Loop Diuretic Dose and Nutritional Status of Patients with Heart Failure with Reduced Ejection Fraction
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEI | angiotensin-converting enzyme inhibitors |
ARB | angiotensin receptor blockers |
ARNI | neprilysin inhibitors |
BMI | body mass index |
BNP | B-type natriuretic peptide |
CONUT | CONtrolling NUTritional Status |
eGFR | estimated glomerular filtration rate |
ESC | European Society of Cardiology |
GNRI | Geriatric Nutritional Index |
HD | high dose |
HF | heart failure |
HFrEF | heart failure with reduced ejection fraction |
IQR | interquartile range |
LD | low dose |
LVEF | left ventricular ejection fraction |
MD | medium dose |
MDRD | Modification of the Diet in Renal Disease |
MNA | Mini Nutritional Assessment |
MRA | Mineralocorticoid Receptor Antagonists |
NT-proBNP | N-terminal prohormone of B-type natriuretic peptide |
NYHA | New York Heart Association |
SGLT2 | sodium–glucose transport protein 2 |
References
- Aggarwal, A.; Kumar, A.; Gregory, M.P.; Blair, C.; Pauwaa, S.; Tatooles, A.J.; Pappas, P.S.; Bhat, G. Nutrition Assessment in Advanced Heart Failure Patients Evaluated for Ventricular Assist Devices or Cardiac Transplantation. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2013, 28, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Pellicori, P.; Zhang, J.; Weston, J.; Clark, A.L. Agreement and Classification Performance of Malnutrition Tools in Patients with Chronic Heart Failure. Curr. Dev. Nutr. 2020, 4, nzaa071. [Google Scholar] [CrossRef] [PubMed]
- Kaluzna-Oleksy, M.; Sawczak, F.; Kukfisz, A.; Szczechla, M.; Krysztofiak, H.; Wleklik, M.; Przytarska, K.; Migaj, J.; Dudek, M.; Straburzyńska-Migaj, E.; et al. Appetite and Nutritional Status as Potential Management Targets in Patients with Heart Failure with Reduced Ejection Fraction-The Relationship between Echocardiographic and Biochemical Parameters and Appetite. J. Pers. Med. 2021, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Kałużna-Oleksy, M.; Krysztofiak, H.; Sawczak, F.; Kukfisz, A.; Szczechla, M.; Soloch, A.; Cierzniak, M.; Szubarga, A.; Przytarska, K.; Dudek, M.; et al. Sex Differences in the Nutritional Status and Its Association with Long-Term Prognosis in Patients with Heart Failure with Reduced Ejection Fraction: A Prospective Cohort Study. Eur. J. Cardiovasc. Nurs. 2024, 23, 458–469. [Google Scholar] [CrossRef]
- Sze, S.; Pellicori, P.; Zhang, J.; Clark, A.L. Malnutrition, Congestion and Mortality in Ambulatory Patients with Heart Failure. Heart Br. Card. Soc. 2019, 105, 297–306. [Google Scholar] [CrossRef]
- Katano, S.; Yano, T.; Kouzu, H.; Ohori, K.; Shimomura, K.; Honma, S.; Nagaoka, R.; Inoue, T.; Takamura, Y.; Ishigo, T.; et al. Energy Intake during Hospital Stay Predicts All-Cause Mortality after Discharge Independently of Nutritional Status in Elderly Heart Failure Patients. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2021, 110, 1202–1220. [Google Scholar] [CrossRef]
