoeg, A.; Stosnach, H.; Schomburg, L. The choice of biomarkers determines the selenium status in young German vegans and vegetarians. Br. J. Nutr. 2010, 104, 1601–1604. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Hirvonen, K.; Bai, Y.; Headey, D.; Masters, W.A. Affordability of the EAT–Lancet reference diet: A global analysis. Lancet Glob. Health 2020, 8, e59–e66. [Google Scholar] [CrossRef]
- Kaur, D.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Mahato, D.K.; Dey, A.; Dhawan, K.; Kumar, S. Nutritional interventions for elderly and considerations for the development of geriatric foods. Curr. Aging Sci. 2019, 12, 15–27. [Google Scholar] [CrossRef]
- Holt, P.R. Effects of aging upon intestinal absorption. In Nutritional Approaches to Aging Research, 1st ed.; Moment, G.B., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 157–175. [Google Scholar]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in older adults—Recent advances and remaining challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Besora-Moreno, M.; Llauradó, E.; Tarro, L.; Solà, R. Social and economic factors and malnutrition or the risk of malnutrition in the elderly: A systematic review and meta-analysis of observational studies. Nutrients 2020, 12, 737. [Google Scholar] [CrossRef]
- Adeola, F.O. Global impact of chemicals and toxic substances on human health and the environment. In Handbook of Global Health, 1st ed.; Kickbusch, I., Ganten, D., Moeti, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 2227–2256. [Google Scholar]
- EFSA Scientific Committee. Statement on the applicability of the margin of exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA J. 2012, 10, 2578. [Google Scholar]
- Dauvergne, P. The Shadows of Consumption, 1st ed.; The MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Lerner, S. Sacrifice Zones: The Front Lines of Toxic Chemical Exposure in The United States, 1st ed.; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Winichagoon, P.; Margetts, B.M. The double burden of malnutrition in low- and middle-income countries. In Energy Balance and Obesity, 1st ed.; Romieu, I., Dossus, L., Willett, W., Eds.; IARC Working Group Reports: Lyon, France, 2017; No. 10; pp. 8–16. [Google Scholar]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed food intake and obesity: What really matters for health—Processing or nutrient content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef]
- Popkin, B.M. Nutrition, agriculture and the global food system in low and middle income countries. Food Policy 2014, 47, 91–96. [Google Scholar] [CrossRef]
- Agénor, P. Caught in the middle? The economics of middle-income traps. J. Econ. Surv. 2017, 31, 771–791. [Google Scholar] [CrossRef]
- Quintero Santofimio, V.; Amaral, A.F.S.; Feary, J. Occupational exposures in low- and middle-income countries: A scoping review. PLOS Glob. Public Health 2024, 4, e0003888. [Google Scholar] [CrossRef]
- Kesavachandran, C.N.; Fareed, M.; Pathak, M.K.; Bihari, V.; Mathur, N.; Srivastava, A.K. Adverse health effects of pesticides in agrarian populations of developing countries. In Reviews of Environmental Contamination and Toxicology, 1st ed.; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2009; pp. 33–52. [Google Scholar]
- Fanzo, J.; Marshall, Q.; Dobermann, D.; Wong, J.; Merchan, R.I.; Jaber, M.I.; Souza, A.; Verjee, N.; Davis, K. Integration of nutrition into extension and advisory services. Food Nutr. Bull. 2015, 36, 120–137. [Google Scholar] [CrossRef]
