Nutritional and Morphofunctional Assessment in a Cohort of Adults Living with Cystic Fibrosis with or Without Pancreatic Exocrine and/or Endocrine Involvement
Highlights
- A total of 48/101 (47.5%) of patients were malnourished according to GLIM criteria with morphofunctional assessment (MFA), contrasting with a relatively small prevalence of low BMI (<18.5 kg/m2; 5.9%). The prevalence of overweight (20.8%) and obesity (2.9%) was higher than in some previous studies.
- Exocrine pancreatic insufficiency (EPI) prevalence was higher in malnourished participants. EPI also acted as a predictor of malnutrition according to GLIM criteria in a multivariate logistic regression analysis.
- Men with EPI had a higher prevalence of malnutrition and lower values for BMI, waist circumference, handgrip strength, and fat-free mass index in bioelectrical impedance analysis.
- We found no differences in nutritional status and different MFA components regarding endocrine pancreatic involvement. Overall, metabolic control was adequate.
- GLIM criteria with MFA provided a higher prevalence of malnutrition than BMI in adults with cystic fibrosis treated under routine clinical care.
- Men with EPI displayed a malnutrition phenotype.
- Properly managed endocrine pancreatic involvement was not associated with poorer nutritional status.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- Age over 18 years.
- CF diagnosed by genetic test.
- Active follow-up at the Hospital Universitario Virgen del Rocío.
- Ability to understand and sign the study protocol and informed consent.
- The exclusion criteria were:
- Not having the capacity to understand and sign the study protocol and informed consent.
- Having an unstable clinical situation regarding their illness.
- Any circumstance that, in the opinion of the research team, interfered with the study protocol.
2.2. Study Design
2.3. Study Variables and Complementary Tests
2.3.1. Pancreatic Function
2.3.2. Other Laboratory Parameters
2.3.3. Nutritional Status
2.3.4. Anthropometric Assessment
2.3.5. Bioelectrical Impedance Analysis (BIA)
2.3.6. Handgrip Strength (HGS)
2.3.7. Nutritional Ultrasound [18]
- Rectus femoris muscle cross-sectional area (RF-CSA) in cm2. This parameter has demonstrated a significant correlation with other MFA parameters such as body cell mass (BCM) in BIA, HGS, and the Timed-Up and Go (TUG) test in patients with nutritional risk [19].
- Preperitoneal adipose tissue thickness (PPAT) in cm. Albeit with a slightly different methodology (measurement right below the xiphoid process), this parameter prospectively predicted insulin resistance in a cohort with high cardiovascular risk [20].
2.4. Statistical Analysis
3. Results
3.1. Demographics and Disease-Related Characteristics
3.2. Nutritional Status and Morphofunctional Assessment
3.3. Malnutrition-Related Clinical Factors
3.4. Differences in Morphofunctional Assesment Between Patients with and Without Exocrine Pancreatic Involvement