- Kałużna-Oleksy, M.; Waśniewski, F.; Szczechla, M.; Sawczak, F.; Kukfisz, A.; Krysztofiak, H.; Przytarska, K.; Straburzyńska-Migaj, E.; Dudek, M. Correlations between Soluble ST2 Concentration and the Nutritional Status in Patients with Heart Failure with Reduced Ejection Fraction—Cross-Sectional Study. Cardiol. J. 2024, 31, 850–860. [Google Scholar] [CrossRef]
- González-Sosa, S.; Santana-Vega, P.; Rodríguez-Quintana, A.; Rodríguez-González, J.A.; García-Vallejo, J.M.; Puente-Fernández, A.; Conde-Martel, A. Nutritional Status of Very Elderly Outpatients with Heart Failure and Its Influence on Prognosis. Nutrients 2024, 16, 4401. [Google Scholar] [CrossRef]
- Abdoul Carime, N.; Cottenet, J.; Clerfond, G.; Eschalier, R.; Quilliot, D.; Eicher, J.-C.; Joly, B.; Quantin, C. Impact of Nutritional Status on Heart Failure Mortality: A Retrospective Cohort Study. Nutr. J. 2022, 21, 2. [Google Scholar] [CrossRef]
- Liao, L.P.; Pant, A.; Marschner, S.; Talbot, P.; Zaman, S. A Focus on Heart Failure Management through Diet and Nutrition: A Comprehensive Review. Hearts 2024, 5, 293–307. [Google Scholar] [CrossRef]
- Bianchi, V.E. Nutrition in Chronic Heart Failure Patients: A Systematic Review. Heart Fail. Rev. 2020, 25, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Chen, Q.; Xu Lou, I. Dietary Strategies and Nutritional Supplements in the Management of Heart Failure: A Systematic Review. Front. Nutr. 2024, 11, 1428010. [Google Scholar] [CrossRef] [PubMed]
- Wickman, B.E.; Enkhmaa, B.; Ridberg, R.; Romero, E.; Cadeiras, M.; Meyers, F.; Steinberg, F. Dietary Management of Heart Failure: DASH Diet and Precision Nutrition Perspectives. Nutrients 2021, 13, 4424. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Lewis, C.E.; Tinker, L.F.; Eaton, C.B.; Ahmed, A.; Manson, J.E.; Snetselaar, L.G.; Martin, L.W.; Trevisan, M.; Howard, B.V.; et al. Mediterranean and DASH Diet Scores and Mortality in Women with Heart Failure: The Women’s Health Initiative. Circ. Heart Fail. 2013, 6, 1116–1123. [Google Scholar] [CrossRef]
- Aquilani, R.; Opasich, C.; Gualco, A.; Verri, M.; Testa, A.; Pasini, E.; Viglio, S.; Iadarola, P.; Pastoris, O.; Dossena, M.; et al. Adequate Energy-Protein Intake Is Not Enough to Improve Nutritional and Metabolic Status in Muscle-Depleted Patients with Chronic Heart Failure. Eur. J. Heart Fail. 2008, 10, 1127–1135. [Google Scholar] [CrossRef]
- Deutz, N.E.; Matheson, E.M.; Matarese, L.E.; Luo, M.; Baggs, G.E.; Nelson, J.L.; Hegazi, R.A.; Tappenden, K.A.; Ziegler, T.R.; NOURISH Study Group. Readmission and Mortality in Malnourished, Older, Hospitalized Adults Treated with a Specialized Oral Nutritional Supplement: A Randomized Clinical Trial. Clin. Nutr. 2016, 35, 18–26. [Google Scholar] [CrossRef]
- Lombardi, C.; Carubelli, V.; Lazzarini, V.; Vizzardi, E.; Quinzani, F.; Guidetti, F.; Rovetta, R.; Nodari, S.; Gheorghiade, M.; Metra, M. Effects of Oral Amino Acid Supplements on Functional Capacity in Patients with Chronic Heart Failure. Clin. Med. Insights Cardiol. 2014, 8, 39–44. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef]
