Osteoprotective Effect of Pine Pollen in Orchidectomized Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Procedures
2.2. Dual X-Ray Absorptiometry (DXA) Measurements of the Total Skeleton and Isolated Tibia
2.3. Analysis of Isolated Tibia Using Peripheral Quantitative Computed Tomography (pQCT)
2.4. Muscle Tissue Analysis Using Peripheral Quantitative Computed Tomography (pQCT)
2.5. Analysis of Bone Mechanics
2.6. Biochemical Markers of Bone Metabolism
2.7. Statistical Analysis
3. Results
3.1. Densitometric Analysis (DXA) of the Total Skeleton and Isolated Tibia
3.2. Tomographic Analysis of Cortical Bone Tissue at Mid-Length of the Tibia
3.3. Analysis of Trabecular Bone Tissue in the Proximal Metaphyseal Part of the Tibia Using pQCT
3.4. Tomographic Measurements of Muscle Tissue
3.5. Assessment of the Mechanical Strength of the Tibia Performed Using the Three-Point Bending Test
3.6. Evaluation of Biochemical Markers of Bone Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
p.o. | per os |
s.c. | subcutaneous |
b.w. | body weight |
BMD | bone mineral density |
BMC | bone mineral content |
DHEA | dehydroepiandrosterone |
SHO | sham-operated rats |
ORX | orchidectomized rats |
PhS | physiological saline |
TEST | testosterone |
PP50 | pine pollen applied in the dose of 50 mg/kg b.w. |
PP150 | pine pollen applied in the dose of 150 mg/kg b.w. |
Ts.BMC | bone mineral content of the total skeleton |
Ts.BMD | bone mineral density of the total skeleton |
Ts.Ar | surface of the total skeleton |
t.BMC | bone mineral content of the isolated tibia |
t.BMD | bone mineral density of isolated tibia |
t.Ar | surface of the isolated tibia |
DXA | dual X-ray absorptiometry |
pQCT | peripheral quantitative computed tomography |
Tot.BMC | total bone mineral content |
Tot.vBMD | total volumetric bone mineral density |
Tot.Ar | total bone area |
Peri.C | pericortical circumference |
Endo.C | endocortical circumference |
Ct.BMC | mineral content of cortical bone tissue |
Ct.vBMD | volumetric mineral density of cortical bone tissue |
Ct.Ar | area of cortical compartment |
Ct.Th | cortical thickness |
Tb.BMC | trabecular bone mineral content |
Tb.vBMD | trabecular volumetric bone mineral density |
Tb.Ar | trabecular area |
mCSA | muscle cross-sectional area |
MD | muscle density |
IMAT | intramuscular adipose tissue area |
SAT | subcutaneous adipose tissue |
Emod | linear Young’s modulus of elasticity |
Fmax | maximum bone strength |
Fr | force of elastic limit |
xSSI | axial strength–strain index |
CTX-I | C-terminal telopeptide of type I collagen |
OC | osteocalcin |
bALP | bone-specific alkaline phosphatase |
Appendix A. Detailed Methodology of the pQCT Analysis of Cortical and Trabecular Bone Tissues in Isolated Tibia