3.5. Differences in Morphofunctional Assesment Between Patients with and Without Endocrine Pancreatic Involvement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef]
- Castellani, C.; Assael, B.M. Cystic Fibrosis: A Clinical View. Cell Mol. Life Sci. 2017, 74, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Villaverde-Hueso, A.; Sánchez-Díaz, G.; Molina-Cabrero, F.J.; Gallego, E.; Posada de la Paz, M.; Alonso-Ferreira, V. Mortality Due to Cystic Fibrosis over a 36-Year Period in Spain: Time Trends and Geographic Variations. Int. J. Environ. Res. Public Health 2019, 16, E119. [Google Scholar] [CrossRef] [PubMed]
- Plant, B.J.; Goss, C.H.; Plant, W.D.; Bell, S.C. Management of Comorbidities in Older Patients with Cystic Fibrosis. Lancet Respir. Med. 2013, 1, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Culhane, S.; George, C.; Pearo, B.; Spoede, E. Malnutrition in Cystic Fibrosis: A Review. Nutr. Clin. Pract. 2013, 28, 676–683. [Google Scholar] [CrossRef]
- Castellani, C.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS Best Practice Guidelines: The 2018 Revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef]
- SEPAR. Manual Neumología y Cirugía Torácica; SEPAR: Barcelona, Spain, 2018; ISBN 978-84-09-01621-1. [Google Scholar]
- Olveira, G.; Olveira, C.; Gaspar, I.; Porras, N.; Martín-Núñez, G.; Rubio, E.; Colomo, N.; Rojo-Martínez, G.; Soriguer, F. Fat-Free Mass Depletion and Inflammation in Patients with Bronchiectasis. J. Acad. Nutr. Diet. 2012, 112, 1999–2006. [Google Scholar] [CrossRef]
- Haller, W.; Ledder, O.; Lewindon, P.J.; Couper, R.; Gaskin, K.J.; Oliver, M. Cystic Fibrosis: An Update for Clinicians. Part 1: Nutrition and Gastrointestinal Complications. J. Gastroenterol. Hepatol. 2014, 29, 1344–1355. [Google Scholar] [CrossRef]
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS Guidelines on Nutrition Care for Infants, Children, and Adults with Cystic Fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef]
- Olveira, G.; Olveira, C.; Casado-Miranda, E.; Padilla, A.; Dorado, A.; Rojo-Martinez, G.; Porras, N.; Garcia-Escobar, E.; Soriguer, F. Markers for the Validation of Reported Dietary Intake in Adults with Cystic Fibrosis. J. Am. Diet. Assoc. 2009, 109, 1704–1711. [Google Scholar] [CrossRef]
- García Almeida, J.M.; García García, C.; Vegas Aguilar, I.M.; Bellido Castañeda, V.; Bellido Guerrero, D. Morphofunctional Assessment of Patient’s Nutritional Status: A Global Approach. Nutr. Hosp. 2021, 38, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Piñar-Gutiérrez, A.; Quintana-Gallego, E.; Remón-Ruiz, P.J.; Pizarro, Á.; González-Navarro, I.; Jiménez-Sánchez, A.; García-Rey, S.; Roque-Cuéllar, M.D.C.; Gato, S.; Domínguez, I.; et al. Non-Invasive Evaluation of Steatosis and Fibrosis in the Liver in Adults Patients Living with Cystic Fibrosis. J. Cyst. Fibros. 