- Pellicori, P.; Cleland, J.G.F.; Zhang, J.; Kallvikbacka-Bennett, A.; Urbinati, A.; Shah, P.; Kazmi, S.; Clark, A.L. Cardiac Dysfunction, Congestion and Loop Diuretics: Their Relationship to Prognosis in Heart Failure. Cardiovasc. Drugs Ther. 2016, 30, 599–609. [Google Scholar] [CrossRef]
- Schiffman, S.S. Influence of Medications on Taste and Smell. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 84–91. [Google Scholar] [CrossRef]
- Prasanthi, B.; Kannan, N.; Patil, R. Effect of Diuretics on Salivary Flow, Composition and Oral Health Status: A Clinico-Biochemical Study. Ann. Med. Health Sci. Res. 2014, 4, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Rohde, L.E.; Rover, M.M.; Figueiredo Neto, J.A.; Danzmann, L.C.; Bertoldi, E.G.; Simões, M.V.; Silvestre, O.M.; Ribeiro, A.L.P.; Moura, L.Z.; Beck-da-Silva, L.; et al. Short-Term Diuretic Withdrawal in Stable Outpatients with Mild Heart Failure and No Fluid Retention Receiving Optimal Therapy: A Double-Blind, Multicentre, Randomized Trial. Eur. Heart J. 2019, 40, 3605–3612. [Google Scholar] [CrossRef] [PubMed]
- Stensland, S.H.; Margolis, S. Simplifying the Calculation of Body Mass Index for Quick Reference. J. Am. Diet. Assoc. 1990, 90, 856. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Guigoz, Y.; Vellas, B.; Garry, P.J. Assessing the nutritional status of the elderly: The Mini Nutritional Assessment as part of the geriatric evaluation. Nutr. Rev. 1996, 54, S59–S65. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A New Index for Evaluating at-Risk Elderly Medical Patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Hersberger, L.; Dietz, A.; Bürgler, H.; Bargetzi, A.; Bargetzi, L.; Kägi-Braun, N.; Tribolet, P.; Gomes, F.; Hoess, C.; Pavlicek, V.; et al. Individualized Nutritional Support for Hospitalized Patients With Chronic Heart Failure. J. Am. Coll. Cardiol. 2021, 77, 2307–2319. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A Tool for Controlling Nutritional Status. First Validation in a Hospital Population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Chen, Y.; Zheng, H.; He, Y. Prognostic Significance of Controlling Nutritional Status in Older Adults with Heart Failure with Preserved Ejection Fraction: A Prospective Comparative Study with Other Objective Nutritional Indices. Aging Clin. Exp. Res. 2023, 35, 1305–1315. [Google Scholar] [CrossRef]
- Abulimiti, A.; Naito, R.; Kasai, T.; Ishiwata, S.; Nishitani-Yokoyama, M.; Sato, A.; Suda, S.; Matsumoto, H.; Shitara, J.; Yatsu, S.; et al. Prognostic Value of Cheyne-Stokes Respiration and Nutritional Status in Acute Decompensated Heart Failure. Nutrients 2023, 15, 964. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-H.; Chiou, K.-R.; Pan, I.-J.; Hsiao, S.-H. Malnutrition Affects the Outcomes of Patients with Low-Output Heart Failure and Congestion. Acta Cardiol. Sin. 2021, 37, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.P.; Bleske, B.; Dorsch, M.; Macaulay, T.; Van Tassell, B.; Vardeny, O. Nutrition and Heart Failure: Impact of Drug Therapies and Management Strategies. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2009, 24, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Schwinger, R.H.; Erdmann, E. Heart Failure and Electrolyte Disturbances. Methods Find. Exp. Clin. Pharmacol. 1992, 14, 315–325. [Google Scholar]