The Parameters of the Total Cross-Section of the Tibia and Cortical Bone Tissue Measured at 50% of the Bone Length | Total Cross-Sectional Parameters of the Tibia and the Trabecular Bone Tissue of the Distal Metaphyseal Part, Determined at a Distance of 4.5 mm from the Knee Joint Surface |
---|---|
Total bone area—Tot.Ar Total tone mineral content—Tot.BMC Total volumetric bone mineral density—Tot.vBMD Cortical thickness—Ct.Th Peripheral circumference—Peri.C Endocortical circumference—Endo.C Cortical area—Ct.Ar Cortical volumetric bone mineral density—Ct.vBMD Cortical bone mineral content—Ct.BMC X-axis Strength–Strain Index—xSSI | Total area—Tot.Ar Trabecular Area—Tb.Ar Total volumetric bone mineral density—Tot.vBMD Total bone mineral content—Tot.BMC Trabecular volumetric bone mineral density—Tb.vBMD Trabecular bone mineral content—Tb.BMC |
Appendix B
References
- Bandeira, L.; Silva, B.C.; Bilezikian, J.P. Male osteoporosis. Arch. Endocrinol. Metab. 2022, 66, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Fink, H.A.; Ewing, S.K.; Ensrud, K.E.; Barrett-Connor, E.; Taylor, B.C.; Cauley, J.A.; Orwoll, E.S. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J. Clin. Endocrinol. Metab. 2006, 91, 3908–3915. [Google Scholar] [CrossRef] [PubMed]
- Kirby, D.J.; Buchalter, D.B.; Anil, U.; Leucht, P. DHEA in bone: The role in osteoporosis and fracture healing. Arch. Osteoporos. 2020, 15, 84. [Google Scholar] [CrossRef]
- Shang, H.; Niu, X.; Cui, W.; Sha, Z.; Wang, C.; Huang, T.; Guo, P.; Wang, X.; Gao, P.; Zhang, S.; et al. Anti-tumor activity of polysaccharides extracted from Pinus massoniana pollen in colorectal cancer- in vitro and in vivo studies. Food Funct. 2022, 13, 6350–6361. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wang, Z.; He, Z.; Wang, Z.; Chen, Q.; Qin, F.; Zeng, M.; Chen, J. Pine pollen extract alleviates ethanol-induced oxidative stress and apoptosis in HepG2 cells via MAPK signaling. Food Chem. Toxicol. 2023, 171, 113550. [Google Scholar] [CrossRef] [PubMed]
- Velasco, R.R.; Dollente, D.J.; Natvidad, L.R.; Abella, T.A. Benguet Pine Pollen (Pinus kesiya) as natural source of phytoandrogen. Int. J. Biol. Pharm. Allied Sci. 2018, 7, 1122–1123. [Google Scholar] [CrossRef]
- Wolkodoff, N.E.; Hasse, G.M.; Mordkin, R.M.; Beal, S.G. Pine Pollen Impacts Testosterone-Related Symptoms in Older Men: A Pilot Report. Ann. Clin. Med.-Case Rep. 2024, 14, 1–9. [Google Scholar]
- Cheng, Y.; Wang, Z.; Quan, W.; Xue, C.; Qu, T.; Wang, T.; Chen, Q.; Wang, Z.; Zeng, M.; Qin, F.; et al. Pine pollen: A review of its chemical composition, health effects, processing, and food applications. Trends Food Sci. Technol. 2023, 138, 599–614. [Google Scholar] [CrossRef]
- Niu, S. Experimental Study on Anti Hypothalamus-Pituitary-Testis Axis Aging Effects of Pine Pollen. Ph.D. Thesis, Hebei Medical University, Shijiazhuang, China, 2006. [Google Scholar]
- Chamawan, P.; Thisayakorn, K.; Phornchirasilp, S. Effects of Pine Pollen Extract in Relieving Hot Flushes in Sex Hormone-Deficienct Rats. Thai J. Pharmacol. 2017, 39, 19–37. [Google Scholar]