2025, 24, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; Brunzell, C.; Cohen, R.C.; Katz, M.; Marshall, B.C.; Onady, G.; Robinson, K.A.; Sabadosa, K.A.; Stecenko, A.; Slovis, B.; et al. Clinical Care Guidelines for Cystic Fibrosis—Related Diabetes: A Position Statement of the American Diabetes Association and a Clinical Practice Guideline of the Cystic Fibrosis Foundation, Endorsed by the Pediatric Endocrine Society. Diabetes Care 2010, 33, 2697–2708. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.I.T.D.; Tappenden, K.A.; Malone, A.; Prado, C.M.; Evans, D.C.; Sauer, A.C.; Hegazi, R.; Gramlich, L. Utilization and Validation of the Global Leadership Initiative on Malnutrition (GLIM): A Scoping Review. Clin. Nutr. 2022, 41, 687–697. [Google Scholar] [CrossRef]
- Olveira-Fuster, G.; Anexo, V. Tablas de percentiles de los principales parámetros antropométricos en la población española. In Manual de Nutrición Clínica y Dietética, 3rd ed.; Olveira-Fuster, G., Ed.; Díaz de Santos: Madrid, Spain, 2016; p. 546. [Google Scholar]
- Olveira-Fuster, G. Anexo VI. Tablas de percentiles de dinamometría de mano (Collin y Jamar). In Manual de Nutrición Clínica y Dietética, 3rd ed.; Olveira-Fuster, G., Ed.; Díaz de Santos: Madrid, Spain, 2016; p. 556. [Google Scholar]
- García-Almeida, J.M.; García-García, C.; Vegas-Aguilar, I.M.; Ballesteros Pomar, M.D.; Cornejo-Pareja, I.M.; Fernández Medina, B.; de Luis Román, D.A.; Bellido Guerrero, D.; Bretón Lesmes, I.; Tinahones Madueño, F.J. Nutritional Ultrasound®: Conceptualisation, Technical Considerations and Standardisation. Endocrinol. Diabetes Nutr. 2023, 70 (Suppl. 1), 74–84. [Google Scholar] [CrossRef]
- De Luis Roman, D.; García Almeida, J.M.; Bellido Guerrero, D.; Guzmán Rolo, G.; Martín, A.; Primo Martín, D.; García-Delgado, Y.; Guirado-Peláez, P.; Palmas, F.; Tejera Pérez, C.; et al. Ultrasound Cut-Off Values for Rectus Femoris for Detecting Sarcopenia in Patients with Nutritional Risk. Nutrients 2024, 16, 1552. [Google Scholar] [CrossRef]
- Haberka, M.; Matla, M.; Siniarski, A.; Stępień, K.; Malinowski, K.P.; Kubicius, A.; Gąsior, Z. Cardiometabolic Predictive Value of Anthropometric Parameters, Vascular Ultrasound Indexes, and Fat Depots in Patients at High Cardiovascular Risk: An 8-Year Prospective Cohort Study. Pol. Arch. Intern. Med. 2022, 132, 16302. [Google Scholar] [CrossRef]
- Calella, P.; Valerio, G.; Thomas, M.; McCabe, H.; Taylor, J.; Brodlie, M.; Siervo, M. Association between Body Composition and Pulmonary Function in Children and Young People with Cystic Fibrosis. Nutrition 2018, 48, 73–76. [Google Scholar] [CrossRef]
- Bellissimo, M.P.; Zhang, I.; Ivie, E.A.; Tran, P.H.; Tangpricha, V.; Hunt, W.R.; Stecenko, A.A.; Ziegler, T.R.; Alvarez, J.A. Visceral Adipose Tissue Is Associated with Poor Diet Quality and Higher Fasting Glucose in Adults with Cystic Fibrosis. J. Cyst. Fibros. 2019, 18, 430–435. [Google Scholar] [CrossRef]
- Hauschild, D.B.; Barbosa, E.; Moreira, E.A.M.; Ludwig Neto, N.; Platt, V.B.; Piacentini Filho, E.; Wazlawik, E.; Moreno, Y.M.F. Nutrition Status Parameters and Hydration Status by Bioelectrical Impedance Vector Analysis Were Associated with Lung Function Impairment in Children and Adolescents with Cystic Fibrosis. Nutr. Clin. Pract. 2016, 31, 378–386. [Google Scholar] [CrossRef]