- Nicholls, M.G. Interaction of Diuretics and Electrolytes in Congestive Heart Failure. Am. J. Cardiol. 1990, 65, 17E–21E, discussion 22E–23E. [Google Scholar] [CrossRef]
- Rothberg, M.B.; Sivalingam, S.K. The New Heart Failure Diet: Less Salt Restriction, More Micronutrients. J. Gen. Intern. Med. 2010, 25, 1136–1137. [Google Scholar] [CrossRef]
Characteristic | All (n = 353) | Low-Dose Diuretics (n = 152) | Medium-Dose Diuretics (n = 114) | High-Dose Diuretics (n = 87) | p |
---|---|---|---|---|---|
Age (years) | 55.37 ± 12.12 | 52.63 ± 13.54 | 56.94 ± 10.41 | 58.11 ± 10.65 | 0.001 |
Female sex | 60 (17.0%) | 30 (19.7%) | 24 (21.1%) | 6 (6.9%) | 0.015 |
IHD etiology | 173 (49.0%) | 63 (41.7%) | 60 (53.1%) | 50 (57.5%) | 0.040 |
BMI (kg/m2) | 26.68 ± 5.28 | 28.13 ± 4.92 | 28.26 ± 5.39 | 30.17 ± 5.52 | 0.010 |
LVEF (%) | 24.58 ± 7.90 | 27.51 ± 8.01 | 22.02 ± 6.88 | 22.89 ± 7.33 | <0.001 |
Nutritional assessment | |||||
MNA score | 23.31 ± 2.93 | 24.06 ± 2.94 | 22.96 ± 2.92 | 22.47 ± 2.64 | <0.001 |
MNA score ≥ 24 | 177 (50.1%) | 96 (63.2%) | 49 (43.0%) | 32 (36.8%) | <0.001 |
MNA score 17–23.5 | 166 (47.0%) | 51 (33.6%) | 62 (54.4%) | 53 (60.9%) | <0.001 |
MNA score <17 | 10 (2.8%) | 5 (3.3%) | 3 (2.6%) | 2 (2.3%) | 0.895 |
GNRI score | 101.96 ± 8.70 {102} * | 104.66 ± 9.43 {53} | 101.51 ± 7.13 {32} | 98.66 ± 8.15 {17} | <0.001 |
GNRI score ≤ 98 | 68 (27.1%) {102} | 15 (15.2%) {53} | 21 (25.6%) {32} | 32 (45.7%) {17} | <0.001 |
CONUT score | 2.36 ± 2.13 {90} | 1.68 ± 1.77 {38} | 2.31 ± 1.89 {34} | 3.55 ± 2.42 {18} | <0.001 |
CONUT score ≥ 2 | 151 (57.4%) {90} | 50 (43.9%) {38} | 47 (58.7%) {34} | 54 (78.3%) {18} | <0.001 |
Comorbidities | |||||
DM | 100 (28.3%) | 34 (22.4%) | 35 (30.7%) | 31 (35.6%) | 0.078 |
COPD | 29 (8.2%) | 6 (3.9%) | 16 (14.0%) | 7 (8.0%) | 0.013 |
Chronic renal insufficiency GFR MDRD < 60 mL/m2/min | 129 (36.5%) | 33 (21.7%) | 45 (39.5%) | 51 (58.6%) | <0.001 |
Arterial hypertension | 173 (49.0%) | 71 (46.7%) | 59 (51.8%) | 43 (49.4%) | 0.715 |
Atrial fibrillation | 142 (40.2%) | 42 (27.6%) | 48 (42.1%) | 52 (59.8%) | <0.001 |
NYHA class | |||||
I | 6 (1.7%) | 6 (3.9%) | 0 | 0 | <0.001 |
II | 160 (45.3%) | 109 (71.7%) | 34 (29.8%) | 17 (19.5%) | |
III | 156 (44.2%) | 36 (23.7%) | 68 (59.6%) | 52 (59.8%) | |
IV | 31 (8.8%) | 1 (0.7%) | 12 (10.5%) | 18 (20.7%) | |
NYHA class III or IV | 187 (53.0%) | 37 (24.4%) | 80 (70.1%) | 70 (80.5%) | <0.001 |
Biochemical parameters | |||||
Hgb (mmol/L) | 8.98 ± 1.15 | 9.14 ± 0.93 | 8.93 ± 1.22 | 8.73 ± 1.35 | 0.025 |
BNP (pg/mL) | 462.6 (209.6–869.7) {163} | 238.4 (140.2–578.3) {87} | 530.8 (278–815.1) {48} | 690.4 (343.5–1290) {28} | <0.001 |
NT-proBNP (pg/mL) | 2231 (867–5054) {88} | 1132 (393–2668) {27} | 3042 (1421–5062) {29} | 5245 (2324–10951) {32} | <0.001 |
Creatinine (µmol/L) | 111.22 ± 49.60 | 99.10 ± 55.64 | 108.89 ± 23.32 | 135.66 ± 44.98 | <0.001 |
eGFR MDRD (mL/min/1.73 m2) | 69.23 ± 23.91 | 78.07 ± 22.68 | 67.93 ± 23.32 | 55.28 ± 19.61 | <0.001 |