- Bienko, M.; Radzki, R.P.; Wolski, D. The peripheral quantitative computed tomographic and densitometric analysis of skeletal tissue in male Wistar rats after chromium sulfate treatment. Ann. Agric. Environ. Med. 2017, 24, 446–452. [Google Scholar] [CrossRef]
- Radzki, R.P.; Bienko, M.; Wolski, D.; Ostapiuk, M.; Polak, P.; Manastyrska, M.; Kimicka, A.; Wolska, J. Programming Effect of the Parental Obesity on the Skeletal System of Offspring at Weaning Day. Animals 2021, 11., 424. [Google Scholar] [CrossRef]
- Topolska, K.; Radzki, R.P.; Filipiak-Florkiewicz, A.; Florkiewicz, A.; Leszczynska, T.; Cieslik, E. Fructan-Enriched Diet Increases Bone Quality in Female Growing Rats at Calcium Deficiency. Plant Foods Hum. Nutr. 2018, 73, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Frank-Wilson, A.W.; Johnston, J.D.; Olszynski, W.P.; Kontulainen, S.A. Measurement of muscle and fat in postmenopausal women: Precision of previously reported pQCT imaging methods. Bone 2015, 75, 49–54. [Google Scholar] [CrossRef]
- Radzki, R.P.; Bieńko, M.; Filip, R.; Polak, P.; Michalska, J. Bone losses in obese, ovariectomized rats appear to be independent from sclerostin-induced inhibition of the Wnt/β-catenin pathway. Ann. Agric. Environ. Med. 2020, 27, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Puzio, I.; Kapica, M.; Filip, R.; Bieńko, M.; Radzki, R.P. Fundectomy evokes elevated gastrin and lowered serum of ghrelin levels accompanied by decrease in geometrical and mechanical properties of femora in the rats. Bull. Vet. Inst. 2005, 49, 69–73. [Google Scholar]
- Vilaca, T.; Eastell, R.; Schini, M. Osteoporosis in men. Lancet Diabetes Endocrinol. 2022, 10, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Haffner-Luntzer, M.; Hankenson, K.D.; Ignatius, A.; Pfeifer, R.; Khader, B.A.; Hildebrand, F.; van Griensven, M.; Pape, H.C.; Lehmicke, M. Review of Animal Models of Comorbidities in Fracture-Healing Research. J. Orthop. Res. 2019, 37, 2491–2498. [Google Scholar] [CrossRef]
- Thompson, D.D.; Simmons, H.A.; Pirie, C.M.; Ke, H.Z. FDA Guidelines and animal models for osteoporosis. Bone 1995, 17, 125S–133S. [Google Scholar] [CrossRef]
- Turner, A.S. Animal models of osteoporosis--necessity and limitations. Eur. Cell Mater. 2001, 1, 66–81. [Google Scholar] [CrossRef]
- Jee, W.S.; Yao, W. Overview: Animal models of osteopenia and osteoporosis. J. Musculoskelet. Neuronal Interact. 2001, 1, 193–207. [Google Scholar]
- Jee, W.S.; Yao, W. Animal models of bone diseases. Introduction. J. Musculoskelet. Neuronal Interact. 2001, 1, 183–184. [Google Scholar]
- Radzki, R.P.; Bieńko, M.; Filip, R.S.; Albera, E.; Kankofer, M. Effect of strontium ranelate on femur densitometry and antioxidative/oxidative status in castrated male rats. Scand. J. Lab. Anim. Sci. 2009, 36, 193–201. [Google Scholar]