- Charatsi, A.M.; Dusser, P.; Freund, R.; Maruani, G.; Rossin, H.; Boulier, A.; Le Bourgeois, M.; Chedevergne, F.; de Blic, J.; Letourneur, A.; et al. Bioelectrical Impedance in Young Patients with Cystic Fibrosis: Validation of a Specific Equation and Clinical Relevance. J. Cyst. Fibros. 2016, 15, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Papalexopoulou, N.; Dassios, T.G.; Lunt, A.; Bartlett, F.; Perrin, F.; Bossley, C.J.; Wyatt, H.A.; Greenough, A. Nutritional Status and Pulmonary Outcome in Children and Young People with Cystic Fibrosis. Respir. Med. 2018, 142, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Alicandro, G.; Battezzati, A.; Bianchi, M.L.; Loi, S.; Speziali, C.; Bisogno, A.; Colombo, C. Estimating Body Composition from Skinfold Thicknesses and Bioelectrical Impedance Analysis in Cystic Fibrosis Patients. J. Cyst. Fibros. 2015, 14, 784–791. [Google Scholar] [CrossRef] [PubMed]
- King, S.J.; Tierney, A.C.; Edgeworth, D.; Keating, D.; Williams, E.; Kotsimbos, T.; Button, B.M.; Wilson, J.W. Body Composition and Weight Changes after Ivacaftor Treatment in Adults with Cystic Fibrosis Carrying the G551 D Cystic Fibrosis Transmembrane Conductance Regulator Mutation: A Double-Blind, Placebo-Controlled, Randomized, Crossover Study with Open-Label Extension. Nutrition 2021, 85, 111124. [Google Scholar] [CrossRef]
- Sánchez-Torralvo, F.J.; Porras, N.; Ruiz-García, I.; Maldonado-Araque, C.; García-Olivares, M.; Girón, M.V.; Gonzalo-Marín, M.; Olveira, C.; Olveira, G. Usefulness of Muscle Ultrasonography in the Nutritional Assessment of Adult Patients with Cystic Fibrosis. Nutrients 2022, 14, 3377. [Google Scholar] [CrossRef]
- Bailey, J.; Krick, S.; Fontaine, K.R. The Changing Landscape of Nutrition in Cystic Fibrosis: The Emergence of Overweight and Obesity. Nutrients 2022, 14, 1216. [Google Scholar] [CrossRef]
- Petersen, M.C.; Begnel, L.; Wallendorf, M.; Litvin, M. Effect of Elexacaftor-Tezacaftor-Ivacaftor on Body Weight and Metabolic Parameters in Adults with Cystic Fibrosis. J. Cyst. Fibros. 2022, 21, 265–271. [Google Scholar] [CrossRef]
- Contreras-Bolívar, V. Estado Nutricional y de vitaminas liposolubles en Fibrosis Quística y Bronquiectasias. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, 2017. [Google Scholar]
- Nielsen, B.U.; Faurholt-Jepsen, D.; Oturai, P.S.; Qvist, T.; Krogh-Madsen, R.; Katzenstein, T.L.; Shaw, J.; Ritz, C.; Pressler, T.; Almdal, T.P.; et al. Associations Between Glucose Tolerance, Insulin Secretion, Muscle and Fat Mass in Cystic Fibrosis. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 11795514211038259. [Google Scholar] [CrossRef]
- Moheet, A.; Moran, A. New Concepts in the Pathogenesis of Cystic Fibrosis-Related Diabetes. J. Clin. Endocrinol. Metab. 2022, 107, 1503–1509. [Google Scholar] [CrossRef]
Variable | n (%) |
---|---|
Sex (women) | 44 (43.6%) |
Age (years) >45 years old | 33 (25–40.5) 11 (10.9%) |