- Romanelli, C.; Cooper, D.; Campbell-Lendrum, D.; Maiero, M.; Karesh, W.B.; Hunter, D.; Golden, C.D. Connecting Global Priorities: Biodiversity and Human Health: A State of Knowledge Review, 1st ed.; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Allen, L.H.; Carriquiry, A.L.; Murphy, S.P. Perspective: Proposed harmonized nutrient reference values for populations. Adv. Nutr. 2020, 11, 469–483. [Google Scholar] [CrossRef]
- O’Neill, L.M.; Dwyer, J.T.; Bailey, R.L.; Reidy, K.C.; Saavedra, J.M. Harmonizing micronutrient intake reference ranges for dietary guidance and menu planning in complementary feeding. Curr. Dev. Nutr. 2020, 4, nzaa017. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Cámara, M.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Jos, A.; Maciuk, A.; Mangelsdorf, I.; et al. Guidance for establishing and applying tolerable upper intake levels for vitamins and essential minerals. EFSA J. 2024, 22, 9052. [Google Scholar]
- EFSA Scientific Committee. Update: Use of the benchmark dose approach in risk assessment. EFSA J. 2017, 15, e04658. [Google Scholar]
- Kirk, D.; Catal, C.; Tekinerdogan, B. Precision nutrition: A systematic literature review. Comput. Biol. Med. 2021, 133, 104365. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Bailey, R.L.; Stover, P.J. Precision nutrition: The hype is exceeding the science and evidentiary standards needed to inform public health recommendations for prevention of chronic disease. Annu. Rev. Nutr. 2023, 43, 385–407. [Google Scholar] [CrossRef] [PubMed]
- Picó, C.; Serra, F.; Rodríguez, A.M.; Keijer, J.; Palou, A. Biomarkers of nutrition and health: New tools for new approaches. Nutrients 2019, 11, 1092. [Google Scholar] [CrossRef]
- Behera, S.N.; Xian, H.; Balasubramanian, R. Human health risk associated with exposure to toxic elements in mainstream and sidestream cigarette smoke. Sci. Total Environ. 2014, 472, 947–956. [Google Scholar] [CrossRef]
- Singh, S.; Dhyani, S.; Pujari, P.R. Coal-fired thermal power plants and mercury risks: Status and impacts to realize Minamata Convention promises. Anthropocene Sci. 2023, 1, 419–427. [Google Scholar] [CrossRef]
- Aggett, P.; Nordberg, G.F.; Nordberg, M. Essential metals: Assessing risks from deficiency and toxicity. In Handbook on the Toxicology of Metals, 1st ed.; Nordberg, G.F., Costa, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 385–406. [Google Scholar]
- Jain, K.K. The Handbook of Biomarkers, 1st ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Kirchgessner, B.M.; He, J.; Windisch, W. Homeostatic adjustments of iodine metabolism and tissue iodine to widely varying iodine supply in 125I labeled rats. J. Anim. Physiol. Anim. Nutr. 1999, 82, 238–250. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenoproteins and human health: Insights from epidemiological data. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1533–1540. [Google Scholar] [CrossRef]
- Chawla, R.; Filippini, T.; Loomba, R.; Cilloni, S.; Dhillon, K.S.; Vinceti, M. Exposure to a high selenium environment in Punjab, India: Biomarkers and health conditions. Sci. Total Environ. 2020, 719, 134541. [Google Scholar] [CrossRef]
- Hussain, H.; Selamat, R.; Kuang Kuay, L.; Md Zain, F.; Yazid Jalaludin, M. Urinary iodine: Biomarker for population iodine nutrition. In Biochemical Testing—Clinical Correlation and Diagnosis, 1st ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Hlucny, K.; Alexander, B.M.; Gerow, K.; Larson-Meyer, D.E. Reflection of dietary iodine in the 24 h urinary iodine concentration, serum iodine and thyroglobulin as biomarkers of iodine status: A pilot study. Nutrients 2021, 13, 2520. [Google Scholar] [CrossRef]