TSH (mIU/L) | 1.74 (1.12–2.94) {27} | 1.52 (1.06–2.44) {12} | 1.70 (1.03–3.12) {9} | 2.46 (1.26–3.80) {6} | 0.002 |
Na+ (mmol/L) | 139.28 ± 3.61 | 140.86 ± 2.59 | 138.84 ± 3.28 | 137.08 ± 4.21 | <0.001 |
K+ (mmol/L) | 4.35 ± 0.46 | 4.46 ± 0.40 | 4.38 ± 0.42 | 4.14 ± 0.53 | <0.001 |
CRP (mg/L) | 4.0 (3.3–8.0) {11} | 4.0 (2.8–4.0) {3} | 4.0 (3.3–10.0) {4} | 7.5 (4.0–15.1) {4} | <0.001 |
CholT (mmol/L) | 4.22 ± 1.29 {39} | 4.54 ± 1.25 {11} | 4.30 ± 1.31 {17} | 3.54 ± 1.08 {11} | <0.001 |
LDL (mmol/L) | 2.47 ± 1.10 {39} | 2.74 ± 1.07 {11} | 2.49 ± 1.14 {17} | 1.95 ± 0.93 {11} | <0.001 |
HDL (mmol/L) | 1.22 ± 0.41 {39} | 1.29 ± 0.41 {11} | 1.20 ± 0.40 {17} | 1.14 ± 0.38 {11} | 0.023 |
Triglycerides (mmol/L) | 1.63 ± 1.02 {39} | 1.75 ± 1.05 {11} | 1.71 ± 1.11 {17} | 1.30 ± 0.77 {11} | 0.005 |
Albumin | 43.25 ± 11.11 {77} | 46.69 ± 12.75 {38} | 41.03 ± 8.09 {29} | 40.53 ± 10.08 {12} | <0.001 |
Total protein | 69.72 ± 11.34 {64} | 68.87 ± 11.74 {30} | 70.87 ± 10.67 {24} | 69.72 ± 11.46 {10} | 0.447 |
Medications | |||||
Loop diuretics (%) | 326 (92.4%) | 125 (81.7%) | 114 (100%) | 87 (100%) | <0.001 |
Furosemide equivalent (mg) | 80 (20–160) | 20 (5–40) | 100 (80–120) | 280 (220–390) | <0.001 |
Torsemide only (%) | 128 (36.3%) | 107 (70.4%) | 14 (12.3%) | 7 (8.0%) | <0.001 |
Furosemide only (%) | 48 (13.6%) | 18 (11.8%) | 30 (26.3%) | 0 | <0.001 |
Both torsemide and furosemide (%) | 150 (42.5%) | 0 | 70 (61.4%) | 80 (92.0%) | <0.001 |
β-blocker (%) | 348 (98.6%) | 149 (98.0%) | 114 (100%) | 85 (97.7%) | 0.289 |
ACEI/ARB (%) | 205 (58.1%) | 78 (51.3%) | 81 (71.1%) | 46 (52.9%) | 0.003 |
ARNI (%) | 111 (31.4%) | 64 (42.1%) | 25 (21.9%) | 22 (25.3%) | <0.001 |
MRA (%) | 310 (87.8%) | 131 (86.2%) | 100 (87.7%) | 79 (90.8%) | 0.543 |
Statin (%) | 230 (65.2%) | 100 (65.8%) | 81 (71.1%) | 49 (56.3%) | 0.087 |
SGLT-2 inhibitor (%) | 69 (19.5%) | 40 (26.3%) | 18 (15.8%) | 11 (12.6%) | 0.017 |
Before PSM | HD (n = 87) vs. LD (n = 152) | MD (n = 114) vs. LD (n = 152) | HD (n = 87) vs. MD (n = 114) |
---|---|---|---|
MNA score | <0.001 | 0.001 | 0.457 |
GNRI | <0.001 | 0.017 | 0.146 |
CONUT score | <0.001 | 0.032 | 0.005 |
BMI | 0.011 | 0.980 | 0.028 |
After PSM | HD (n = 55) vs. LD (n = 55) | MD (n = 55) vs. LD (n = 55) | HD (n = 55) vs. MD (n = 55) |
MNA score | 0.012 | 0.791 | 0.233 |
GNRI | 0.042 | 0.332 | 1.000 |
CONUT score | 0.095 | 0.288 | 1.000 |
BMI | 0.073 | 0.591 | 0.446 |
Characteristic | Low-Dose Loop Diuretics (n = 55) | Medium-Dose Loop Diuretics (n = 55) | High-Dose Loop Diuretics (n = 55) | p |
---|---|---|---|---|
Age (years) | 59.20 ± 11.67 | 56.80 ± 11.63 | 57.29 ± 11.96 | 0.528 |
Female sex (%) | 8 (14.6%) | 3 (5.5%) | 5 (9.1%) | 0.268 |
IHD etiology | 32 (59.3%) | 26 (47.3%) | 34 (61.8%) | 0.261 |
LVEF (%) | 24.06 ± 8.16 | 23.17 ± 8.10 | 24.12 ± 7.42 | 0.780 |
Nutritional assessment | ||||
MNA score | 23.40 ± 3.60 | 23.02 ± 3.00 | 22.26 ± 2.41 | 0.014 |
MNA score ≥ 24 | 34 (61.8%) | 26 (47.3%) | 16 (29.1%) | 0.003 |
MNA score 17–23.5 | 16 (29.1%) | 27 (49.1%) | 39 (70.9%) | <0.001 |
MNA score < 17 | 5 (9.1%) | 2 (3.6%) | 0 | 0.058 |