Time of evolution (years) | 24 (16–31) |
Onset of symptomatology in infancy | 75 (74.3%) |
Type of mutation Minimal function Minimum/residual function Residual function | 50 (49.5%) 48 (47.5%) 3 (3%) |
ΔF508 mutation Homozygous Heterozygous | 78 (77.2%) 29 (37.1%) 49 (62.8%) |
FEV1 | 73 (52–90) |
FVC | 87 (74.5–97) |
FEV1/FVC | 69 (57–78) |
Exocrine pancreatic insufficiency | 64 (63.4%) |
Endocrine pancreatic insufficiency CFRD CF-related prediabetes CF-related indeterminate glycemia | 44 (43.6%) 28 (27.7%) 14 (13.9%) 2 (2%) |
Malnutrition (GLIM criteria) | 48 (47.5%) |
Variable | Whole Sample (n = 101) | Male (n = 57) | Female (n = 44) | p Between Sex |
---|---|---|---|---|
SGA (A) | 93 (92%) | 51 (89.5%) | 42 (95.5%) | 0.112 |
Adequate nutritional status (GLIM) | 53 (52.5%) | 32 (56.1%) | 21 (47.7%) | 0.401 |
Weight (kg) | 71.6 (66.3–77.3) | 55.8 (51.7–62.9) | <0.001 | |
Height (cm) | 173 (170–177.5) | 161.5 (157–166.7) | <0.001 | |
BMI (kg/m2) | 23.4 (20.1–24.89) | 23.96 (22.6–25.5) | 22.1 (19.4–23.9) | 0.01 |
Underweight a | 6 (5.9%) | 4 (9.1%) | 2 (3.5%) | 0.239 |
Normal weight b | 71 (71.3%) | 35 (79.5%) | 36 (83.2%) | 0.074 |
Overweight c | 21 (20.8%) | 17 (29.8%) | 4 (9%) | 0.011 |
Obesity d | 3 (2.9%) | 2 (3.5%) | 1 (2.3%) | 0.717 |
WC (cm) | 86 (79.5–92.5) | 74.5 (70–83.8) | 0.003 | |
Thresholded WC e | 52 (91.2%) | 36 (81.8%) | 0.152 | |
AC (cm) | 29 (27–30.8) | 25 (23.5–28) | 0.001 | |
Thresholded AC f | 5 (8.8%) | 4 (9.1%) | 0.919 | |
TS (mm) | 11 (8.5–14) | 13.4 (9–17) | 0.286 | |
Thresholded TS g | 12 (21.1%) | 22 (50%) | <0.001 | |
MAMC (cm) | 25.4 (23.3–27.06) | 20.68 (19.4–23.1) | <0.001 | |
Thresholded MAMC h | 29 (28.7%) | 25 (73.5%) | 0.145 | |
HGS (kg) | 33.3 (27.4–40) | 20 (17.7–23.3) | <0.001 | |
Thresholded HGS i | 34 (59.6%) | 11 (25%) | 0.001 | |
PA (°) | 6.8 (6–7.1) | 5.7 (5.3–6) | <0.001 | |
FFMI (kg/m2) | 17.8 (16.2–18.75) | 15.55 (14.82–16.25) | <0.001 | |
Thresholded FFMI j | 22 (39.2%) | 17 (38.6%) | 0.947 | |
RF-CSA (cm2) | 5.4 (4.2–6) | 3.8 (2.8–4.2) | <0.001 | |
PPAT (cm) | 0.84 (0.62–1.15) | 0.64 (0.48–0.94) | 0.07 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Variable | OR (95% CI) | p | OR (95% CI) | p |
BMI | 0.719 (0.609–0.849) | <0.001 | ||
EPI | 2.679 (1.148–6.249) | 0.023 | 3.148 (1.058–9.363) | 0.039 |
FEV1 | 0.981 (0.963–0.999) | 0.043 | ||
Minimum function mutation | 2.326 (1.047–5.168) | 0.038 | ||
HbA1c (%) | 1.504 (0.935–2.418) | 0.092 | ||
SGA (A) | 0.131 (0.015–1.135) | 0.065 | ||
Pancreatic fat infiltration, head (MRI) | 1.011 (0.999–1.024) | 0.078 | ||
Pancreatic fat infiltration, body and tail (MRI) | 1.015 (1.002–1.028) | 0.024 | ||
Age >45 years | 0.213 (0.043–1.039) | 0.056 | ||
CF evolution time (years) | 1.063 (1.017–1.111) | 0.007 | 1.053 (1.003–1.105) | 0.036 |
Elevated CRP | 2.143 (0.893–5.144) | 0.088 |
Men | Women | |||||
---|---|---|---|---|---|---|
Variable | Without EPI (n = 37) | With EPI (n = 64) | p Between EPI | Without EPI (n = 37) | With EPI (n = 64) | p Between EPI |