- Baydar, E.; Dabak, M. Serum iron as an indicator of acute inflammation in cattle. J. Dairy Sci. 2014, 97, 222–228. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Populations, 1st ed.; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Almashjary, M.N.; Barefah, A.S.; Bahashwan, S.; Ashankyty, I.; ElFayoumi, R.; Alzahrani, M.; Assaqaf, D.M.; Aljabri, R.S.; Aljohani, A.Y.; Muslim, R.; et al. Reticulocyte hemoglobin-equivalent potentially detects, diagnoses and discriminates between stages of iron deficiency with high sensitivity and specificity. J. Clin. Med. 2022, 11, 5675. [Google Scholar] [CrossRef]
- Knez, M.; Pantovic, A.; Tako, E.; Boy, E. FADS1 and FADS2 as biomarkers of Zn status—A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2024, 64, 3187–3205. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Dong, T.; Cheng, Y.; Rong, F.; Zhang, J.; Lv, W.; Zhen, S.; Jia, X.; Cong, B.; Wu, Y.; et al. Ceruloplasmin is associated with the infiltration of immune cells and acts as a prognostic biomarker in patients suffering from glioma. Front. Pharmacol. 2023, 14, 1249650. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead, 1st ed.; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2020. [Google Scholar]
- World Health Organization. Guidance for Identifying Populations at Risk from Mercury Exposure, 1st ed.; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cadmium, 1st ed.; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012. [Google Scholar]
- World Health Organization. Arsenic in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality, 1st ed.; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- García-Lestón, J.; Méndez, J.; Pásaro, E.; Laffon, B. Genotoxic effects of lead: An updated review. Environ. Int. 2010, 36, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A. The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta 1955, 7, 108–117. [Google Scholar] [CrossRef]
- Heumann, K.G. Isotope-dilution ICP-MS for trace element determination and speciation: From a reference method to a routine method? Anal. Bioanal. Chem. 2004, 378, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Davison, C.; Beste, D.; Bailey, M.; Felipe-Sotelo, M. Expanding the boundaries of atomic spectroscopy at the single-cell level: Critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells. Anal. Bioanal. Chem. 2023, 415, 6931–6950. [Google Scholar] [CrossRef]
- Zhang, Y. Trace elements and healthcare: A bioinformatics perspective. In Trace Elements in Health and Disease, 1st ed.; Zhang, Y., Liu, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 63–98. [Google Scholar]
- Kojo, K.; Oguri, T.; Tanaka, T.; Ikeda, A.; Shimizu, T.; Fujimoto, S.; Nakazono, A.; Nagumo, Y.; Kandori, S.; Negoro, H.; et al. Inductively coupled plasma mass spectrometry performance for the measurement of key serum minerals: A comparative study with standard quantification methods. J. Clin. Lab. Anal. 2024, 38, e25140. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Cheng, J.; Zou, H.; Li, M.; Deng, B.; Luo, R.; Wang, F.; Huang, D.; Li, G.; et al. Personalized nutrition: A review of genotype-based nutritional supplementation. Front. Nutr. 2022, 9, 992986. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, M.; Tang, S.; Li, M.; Wu, R.; Wan, S.; Chen, L.; Wei, X.; Feng, S. Effects and Impact of Selenium on Human Health, A Review. Molecules 2025, 30, 50. [Google Scholar] [CrossRef]
- Berger, M.M.; Amrein, K.; Barazzoni, R.; Bindels, L.; Bretón, I.; Calder, P.C.; Cappa, S.; Cuerda, C.; D’Amelio, P.; de Man, A. The science of micronutrients in clinical practice—Report on the ESPEN symposium. Clin. Nutr. 2024, 43, 268–283. [Google Scholar] [CrossRef]
- Chouraqui, J.-P. Risk assessment of micronutrients deficiency in vegetarian or vegan children: Not so obvious. Nutrients 2023, 15, 2129. [Google Scholar] [CrossRef]