- Radzki, R.P.; Bieńko, M.; Filip, R.S. Influence of strontium ranelate on mineral and mechanical properties of the femur in orchidectomized rats. Med. Weter. 2007, 63, 1630–1634. [Google Scholar]
- Saki, F.; Kasaee, S.R.; Sadeghian, F.; Talezadeh, P.; Ranjbar Omrani, G.H. The effect of testosterone itself and in combination with letrozole on bone mineral density in male rats. J. Bone Miner. Metab. 2019, 37, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Priemel, M.; Kohler, T.; Weusten, A.; Muller, R.; Amling, M.; Eckstein, F. Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (microCT). J. Bone Miner. Res. 2003, 18, 1486–1496. [Google Scholar] [CrossRef]
- Radzki, R.P.; Bienko, M.; Wolski, D.; Oniszczuk, T.; Radzka-Pogoda, A.; Polak, P.; Borzecki, A.; Stasiak, M. Lipoic acid (LA) dose-dependently protects bone losses in the mandible of rats during the development of osteopenia by inhibiting oxidative stress and promoting bone formation. Biomed. Pharmacother. 2022, 146, 112467. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.S.; Lee, Y.W.; Chang, W.H.; Wang, W.; Wang, J.L.; Liu, S.H.; Chen, R.M. Biomechanical and tomographic differences in the microarchitecture and strength of trabecular and cortical bone in the early stage of male osteoporosis. PLoS ONE 2019, 14, e0219718. [Google Scholar] [CrossRef]
- Moverare, S.; Venken, K.; Eriksson, A.L.; Andersson, N.; Skrtic, S.; Wergedal, J.; Mohan, S.; Salmon, P.; Bouillon, R.; Gustafsson, J.A.; et al. Differential effects on bone of estrogen receptor alpha and androgen receptor activation in orchidectomized adult male mice. Proc. Natl. Acad. Sci. USA 2003, 100, 13573–13578. [Google Scholar] [CrossRef]
- de Paiva Goncalves, V.; Cabrera-Ortega, A.A.; Carvalho, J.S.; Ramadan, D.; Spolidorio, L.C. Physiological testosterone replacement effects on male aged rats with orchiectomy-induced osteoporosis in advanced stage: A tomographic and biomechanical pilot study. Aging Male 2021, 24, 139–147. [Google Scholar] [CrossRef]
- Vandenput, L.; Boonen, S.; Van Herck, E.; Swinnen, J.V.; Bouillon, R.; Vanderschueren, D. Evidence from the aged orchidectomized male rat model that 17beta-estradiol is a more effective bone-sparing and anabolic agent than 5alpha-dihydrotestosterone. J. Bone Miner. Res. 2002, 17, 2080–2086. [Google Scholar] [CrossRef]
- Saxon, L.K.; Turner, C.H. Estrogen receptor beta: The antimechanostat? Bone 2005, 36, 185–192. [Google Scholar] [CrossRef]
- Kim, B.T.; Mosekilde, L.; Duan, Y.; Zhang, X.Z.; Tornvig, L.; Thomsen, J.S.; Seeman, E. The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J. Bone Miner. Res. 2003, 18, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M.; Ferretti, J.L.; Jee, W.S. Perspectives: Some roles of mechanical usage, muscle strength, and the mechanostat in skeletal physiology, disease, and research. Calcif. Tissue Int. 1998, 62, 1–7. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simoes, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [PubMed]