GLIM + | 3 (16.7%) | 22 (56.4%) | 0.005 | 9 (47.4%) | 14 (56%) | 0.570 |
SGA (A) | 17 (94.4%) | 34 (87.2%) | 0.406 | 18 (94.7%) | 24 (96%) | 0.391 |
BMI (kg/m2) | 25.1 (24.5–26.9) | 23.4 (21.8–24.6) | 0.001 | 22.3 (19.5–24.8) | 19.2 (20.3–23.5) | 0.543 |
Obesity | 2 (11.1%) | 0 (0%) | 0.034 | 0 (0%) | 1 (4%) | 0.378 |
Overweight | 9 (50%) | 8 (20.5%) | 0.024 | 4 (21.1%) | 0 (0%) | 0.016 |
WC (cm) | 88.7 (85–96.1) | 82.5 (78–90.4) | 0.045 | 77 (72.2–87.3) | 74 (68.8–81.8) | 0.350 |
AC (cm) | 30.7 (29.3–32.7) | 27.7 (27–29.2) | 0.394 | 27.5 (25–30) | 25 (22.2–27.3) | 0.266 |
TS (mm) | 12.5 (7.6–15.1) | 11 (8.5–13.2) | 0.622 | 14 (8–16.2) | 13.4 (9–17.2) | 1 |
HGS (kg) | 36.1 (32.9–45.3) | 32 (32.7–36) | 0.037 | 20 (16.6–26.6) | 19.7 (17.9–23.3) | 0.934 |
PA (°) | 6.8 (6.1–7.2) | 6.8 (5.8–7.1) | 0.821 | 5.8 (5.5–6) | 5.6 (5.3–5.9) | 0.683 |
FFMI (kg/m2) | 18.7 (18.1–20.7) | 16.8 (15.5–17.9) | 0.001 | 15.8 (15–16.7) | 15.4 (14.5–15.6) | 0.068 |
RF-CSA (cm2) | 5.8 (4.8–6.9) | 5.1 (3.9–5.7) | 0.386 | 3.8 (2.9–4.1) | 3.6 (2.7–4.7) | 0.940 |
PPAT (cm) | 0.9 (0.7–1.4) | 0.7 (0.6–1.1) | 0.339 | 0.58 (0.43–0.89) | 0.64 (0.48–1.05) | 0.959 |
Men | |||||
---|---|---|---|---|---|
Variable | Without Endocrine Pancreatic Insufficiency (n = 35) | CF-Related Indeterminate Glycaemia (n = 1) | CF-Related Prediabetes (n = 8) | CFRD (n = 13) | p Between Diagnosis |
GLIM + | 13 (37.1%) | 0 (0%) | 4 (50%) | 8 (61.5%) | 0.263 |
SGA (A) | 32 (91.4%) | 1 (100%) | 7 (87.5%) | 11 (84.6%) | 0.867 |
BMI (kg/m2) | 23.8 (22–25.8) | 21 (16.9–21) | 20.5 (19.6–23.3) | 23.2 (19.7–24.5) | 0.134 |
Obesity | 2 (5.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 |
Overweight | 12 (34.3%) | 1 (100%) | 1 (12.5%) | 3 (23.1%) | 0.301 |
WC (cm) | 86 (79–92) | 86.5 (86.5–86.5) | 83 (75.2–96) | 87.5 (82.2–94.2) | 0.348 |
AC (cm) | 29.2 (27.5–31.8) | 28 (28–28) | 27 (25–30.5) | 28.5 (26–29.7) | 0.394 |
TS (mm) | 11.5 (7.8–15) | 9.8 (9.8–9.8) | 11 (8.5–20) | 11 (8.5–13) | 0.461 |
HGS (kg) | 35 (27.6–43.3) | 35.3 (35.5–35.3) | 31.5 (25.7–35.1) | 31.7 (24.3–34.3) | 0.273 |
PA (°) | 6.9 (6.4–7.2) | 5.9 (5.9–5.9) | 6.6 (6.1–7) | 6.6 (5.5–6.9) | 0.46 |
FFMI (kg/m2) | 17.8 (16.5–19.1) | 19.2 (19.2–19.2) | 17.8 (15–18.6) | 16.5 (15.5–17.95) | 0.555 |
RF-CSA (cm2) | 5.3 (4.6–6.1) | 4.8 (4.8–4.8) | 4.4 (3.7–6.1) | 5.6 (4.2–5.8) | 0.521 |
PPAT (cm) | 0.8 (0.6–1.2) | 0.5 (0.5–0.5) | 0.6 (0.5–1.1) | 0.8 (0.6–1.1) | 0.460 |
Women | |||||
Variable | Without Endocrine Pancreatic Insufficiency (n = 22) | CF-Related Indeterminate glycaemia (n = 1) | CF-Related Prediabetes (n = 6) | CFRD (n = 15) | p Between Diagnosis |
GLIM + | 10 (45.5%) | 1 (100%) | 5 (83.3%) | 7 (46.7%) | 0.325 |
SGA (A) | 22 (100%) | 1 (100%) | 6 (100%) | 14 (93.3%) | 0.512 |
BMI (kg/m2) | 22.1 (19.5–24.4) | 17 (17–17) | 19.8 (19.2–24.1) | 22.6 (19.4–23.6) | 0.531 |
Obesity | 1 (4.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 |
Overweight | 3 (13.6%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 0.322 |
WC (cm) | 77 (71.5–86.2) | 64 (64–64) | 73 (67.2–74.7) | 74.5 (69.6–83.7) | 0.288 |