- Higuera, J.M.; Santos, H.M.; Oliveira, A.F.; Nogueira, A.R.A. Animal and vegetable protein burgers: Bromatological analysis, mineral composition, and bioaccessibility evaluation. ACS Food Sci. Technol. 2021, 1, 1821–1829. [Google Scholar] [CrossRef]
- Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, B.; Rong, S.; Zhang, J.; Du, Y.; Xu, G.; Snetselaar, L.G.; Wallace, R.B.; Lehmler, H.-J.; Bao, W. Association of seafood consumption and mercury exposure with cardiovascular and all-cause mortality among US adults. JAMA Netw. Open 2021, 4, e2136367. [Google Scholar] [CrossRef]
- Uddin, S.; Khanom, S.; Islam, M.R. Mercury contamination in food—An overview. In Mercury Toxicity, 1st ed.; Uddin, S., Khanom, S., Eds.; Springer: Singapore, 2023; pp. 33–70. [Google Scholar]
- Rehman, U.U.; Khan, S.; Muhammad, S. Associations of potentially toxic elements (PTEs) in drinking water and human biomarkers: A case study from five districts of Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 27912–27923. [Google Scholar] [CrossRef] [PubMed]
- González-Antuña, A.; Camacho, M.; Henríquez-Hernández, L.A.; Boada, L.D.; Almeida-González, M.; Zumbado, M.; Luzardo, O.P. Simultaneous quantification of 49 elements associated to e-waste in human blood by ICP-MS for routine analysis. MethodsX 2017, 4, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Dutta, S.; Gorain, B.; Choudhury, H.; Roychoudhury, S.; Sengupta, P. Environmental and occupational exposure of metals and female reproductive health. Environ. Sci. Pollut. Res. 2022, 29, 62067–62092. [Google Scholar] [CrossRef]
- Zwolak, I. The role of selenium in arsenic and cadmium toxicity: An updated review of scientific literature. Biol. Trace Elem. Res. 2020, 193, 44–63. [Google Scholar] [CrossRef]
- Komarova, T.; McKeating, D.; Perkins, A.V.; Tinggi, U. Trace element analysis in whole blood and plasma for reference levels in a selected Queensland population, Australia. Int. J. Environ. Res. Public Health 2021, 18, 2652. [Google Scholar] [CrossRef]
- Hoet, P.; Jacquerye, C.; Deumer, G.; Lison, D.; Haufroid, V. Reference values of trace elements in blood and/or plasma in adults living in Belgium. Clin. Chem. Lab. Med. 2021, 59, 729–742. [Google Scholar] [CrossRef]
- Jørgensen, L.H.; Sindahl, C.H.; Pedersen, L.; Nielsen, F.; Jensen, T.K.; Tolstrup, J.; Ekholm, O.; Grandjean, P. Reference intervals for trace elements in the general Danish population and their dependence on serum proteins. Scand. J. Clin. Lab. Invest. 2021, 81, 523–531. [Google Scholar] [CrossRef]
- Cesbron, A.; Saussereau, E.; Mahieu, L.; Couland, I.; Guerbet, M.; Goullé, J.P. Metallic profile of whole blood and plasma in a series of 106 healthy volunteers. J. Anal. Toxicol. 2013, 37, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Heitland, P.; Köster, H.D. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef] [PubMed]
- Stojsavljević, A.; Jagodić, J.; Vujotić, L.; Borković-Mitić, S.; Rašić-Milutinović, Z.; Jovanović, D.; Gavrović-Jankulović, M.; Manojlović, D. Reference values for trace essential elements in the whole blood and serum samples of the adult Serbian population: Significance of selenium deficiency. Environ. Sci. Pollut. Res. 2020, 27, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- France Štiglic, A.; Falnoga, I.; Briški, A.S.; Žavbi, M.; Osredkar, J.; Skitek, M.; Marc, J. Reference intervals of 24 trace elements in blood, plasma and erythrocytes for the Slovenian adult population. Clin. Chem. Lab. Med. 2024, 62, 946–957. [Google Scholar] [CrossRef]