- Robling, A.G.; Turner, C.H. Mechanical signaling for bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 319–338. [Google Scholar] [CrossRef]
- Wang, L.; Yin, L.; Zhao, Y.; Su, Y.; Sun, W.; Chen, S.; Liu, Y.; Yang, M.; Yu, A.; Guglielmi, G.; et al. Muscle Density, but Not Size, Correlates Well With Muscle Strength and Physical Performance. J. Am. Med. Dir. Assoc. 2021, 22, 751–759.e2. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.D.; Betik, A.C.; Timpani, C.A.; Tarle, J.; Zhang, X.; Hayes, A. Testosterone suppression does not exacerbate disuse atrophy and impairs muscle recovery that is not rescued by high protein. J. Appl. Physiol. 2020, 129, 5–16. [Google Scholar] [CrossRef]
- Kajitani, N.; Takahashi, J.; Honda, H.; Hamahara, J.; Ando, S. Severe Visceral Obesity, Fatty Liver and Diabetes after Orchiectomy for Prostate Cancer. Intern. Med. 2020, 59, 2281–2285. [Google Scholar] [CrossRef]
- Pouresmaeili, F.; Kamalidehghan, B.; Kamarehei, M.; Goh, Y.M. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag. 2018, 14, 2029–2049. [Google Scholar] [CrossRef]
- Peng, Z.; Tuukkanen, J.; Zhang, H.; Jamsa, T.; Vaananen, H.K. The mechanical strength of bone in different rat models of experimental osteoporosis. Bone 1994, 15, 523–532. [Google Scholar] [CrossRef]
- Gasser, J.A. Bone measurements by peripheral quantitative computed tomography in rodents. Methods Mol. Med. 2003, 80, 323–341. [Google Scholar] [CrossRef] [PubMed]
Group | Surgery | Experimental Treatment | Dose and Way of Application |
---|---|---|---|
SHO (n = 8) | Sham operation | Physiological saline | 0.5 mL/100 g b.w./24 h p.o. |
ORX-PhS (n = 8) | Orchidectomy | Physiological saline | 0.5 mL/100 g b.w./24 h p.o. |
ORX-TEST (n = 8) | Orchidectomy | Testosterone | 7 mg/ kg b.w./7 days s.c. |
ORX-PP50 (n = 8) | Orchidectomy | Pine pollen | 50 mg/kg b.w./24 h in a PhS suspension, administered in volume 0.5 mL/100 g b.w. p.o. |
ORX-PP150 (n = 8) | Orchidectomy | Pine pollen | 150 mg/kg b.w./24 h in a PhS suspension, administered in volume 0.5 mL/100 g b.w. p.o. |
Parameter | SHO | ORX-PhS | ORX-TEST | ORX-PP50 | ORX-PP150 |
---|---|---|---|---|---|
Tot. BMC—(mg/mm) | 6.41 ± 0.07 bd | 5.97 ± 0.03 ace | 6.29 ± 0.04 bd | 5.82 ± 0.1 ace | 6.35 ± 0.08 bd |
Tot. vBMD (mg/mm3) | 1054.9 ± 12.0 bd | 996.5 ± 20.0 ace | 1047.7 ± 14.8 bd | 1009.9 ± 12.0 ace | 1071.9 ± 5.6 bd |
Tot.Ar (mm2) | 6.12 ± 0.12 | 5.96 ± 0.08 | 5.91 ± 0.09 | 6.06 ± 0.05 | 6.17 ± 0.14 |
Ct. BMC (mg/mm) | 5.95 ± 0.11 bd | 5.42 ± 0.07 ace | 5.82 ± 0.1 bd | 5.56 ± 0.07 ace | 5.92 ±0.06 bd |
Ct.vBMD (mg/mm3) | 1373.5 ± 13.4 b | 1329.0 ± 14.7 ace | 1372.2 ± 9.2 b | 1359.4 ± 12.4 e | 1393.7 ± 5.1 bd |
Ct. Ar (mm2) | 4.78 ± 0.18 | 4.38 ± 0.20 | 4.64 ± 0.15 | 4.30 ± 0.19 | 4.71 ± 0.17 |
Ct. Th (mm) | 0.72 ± 0.02 bde | 0.64 ± 0.01 ace | 0.69 ± 0.01 bd | 0.62 ± 0.01 ace | 0.69 ± 0.01 abd |