Body mass index | 27.72 ± 4.35 | 28.74 ± 5.71 | 30.00 ± 6.12 | 0.093 |
GNRI score | 102.90 ± 8.53 {20} * | 100.59 ± 8.03 {19} | 98.72 ± 8.52 {11} | 0.046 |
GNRI score ≤ 98 | 6 (17.1%) {20} | 11 (30.6%) {19} | 19 (43.2%) {11} | 0.046 |
CONUT score | 1.282 ± 1.701 {16} | 1.688 ± 1.469 | 1.976 ± 1.877 | 0.065 |
CONUT score ≥ 2 | 10 (25.6%) {16} | 16 (50%) {23} | 41 (56.1%) {14} | 0.016 |
NYHA class | ||||
I | 1 (1.8%) | 0 | 0 | 0.115 |
II | 17 (30.9%) | 16 (29.1%) | 17 (30.9%) | |
III | 36 (65.5%) | 33 (60%) | 28 (50.9%) | |
IV | 1 (1.8%) | 6 (10.9%) | 10 (18.2%) | |
NYHA class III or IV | 37 (67.3%) | 39 (70.9%) | 38 (69.1%) | 0.918 |
Comorbidities | ||||
DM | 16 (29.1%) | 17 (30.9%) | 19 (34.6%) | 0.822 |
COPD | 5 (9.1%) | 11 (20.0%) | 6 (10.9%) | 0.197 |
Chronic renal insufficiency with GFR < 30 | 1 (1.8%) | 1 (1.8%) | 3 (5.4%) | 0.438 |
Arterial hypertension | 31 (56.4%) | 28 (50.9%) | 28 (50.9%) | 0.803 |
Atrial fibrillation | 21 (38.2%) | 26 (47.3%) | 33 (60.0%) | 0.071 |
Loop diuretic use | ||||
Furosemide equivalent (mg) | 20 (10–40) | 100 (80–120) | 280 (220–380) | <0.001 |
Torsemide only (%) | 40 (72.7%) | 8 (14.5%) | 4 (7.3%) | <0.001 |
Furosemide only (%) | 7 (12.7%) | 14 (25.5%) | 0 | <0.001 |
Torsemide + Furosemide (%) | 0 | 33 (60%) | 51 (92.7%) | <0.001 |
Laboratory parameters | ||||
HGB | 9.13 ± 0.99 | 9.01 ± 1.27 | 8.79 ± 1.44 | 0.349 |
BNP (pg/mL) | 249.6 (166.4–649.3) {28} | 498.5 (213.1–1095.7) {21} | 719.2 (343.5–1285.4) {17} | <0.001 |
NT-proBNP (pg/mL) | 1798 (1049–3378) {14} | 2479 (1601–5062) {13} | 3622 (2144–13235) {20} | 0.003 |
GFR MDRD (mL/min/1.73 m2) | 70.50 ± 22.58 | 66.57 ± 23.21 | 55.82 ± 19.41 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawczak, F.; Soloch, A.; Cierzniak, M.; Szubarga, A.; Kurkiewicz-Sawczak, K.; Kukfisz, A.; Szczechla, M.; Krysztofiak, H.; Dudek, M.; Straburzyńska-Migaj, E.; et al. Loop Diuretic Dose and Nutritional Status of Patients with Heart Failure with Reduced Ejection Fraction. Nutrients 2025, 17, 2105. https://doi.org/10.3390/nu17132105
Sawczak F, Soloch A, Cierzniak M, Szubarga A, Kurkiewicz-Sawczak K, Kukfisz A, Szczechla M, Krysztofiak H, Dudek M, Straburzyńska-Migaj E, et al. Loop Diuretic Dose and Nutritional Status of Patients with Heart Failure with Reduced Ejection Fraction. Nutrients. 2025; 17(13):2105. https://doi.org/10.3390/nu17132105
Chicago/Turabian StyleSawczak, Filip, Aleksandra Soloch, Maria Cierzniak, Alicja Szubarga, Kamila Kurkiewicz-Sawczak, Agata Kukfisz, Magdalena Szczechla, Helena Krysztofiak, Magdalena Dudek, Ewa Straburzyńska-Migaj, and et al. 2025. "Loop Diuretic Dose and Nutritional Status of Patients with Heart Failure with Reduced Ejection Fraction" Nutrients 17, no. 13: 2105. https://doi.org/10.3390/nu17132105
APA StyleSawczak, F., Soloch, A., Cierzniak, M., Szubarga, A., Kurkiewicz-Sawczak, K., Kukfisz, A., Szczechla, M., Krysztofiak, H., Dudek, M., Straburzyńska-Migaj, E., & Kałużna-Oleksy, M. (2025). Loop Diuretic Dose and Nutritional Status of Patients with Heart Failure with Reduced Ejection Fraction. Nutrients, 17(13), 2105. https://doi.org/10.3390/nu17132105