- Perrais, M.; Trächsel, B.; Lenglet, S.; Pruijm, M.; Ponte, B.; Vogt, B.; Augsburger, M.; Rousson, V.; Bochud, M.; Thomas, A. Reference values for plasma and urine trace elements in a Swiss population-based cohort. Clin. Chem. Lab. Med. 2024, 62, e1433. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention; National Center for Environmental Health (U.S.), Division of Laboratory Sciences. Fourth National Report on Human Exposure to Environmental Chemicals. Volume Three: Analysis of Pooled Serum Samples For Select Chemicals, NHANES 2005–2016, 1st ed.; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021. [Google Scholar]
Main Functions | Key Enzymes/Proteins/Mechanisms | Refs. | |
---|---|---|---|
Fe | Oxygen transport (hemoglobin); immune function; energy production. | Hemoglobin, myoglobin, cytochrome c (electron transport chain), ferritin (storage), transferrin (transport), hem enzymes (e.g., catalase) | [8] |
Zn | Protein and DNA synthesis; immune function; wound healing. | Zinc finger proteins (gene expression), carbonic anhydrase, alcohol dehydrogenase, superoxide dismutase (Cu/Zn-SOD) (antioxidant), metallothionein (regulation and storage) | [9] |
I | Thyroid hormone synthesis; regulation of metabolism and growth. | Thyroid peroxidase (TPO), iodothyronine deiodinases, thyroglobulin (precursor protein) | [10] |
Se | Antioxidant defense; thyroid function; immune support. | Glutathione peroxidases (GPx), thioredoxin reductase, selenoprotein P (selenium transport), iodothyronine deiodinases (thyroid hormone activation), selenoprotein W (muscle protection) | [11] |
Cu | Energy production; connective tissue formation; brain function; iron metabolism. | Cytochrome C oxidase, superoxide dismutase (Cu/Zn-SOD), ceruloplasmin (iron oxidation), lysyl oxidase (collagen cross-linking), tyrosinase (melanin synthesis) | [12] |
Cr | Blood glucose regulation; carbohydrate and lipid metabolism. | Chromodulin (enhances insulin receptor activity), a low-molecular-weight chromium-binding substance | [13] |
Mn | Carbohydrate, protein, and lipid metabolism; antioxidant defense. | Manganese superoxide dismutase (MnSOD), arginase (urea cycle), pyruvate carboxylase (gluconeogenesis), glutamine synthetase (amino acid metabolism) | [14] |
Mo | Amino acid metabolism; enzymatic function. | Xanthine oxidase (purine metabolism), aldehyde oxidase, sulfite oxidase (sulfur metabolism), molybdopterin-dependent enzymes | [15] |
Main Mechanisms of Toxicity | Target Systems/Effects | |
---|---|---|
Cadmium | Oxidative stress, inhibition of Zn enzymes, mitochondrial dysfunction | Kidney dysfunction, bone demineralization, carcinogenesis |
Lead | Disruption of Ca signaling, oxidative stress, neurotoxicity | Neurodevelopmental impairment, anemia, bone toxicity |
Mercury | Sequestration of Se, inhibition of antioxidant enzymes, neurotoxicity | Neurological damage, cognitive decline, cardiovascular risk |
Arsenic | Phosphate mimicry, DNA damage, ROS generation | Cancer, cardiovascular disease, type 2 diabetes |
Mechanism | Related Trace Metals |
---|---|
Neuroinflammation | Zn, Cu, Fe, Mn, Se, Hg, Pb, Cd |
Oxidative stress | Zn, Cu, Fe, Mn, Se, Hg, Pb, Cd, As |
Neurotransmitter dysfunction | Zn, Cu, Fe, Mn, Hg, Pb, Cd |
Beta-amyloid aggregation | Zn, Cu, Fe, Hg |
Neuronal damage and apoptosis | Pb, Hg, Cd |
Neuronal signaling dysfunction | Pb, Cd, Hg |
Intracellular Ca deregulation | Pb, Cd |
Mitochondrial dysfunction | Hg, As |
Protein misfolding and synaptic dysfunction | Hg |
Epigenetic alteration | Pb, Cd |
Antioxidant depletion | Hg, Se |
Main Problems Involving Trace Minerals | Monitoring Strategies | Priority Applications |
---|---|---|
Low-income countries | ||