Peri.C (mm) | 8.83 ± 0.08 | 8.73 ± 0.15 | 8.72 ± 0.15 | 8.64 ± 0.09 | 8.87 ± 0.13 |
Endo.C (mm) | 4.22 ± 0.16 bd | 4.56 ± 0.07 ace | 4.22 ± 0.08 bd | 4.54 ± 0.08 ac | 4.27 ± 0.04 b |
Parameter | SHO | ORX-PhS | ORX-TEST | ORX-PP50 | ORX-PP150 |
---|---|---|---|---|---|
Tot. BMC—(mg/mm) | 12.0 ± 0.4 bcd | 10.1 ± 0.2 ace | 11.2 ± 0.2 bd | 10.7 ± 0.1 ae | 11.7 ± 0.1 bd |
Tot. vBMD (mg/mm3) | 613.2 ± 15.0 bd | 549.5 ± 9.0 ace | 588.9 ± 9.7 bd | 554.1 ± 11.1 ace | 603.1 ± 4.8 bd |
Tot.Ar (mm2) | 19.5 ± 0.5 bd | 15.7 ± 0.4 ace | 18.2 ± 0.7 bd | 17.0 ± 0.4 ae | 20.0 ± 0.2 bcd |
Tb. BMC (mg/mm) | 2.3 ± 0.2 bd | 1.4 ± 0.1 acde | 2.1 ± 0.2 bd | 1.6 ± 0.1 abce | 2.2 ± 0.1 bd |
Tb.vBMD (mg/mm3) | 264.6 ± 18.6 bd | 182.2 ± 5.0 acde | 236.8 ± 12.5 b | 207.7 ± 2.0 ab | 232.9 ± 3.7 b |
Tb.Ar (mm2) | 8.8 ± 0.2 bd | 7.3 ± 0.2 acde | 8.6 ± 0.3 b | 8.1 ± 0.2 abe | 9.0 ± 0.1 bd |
Parameter | SHO | ORX-PhS | ORX-TEST | ORX-PP50 | ORX-PP150 |
---|---|---|---|---|---|
mCSA (cm2) | 2.0 ± 0.03 b | 1.7 ± 0.01 ace | 1.9 ± 0.03 b | 1.8 ± 0.02 ae | 1.90 ± 0.02 bd |
MD (mg/cm3) | 84.4 ± 0.2 bd | 82.4 ± 0.2 ace | 83.8 ± 0.1 bde | 82.5 ± 0.2 ace | 84.3 ± 0.2 bcd |
IMAT (cm2) | 0.384 ± 0.008 bde | 0.442 ± 0.004 ace | 0.406 ± 0.007 b | 0.429 ± 0.003 a | 0.411 ± 0.003 ab |
SAT (cm2) | 0.058 ± 0.003 bcde | 0.087 ± 0.004 acde | 0.071 ± 0.003 ab | 0.077 ± 0.002 abe | 0.066 ± 0.002 abd |
Parameter | MD (mg/cm3) | mCSA (cm2) | IMAT (cm2) | SAT (cm2) |
---|---|---|---|---|
Ts.BMD (g/cm2) | 0.4914 p = 0.002 | 0.5037 p = 0.001 | −0.5079 p = 0.001 | −0.3697 p = 0.024 |
Ts.BMC (g) | 0.6167 p = 0.000 | 0.6495 p = 0.000 | −0.6306 p = 0.000 | −0.5409 p = 0.001 |
t.BMD (g/cm2) | 0.5087 p = 0.001 | 0.5527 p = 0.000 | −0.5261 p = 0.001 | −0.4151 p = 0.011 |
t.BMC (g) | 0.4587 p = 0.004 | 0.4817 p = 0.003 | −0.5121 p = 0.001 | −0.4120 p = 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, P.; Radzki, R.P.; Bieńko, M.; Szymańczyk, S.; Topolska, K.; Manastyrska-Stolarczyk, M.; Szponar, J. Osteoprotective Effect of Pine Pollen in Orchidectomized Rats. Nutrients 2025, 17, 2110. https://doi.org/10.3390/nu17132110
Polak P, Radzki RP, Bieńko M, Szymańczyk S, Topolska K, Manastyrska-Stolarczyk M, Szponar J. Osteoprotective Effect of Pine Pollen in Orchidectomized Rats. Nutrients. 2025; 17(13):2110. https://doi.org/10.3390/nu17132110
Chicago/Turabian StylePolak, Paweł, Radosław P. Radzki, Marek Bieńko, Sylwia Szymańczyk, Kinga Topolska, Małgorzata Manastyrska-Stolarczyk, and Jarosław Szponar. 2025. "Osteoprotective Effect of Pine Pollen in Orchidectomized Rats" Nutrients 17, no. 13: 2110. https://doi.org/10.3390/nu17132110
APA StylePolak, P., Radzki, R. P., Bieńko, M., Szymańczyk, S., Topolska, K., Manastyrska-Stolarczyk, M., & Szponar, J. (2025). Osteoprotective Effect of Pine Pollen in Orchidectomized Rats. Nutrients, 17(13), 2110. https://doi.org/10.3390/nu17132110