AC (cm) | 25 (24.2–29.2) | 21 (21–21) | 25 (25–29.2) | 25 (22.3–28) | 0.796 |
TS (cm) | 15.2 (9–17.7) | 9 (9–9) | 13.5 (6.5–14) | 12.1 (9–16) | 0.405 |
HGS (kg) | 19.8 (16.6–23.9) | 18.6 (18.6–18.6) | 21 (20.1–23.7) | 19.7 (17.3–23.6) | 0.251 |
PA (°) | 5.8 (5.3–6.2) | 5.5 (5.5–5.5) | 5.7 (5.4–6.1) | 5.6 (5.3–5.9) | 0.559 |
FFMI (kg/m2) | 15.7 (14.9–16.9) | 14.2 (14.2–14.2) | 15.1 (14.4–16.3) | 15.5 (14.6–15.6) | 0.531 |
RF-CSA (cm2) | 3.8 (3.1–4.1) | 3.7 (3.7–3.7) | 5 (3–6.5) | 3.3 (2.7–3.9) | 0.619 |
PPAT (cm) | 0.6 (0.4–0.9) | 0.5 (0.5–0.5) | 0.5 (0.3–0.7) | 0.7 (0.56–1.05) | 0.399 |
HbA1c (%) in Men with CFRD (n = 13) | HbA1c (%) in Women with CFRD (n = 15) | |||
---|---|---|---|---|
r | p | r | p | |
BMI (kg/m2) | 0.109 | 0.736 | −0.170 | 0.580 |
WC (cm) | −0.155 | 0.631 | 0.130 | 0.672 |
AC (cm) | −0.400 | 0.223 | 0.012 | 0.970 |
TS (mm) | −0.303 | 0.338 | −0.006 | 0.987 |
HGS (kg) | −0.489 | 0.107 | −0.190 | 0.534 |
PA (°) | −0.362 | 0.248 | −0.293 | 0.355 |
FFMI (kg/m2) | −0.552 | 0.063 | −0.141 | 0.646 |
RF-CSA (cm2) | 0.390 | 0.210 | −0.281 | 0.352 |
PPAT (cm) | −0.257 | 0.420 | 0.254 | 0.427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñar-Gutiérrez, A.; Pereira-Cunill, J.L.; Jiménez-Sánchez, A.; García-Rey, S.; Roque-Cuéllar, M.d.C.; Martínez-Ortega, A.J.; González-Navarro, I.; Quintana-Gallego, E.; Pizarro, Á.; Castell, F.J.; et al. Nutritional and Morphofunctional Assessment in a Cohort of Adults Living with Cystic Fibrosis with or Without Pancreatic Exocrine and/or Endocrine Involvement. Nutrients 2025, 17, 2057. https://doi.org/10.3390/nu17132057
Piñar-Gutiérrez A, Pereira-Cunill JL, Jiménez-Sánchez A, García-Rey S, Roque-Cuéllar MdC, Martínez-Ortega AJ, González-Navarro I, Quintana-Gallego E, Pizarro Á, Castell FJ, et al. Nutritional and Morphofunctional Assessment in a Cohort of Adults Living with Cystic Fibrosis with or Without Pancreatic Exocrine and/or Endocrine Involvement. Nutrients. 2025; 17(13):2057. https://doi.org/10.3390/nu17132057
Chicago/Turabian StylePiñar-Gutiérrez, Ana, José Luis Pereira-Cunill, Andrés Jiménez-Sánchez, Silvia García-Rey, María del Carmen Roque-Cuéllar, Antonio J. Martínez-Ortega, Irene González-Navarro, Esther Quintana-Gallego, Ángeles Pizarro, Francisco Javier Castell, and et al. 2025. "Nutritional and Morphofunctional Assessment in a Cohort of Adults Living with Cystic Fibrosis with or Without Pancreatic Exocrine and/or Endocrine Involvement" Nutrients 17, no. 13: 2057. https://doi.org/10.3390/nu17132057
APA StylePiñar-Gutiérrez, A., Pereira-Cunill, J. L., Jiménez-Sánchez, A., García-Rey, S., Roque-Cuéllar, M. d. C., Martínez-Ortega, A. J., González-Navarro, I., Quintana-Gallego, E., Pizarro, Á., Castell, F. J., Romero-Gómez, M., & García-Luna, P. P. (2025). Nutritional and Morphofunctional Assessment in a Cohort of Adults Living with Cystic Fibrosis with or Without Pancreatic Exocrine and/or Endocrine Involvement. Nutrients, 17(13), 2057. https://doi.org/10.3390/nu17132057