Deficiencies of Fe, Zn, I, Se; Exposure to As, Cd, Pb | Facilitate detection of hidden hunger and early-stage toxic exposure | Nutritional surveillance Child/maternal health Fortification program design |
Middle-income countries | ||
Coexistence of deficiencies and toxic exposure Dietary transition | Captures dual burden of undernutrition and environmental contamination | Urban vs. rural comparison Monitoring food safety Guiding multisectoral interventions |
High-income countries | ||
Subclinical deficiencies (e.g., Se, Zn) in elderly people or vegans Exposure to Hg, Pb, Cd | Enables personalized assessment of micronutrient imbalances and toxic burden | Geriatric care Personalized nutrition Monitoring of dietary trends |
Biomarker | Advantage | Limitation | |
---|---|---|---|
Cr | Serum/plasma Cr | Useful in exposure and supplementation studies | Reflects recent intake, not long-term status |
Urinary Cr | Effective for monitoring occupational exposure | Insensitive to dietary chromium intake | |
Cu | Serum Cu | Reflects overall Cu status | Elevated in inflammatory states and pregnancy |
Ceruloplasmin | Indicates functional Cu pool | Acute-phase reactant; influenced by external factors | |
Fe | Serum ferritin | Reflects Fe stores; widely used in clinical practice | Acute-phase reactant; elevated during inflammation, masking deficiency |
Serum Fe | Indicates circulating Fe levels | Fluctuates due to dietary intake and diurnal rhythms | |
Transferrin saturation | Reflects Fe transport capacity | Affected by malnutrition and inflammation | |
I | Serum thyroglobulin | Reflects I status in thyroid function | Influenced by thyroid disorders; not specific for recent intake |
Urinary I | Gold standard for population studies; reflects recent intake | Does not indicate long-term I status | |
Serum TSH | Sensitive indicator of thyroid function; useful in I deficiency disorders | Affected by factors unrelated to I status (e.g., pituitary disorders) | |
Serum I | Can reflect recent I intake in individual assessments | High intra-individual variability; not suitable for population-level assessment | |
Mn | Serum/plasma Mn | Indicates Mn exposure | Rapidly excreted; prone to contamination during sample handling |
Mo | Serum/plasma Mo | Reflects short-term intake | No validated biomarkers for deficiency |
Se | Serum Se | Reflects recent dietary intake | Not specific to functional Se pool; affected by dietary forms |
Urinary Se | Reflects recent Se intake; useful in population studies | High variability; not reliable for assessing body stores or long-term status | |
GPx activity | Reflects functional Se status; used in both plasma and erythrocytes | Sensitive to oxidative stress and inflammation; not specific to Se alone | |
SEPP1 activity | Functional marker; reflects Se supply to tissues | Requires advanced assays; not widely available | |
Zn | Serum/plasma Zn | Simple and widely available | Sensitive to fasting, diurnal variations, and inflammation; low specificity |
Urinary Zn | Reflects recent Zn intake; useful in supplementation studies | Poor correlation with body stores; affected by renal function | |
Erythrocyte SOD activity | Reflects functional Zn status; less sensitive to short-term fluctuations | Requires specific assays; less commonly used in clinical settings |
Biomarker | Advantage | Limitation | |
---|---|---|---|
As | Urinary As | Gold standard for exposure; allows differentiation of toxic forms (inorganic, MMA 1, DMA 2) | Requires speciation; seafood intake can confound total levels |
Blood As | Reflects very recent exposure | Rapid clearance; less useful for chronic exposure | |
Oxidative stress biomarkers (e.g., 8-OHdG) | Reflects As-induced DNA damage | Non-specific; elevated in other conditions | |
Cd | Urinary Cd | Reflects cumulative body burden, especially renal accumulation; standard for chronic exposure | Affected by kidney function; requires correction for creatinine |
Blood Cd | Indicates recent exposure | Short half-life in blood; not reliable for chronic body load | |
Pb | Blood Pb | Standard biomarker of recent and chronic exposure | Does not reflect total body burden (especially bone stores) |
Hg | Hair Hg | Good indicator of chronic dietary exposure (e.g., fish) | Affected by hair treatment and external contamination |
Blood Hg | Useful for both inorganic and organic forms (with speciation) | Form-specific interpretation needed | |
Urinary Hg | Reflects inorganic Hg exposure, particularly occupational exposure | Does not detect methylmercury well |
Australia | Belgium | Denmark | France | Germany | Serbia | Slovenia | Switzerland | USA | |
---|---|---|---|---|---|---|---|---|---|
[212] | [213] | [214] | [215] | [216] | [217] | [218] | [219] | [220] | |
Co | |||||||||
median | 0.47 AM | <LoD | 1 | 0.3 | 0.12 GM | 0.221 | 0.104 | ||
LRL-URL | 0.21–1.3 R | nd–0.8 | 0.065–0.572 | 0.04–0.77 R | 0.10–1.00 | 0.059–0.636 | |||
Cu | |||||||||
median | 1100 | 948 | 1226 | 952 | 1146 GM | 729 | 837 | 952 | 1130 |
LRL-URL | 670–2490 R | 520–2100 | 794–2173 | 560–2280 R | 683–774 | 580–1750 | 577–1990 | ||
Fe | |||||||||
median | 804 | ||||||||
LRL-URL | 313–1675 | ||||||||
I | |||||||||
median | 56 GM | 57.6 | |||||||
LRL-URL | 39–118 R | 8.68–121.5 | |||||||
Mn | |||||||||
median | 1 | <LoD | 1.4 | 0.65 | 0.47 GM | 1.25 | 0.493 | 0.529 | |
LRL-URL | <1–3.1 R | nd–0.9 | 0.461–10.37 | 0.29–0.63 R | 1.36–2.09 | <LoD-1.00 | 0.300–1.074 | ||
Mo | |||||||||
median | 0.91 | 0.61 | 0.62 GM | 0.873 | 0.878 | ||||
LRL-URL | 0.26–3 R | 0.21–2.7 R | 0.45–2.00 | 0.430–1.886 | |||||
Se | |||||||||
median | 130 | 93.7 | 110 | 92 | 87 GM | 65.7 | 86.8 | 114.8 | 127 |
LRL-URL | 82–180 R | 65–125 | 79–150 | 63–123 R | 62.3–70.6 | 63–120 | 80.5–162.4 | ||
Zn | |||||||||
median | 1150 | 762 | 706 | 660 | 903 GM | 529 | 825 | 784 | 809 |
LRL-URL | 820–1660 R | 480–1150 | 517–1053 | 605–1348 R | 534–608 | 600–1450 | 588–1067 | ||
As | |||||||||
median | 1.21 | 2.19 | 0.21 GM | 0.172 | 0.463 | ||||
LRL-URL | 0.247–12.5 | 0.02–6.20 R | nd–1.4 | <LoD-7.07 | |||||
Cd | |||||||||
median | <0.03 | <LoD | <LoD | 0.053 | |||||
LRL-URL | <0.009–0.033 R | nd–0.50 | 0.024–0.106 | ||||||
Cr | |||||||||
median | <LoD | 0.276 | <0.29 | 0.044 GM | <LoD | 0.332 | |||
LRL-URL | 0.121–0.552 | <0.03–0.20 R | nd–0.80 | <LoD-1.274 | |||||
Hg | |||||||||
median | 0.36 | 0.12 GM | 0.304 | 0.267 | |||||
LRL-URL | <0.02–1.10 R | nd–4.0 | 0.077–0.993 | ||||||
Ni | |||||||||
median | 0.62 | 0.63 | 0.84 | 0.28 GM | <LoD | 1.085 | |||
LRL-URL | nd–1.2 | 0.34–1.74 | 0.17–0.48 R | nd–3.00 | <LoD-2.857 | ||||
Pb | |||||||||
median | 0.033 GM | <LoD | 1.066 | ||||||
LRL-URL | <0.006–0.13 R | nd–0.85 | 0.304–4.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Alonso, M.; Rivas, I.; Miranda, M. Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis. Nutrients 2025, 17, 2241. https://doi.org/10.3390/nu17132241
López-Alonso M, Rivas I, Miranda M. Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis. Nutrients. 2025; 17(13):2241. https://doi.org/10.3390/nu17132241
Chicago/Turabian StyleLópez-Alonso, Marta, Inés Rivas, and Marta Miranda. 2025. "Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis" Nutrients 17, no. 13: 2241. https://doi.org/10.3390/nu17132241
APA StyleLópez-Alonso, M., Rivas, I., & Miranda, M. (2025). Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis. Nutrients, 17(13), 2241. https://doi.org/10.3390/nu17132241